1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * arch/arm/include/asm/io.h 4 * 5 * Copyright (C) 1996-2000 Russell King 6 * 7 * Modifications: 8 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both 9 * constant addresses and variable addresses. 10 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture 11 * specific IO header files. 12 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const.. 13 * 04-Apr-1999 PJB Added check_signature. 14 * 12-Dec-1999 RMK More cleanups 15 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions 16 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem 17 */ 18 #ifndef __ASM_ARM_IO_H 19 #define __ASM_ARM_IO_H 20 21 #ifdef __KERNEL__ 22 23 #include <linux/string.h> 24 #include <linux/types.h> 25 #include <asm/byteorder.h> 26 #include <asm/page.h> 27 #include <asm-generic/pci_iomap.h> 28 29 /* 30 * ISA I/O bus memory addresses are 1:1 with the physical address. 31 */ 32 #define isa_virt_to_bus virt_to_phys 33 #define isa_bus_to_virt phys_to_virt 34 35 /* 36 * Atomic MMIO-wide IO modify 37 */ 38 extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set); 39 extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set); 40 41 /* 42 * Generic IO read/write. These perform native-endian accesses. Note 43 * that some architectures will want to re-define __raw_{read,write}w. 44 */ 45 void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen); 46 void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen); 47 void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen); 48 49 void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen); 50 void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen); 51 void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen); 52 53 #if __LINUX_ARM_ARCH__ < 6 54 /* 55 * Half-word accesses are problematic with RiscPC due to limitations of 56 * the bus. Rather than special-case the machine, just let the compiler 57 * generate the access for CPUs prior to ARMv6. 58 */ 59 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a)) 60 #define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))) 61 #else 62 /* 63 * When running under a hypervisor, we want to avoid I/O accesses with 64 * writeback addressing modes as these incur a significant performance 65 * overhead (the address generation must be emulated in software). 66 */ 67 #define __raw_writew __raw_writew 68 static inline void __raw_writew(u16 val, volatile void __iomem *addr) 69 { 70 asm volatile("strh %1, %0" 71 : : "Q" (*(volatile u16 __force *)addr), "r" (val)); 72 } 73 74 #define __raw_readw __raw_readw 75 static inline u16 __raw_readw(const volatile void __iomem *addr) 76 { 77 u16 val; 78 asm volatile("ldrh %0, %1" 79 : "=r" (val) 80 : "Q" (*(volatile u16 __force *)addr)); 81 return val; 82 } 83 #endif 84 85 #define __raw_writeb __raw_writeb 86 static inline void __raw_writeb(u8 val, volatile void __iomem *addr) 87 { 88 asm volatile("strb %1, %0" 89 : : "Qo" (*(volatile u8 __force *)addr), "r" (val)); 90 } 91 92 #define __raw_writel __raw_writel 93 static inline void __raw_writel(u32 val, volatile void __iomem *addr) 94 { 95 asm volatile("str %1, %0" 96 : : "Qo" (*(volatile u32 __force *)addr), "r" (val)); 97 } 98 99 #define __raw_readb __raw_readb 100 static inline u8 __raw_readb(const volatile void __iomem *addr) 101 { 102 u8 val; 103 asm volatile("ldrb %0, %1" 104 : "=r" (val) 105 : "Qo" (*(volatile u8 __force *)addr)); 106 return val; 107 } 108 109 #define __raw_readl __raw_readl 110 static inline u32 __raw_readl(const volatile void __iomem *addr) 111 { 112 u32 val; 113 asm volatile("ldr %0, %1" 114 : "=r" (val) 115 : "Qo" (*(volatile u32 __force *)addr)); 116 return val; 117 } 118 119 /* 120 * Architecture ioremap implementation. 121 */ 122 #define MT_DEVICE 0 123 #define MT_DEVICE_NONSHARED 1 124 #define MT_DEVICE_CACHED 2 125 #define MT_DEVICE_WC 3 126 /* 127 * types 4 onwards can be found in asm/mach/map.h and are undefined 128 * for ioremap 129 */ 130 131 /* 132 * __arm_ioremap takes CPU physical address. 133 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page 134 * The _caller variety takes a __builtin_return_address(0) value for 135 * /proc/vmalloc to use - and should only be used in non-inline functions. 136 */ 137 extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int, 138 void *); 139 extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int); 140 extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached); 141 void __arm_iomem_set_ro(void __iomem *ptr, size_t size); 142 143 extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, 144 unsigned int, void *); 145 146 /* 147 * Bad read/write accesses... 148 */ 149 extern void __readwrite_bug(const char *fn); 150 151 /* 152 * A typesafe __io() helper 153 */ 154 static inline void __iomem *__typesafe_io(unsigned long addr) 155 { 156 return (void __iomem *)addr; 157 } 158 159 #define IOMEM(x) ((void __force __iomem *)(x)) 160 161 /* IO barriers */ 162 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 163 #include <asm/barrier.h> 164 #define __iormb() rmb() 165 #define __iowmb() wmb() 166 #else 167 #define __iormb() do { } while (0) 168 #define __iowmb() do { } while (0) 169 #endif 170 171 /* PCI fixed i/o mapping */ 172 #define PCI_IO_VIRT_BASE 0xfee00000 173 #define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE) 174 175 #if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA) 176 void pci_ioremap_set_mem_type(int mem_type); 177 #else 178 static inline void pci_ioremap_set_mem_type(int mem_type) {} 179 #endif 180 181 struct resource; 182 183 #define pci_remap_iospace pci_remap_iospace 184 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr); 185 186 /* 187 * PCI configuration space mapping function. 188 * 189 * The PCI specification does not allow configuration write 190 * transactions to be posted. Add an arch specific 191 * pci_remap_cfgspace() definition that is implemented 192 * through strongly ordered memory mappings. 193 */ 194 #define pci_remap_cfgspace pci_remap_cfgspace 195 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size); 196 /* 197 * Now, pick up the machine-defined IO definitions 198 */ 199 #ifdef CONFIG_NEED_MACH_IO_H 200 #include <mach/io.h> 201 #else 202 #if IS_ENABLED(CONFIG_PCMCIA) || defined(CONFIG_PCI) 203 #define IO_SPACE_LIMIT ((resource_size_t)0xfffff) 204 #else 205 #define IO_SPACE_LIMIT ((resource_size_t)0) 206 #endif 207 #define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT)) 208 #endif 209 210 /* 211 * IO port access primitives 212 * ------------------------- 213 * 214 * The ARM doesn't have special IO access instructions; all IO is memory 215 * mapped. Note that these are defined to perform little endian accesses 216 * only. Their primary purpose is to access PCI and ISA peripherals. 217 * 218 * Note that for a big endian machine, this implies that the following 219 * big endian mode connectivity is in place, as described by numerous 220 * ARM documents: 221 * 222 * PCI: D0-D7 D8-D15 D16-D23 D24-D31 223 * ARM: D24-D31 D16-D23 D8-D15 D0-D7 224 * 225 * The machine specific io.h include defines __io to translate an "IO" 226 * address to a memory address. 227 * 228 * Note that we prevent GCC re-ordering or caching values in expressions 229 * by introducing sequence points into the in*() definitions. Note that 230 * __raw_* do not guarantee this behaviour. 231 * 232 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. 233 */ 234 #ifdef __io 235 #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); }) 236 #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \ 237 cpu_to_le16(v),__io(p)); }) 238 #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \ 239 cpu_to_le32(v),__io(p)); }) 240 241 #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; }) 242 #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \ 243 __raw_readw(__io(p))); __iormb(); __v; }) 244 #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \ 245 __raw_readl(__io(p))); __iormb(); __v; }) 246 247 #define outsb(p,d,l) __raw_writesb(__io(p),d,l) 248 #define outsw(p,d,l) __raw_writesw(__io(p),d,l) 249 #define outsl(p,d,l) __raw_writesl(__io(p),d,l) 250 251 #define insb(p,d,l) __raw_readsb(__io(p),d,l) 252 #define insw(p,d,l) __raw_readsw(__io(p),d,l) 253 #define insl(p,d,l) __raw_readsl(__io(p),d,l) 254 #endif 255 256 /* 257 * String version of IO memory access ops: 258 */ 259 extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t); 260 extern void _memcpy_toio(volatile void __iomem *, const void *, size_t); 261 extern void _memset_io(volatile void __iomem *, int, size_t); 262 263 /* 264 * Memory access primitives 265 * ------------------------ 266 * 267 * These perform PCI memory accesses via an ioremap region. They don't 268 * take an address as such, but a cookie. 269 * 270 * Again, these are defined to perform little endian accesses. See the 271 * IO port primitives for more information. 272 */ 273 #ifndef readl 274 #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) 275 #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ 276 __raw_readw(c)); __r; }) 277 #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ 278 __raw_readl(c)); __r; }) 279 280 #define writeb_relaxed(v,c) __raw_writeb(v,c) 281 #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c) 282 #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c) 283 284 #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) 285 #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) 286 #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) 287 288 #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) 289 #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) 290 #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) 291 292 #define readsb(p,d,l) __raw_readsb(p,d,l) 293 #define readsw(p,d,l) __raw_readsw(p,d,l) 294 #define readsl(p,d,l) __raw_readsl(p,d,l) 295 296 #define writesb(p,d,l) __raw_writesb(p,d,l) 297 #define writesw(p,d,l) __raw_writesw(p,d,l) 298 #define writesl(p,d,l) __raw_writesl(p,d,l) 299 300 #ifndef __ARMBE__ 301 static inline void memset_io(volatile void __iomem *dst, unsigned c, 302 size_t count) 303 { 304 extern void mmioset(void *, unsigned int, size_t); 305 mmioset((void __force *)dst, c, count); 306 } 307 #define memset_io(dst,c,count) memset_io(dst,c,count) 308 309 static inline void memcpy_fromio(void *to, const volatile void __iomem *from, 310 size_t count) 311 { 312 extern void mmiocpy(void *, const void *, size_t); 313 mmiocpy(to, (const void __force *)from, count); 314 } 315 #define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count) 316 317 static inline void memcpy_toio(volatile void __iomem *to, const void *from, 318 size_t count) 319 { 320 extern void mmiocpy(void *, const void *, size_t); 321 mmiocpy((void __force *)to, from, count); 322 } 323 #define memcpy_toio(to,from,count) memcpy_toio(to,from,count) 324 325 #else 326 #define memset_io(c,v,l) _memset_io(c,(v),(l)) 327 #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l)) 328 #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l)) 329 #endif 330 331 #endif /* readl */ 332 333 /* 334 * ioremap() and friends. 335 * 336 * ioremap() takes a resource address, and size. Due to the ARM memory 337 * types, it is important to use the correct ioremap() function as each 338 * mapping has specific properties. 339 * 340 * Function Memory type Cacheability Cache hint 341 * ioremap() Device n/a n/a 342 * ioremap_cache() Normal Writeback Read allocate 343 * ioremap_wc() Normal Non-cacheable n/a 344 * ioremap_wt() Normal Non-cacheable n/a 345 * 346 * All device mappings have the following properties: 347 * - no access speculation 348 * - no repetition (eg, on return from an exception) 349 * - number, order and size of accesses are maintained 350 * - unaligned accesses are "unpredictable" 351 * - writes may be delayed before they hit the endpoint device 352 * 353 * All normal memory mappings have the following properties: 354 * - reads can be repeated with no side effects 355 * - repeated reads return the last value written 356 * - reads can fetch additional locations without side effects 357 * - writes can be repeated (in certain cases) with no side effects 358 * - writes can be merged before accessing the target 359 * - unaligned accesses can be supported 360 * - ordering is not guaranteed without explicit dependencies or barrier 361 * instructions 362 * - writes may be delayed before they hit the endpoint memory 363 * 364 * The cache hint is only a performance hint: CPUs may alias these hints. 365 * Eg, a CPU not implementing read allocate but implementing write allocate 366 * will provide a write allocate mapping instead. 367 */ 368 void __iomem *ioremap(resource_size_t res_cookie, size_t size); 369 #define ioremap ioremap 370 371 /* 372 * Do not use ioremap_cache for mapping memory. Use memremap instead. 373 */ 374 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size); 375 #define ioremap_cache ioremap_cache 376 377 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size); 378 #define ioremap_wc ioremap_wc 379 #define ioremap_wt ioremap_wc 380 381 void iounmap(volatile void __iomem *io_addr); 382 #define iounmap iounmap 383 384 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size); 385 #define arch_memremap_wb arch_memremap_wb 386 387 /* 388 * io{read,write}{16,32}be() macros 389 */ 390 #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) 391 #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) 392 393 #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) 394 #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) 395 396 #ifndef ioport_map 397 #define ioport_map ioport_map 398 extern void __iomem *ioport_map(unsigned long port, unsigned int nr); 399 #endif 400 #ifndef ioport_unmap 401 #define ioport_unmap ioport_unmap 402 extern void ioport_unmap(void __iomem *addr); 403 #endif 404 405 struct pci_dev; 406 407 #define pci_iounmap pci_iounmap 408 extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr); 409 410 #include <asm-generic/io.h> 411 412 #ifdef CONFIG_MMU 413 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE 414 extern int valid_phys_addr_range(phys_addr_t addr, size_t size); 415 extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); 416 extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, 417 unsigned long flags); 418 #define arch_memremap_can_ram_remap arch_memremap_can_ram_remap 419 #endif 420 421 /* 422 * Register ISA memory and port locations for glibc iopl/inb/outb 423 * emulation. 424 */ 425 extern void register_isa_ports(unsigned int mmio, unsigned int io, 426 unsigned int io_shift); 427 428 #endif /* __KERNEL__ */ 429 #endif /* __ASM_ARM_IO_H */ 430
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.