~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm/include/asm/pgtable-2level.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-only */
  2 /*
  3  *  arch/arm/include/asm/pgtable-2level.h
  4  *
  5  *  Copyright (C) 1995-2002 Russell King
  6  */
  7 #ifndef _ASM_PGTABLE_2LEVEL_H
  8 #define _ASM_PGTABLE_2LEVEL_H
  9 
 10 #define __PAGETABLE_PMD_FOLDED 1
 11 
 12 /*
 13  * Hardware-wise, we have a two level page table structure, where the first
 14  * level has 4096 entries, and the second level has 256 entries.  Each entry
 15  * is one 32-bit word.  Most of the bits in the second level entry are used
 16  * by hardware, and there aren't any "accessed" and "dirty" bits.
 17  *
 18  * Linux on the other hand has a three level page table structure, which can
 19  * be wrapped to fit a two level page table structure easily - using the PGD
 20  * and PTE only.  However, Linux also expects one "PTE" table per page, and
 21  * at least a "dirty" bit.
 22  *
 23  * Therefore, we tweak the implementation slightly - we tell Linux that we
 24  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
 25  * hardware pointers to the second level.)  The second level contains two
 26  * hardware PTE tables arranged contiguously, preceded by Linux versions
 27  * which contain the state information Linux needs.  We, therefore, end up
 28  * with 512 entries in the "PTE" level.
 29  *
 30  * This leads to the page tables having the following layout:
 31  *
 32  *    pgd             pte
 33  * |        |
 34  * +--------+
 35  * |        |       +------------+ +0
 36  * +- - - - +       | Linux pt 0 |
 37  * |        |       +------------+ +1024
 38  * +--------+ +0    | Linux pt 1 |
 39  * |        |-----> +------------+ +2048
 40  * +- - - - + +4    |  h/w pt 0  |
 41  * |        |-----> +------------+ +3072
 42  * +--------+ +8    |  h/w pt 1  |
 43  * |        |       +------------+ +4096
 44  *
 45  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
 46  * PTE_xxx for definitions of bits appearing in the "h/w pt".
 47  *
 48  * PMD_xxx definitions refer to bits in the first level page table.
 49  *
 50  * The "dirty" bit is emulated by only granting hardware write permission
 51  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
 52  * means that a write to a clean page will cause a permission fault, and
 53  * the Linux MM layer will mark the page dirty via handle_pte_fault().
 54  * For the hardware to notice the permission change, the TLB entry must
 55  * be flushed, and ptep_set_access_flags() does that for us.
 56  *
 57  * The "accessed" or "young" bit is emulated by a similar method; we only
 58  * allow accesses to the page if the "young" bit is set.  Accesses to the
 59  * page will cause a fault, and handle_pte_fault() will set the young bit
 60  * for us as long as the page is marked present in the corresponding Linux
 61  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
 62  * up to date.
 63  *
 64  * However, when the "young" bit is cleared, we deny access to the page
 65  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
 66  * for us in this case, which means the TLB will retain the transation
 67  * until either the TLB entry is evicted under pressure, or a context
 68  * switch which changes the user space mapping occurs.
 69  */
 70 #define PTRS_PER_PTE            512
 71 #define PTRS_PER_PMD            1
 72 #define PTRS_PER_PGD            2048
 73 
 74 #define PTE_HWTABLE_PTRS        (PTRS_PER_PTE)
 75 #define PTE_HWTABLE_OFF         (PTE_HWTABLE_PTRS * sizeof(pte_t))
 76 #define PTE_HWTABLE_SIZE        (PTRS_PER_PTE * sizeof(u32))
 77 
 78 #define MAX_POSSIBLE_PHYSMEM_BITS       32
 79 
 80 /*
 81  * PMD_SHIFT determines the size of the area a second-level page table can map
 82  * PGDIR_SHIFT determines what a third-level page table entry can map
 83  */
 84 #define PMD_SHIFT               21
 85 #define PGDIR_SHIFT             21
 86 
 87 #define PMD_SIZE                (1UL << PMD_SHIFT)
 88 #define PMD_MASK                (~(PMD_SIZE-1))
 89 #define PGDIR_SIZE              (1UL << PGDIR_SHIFT)
 90 #define PGDIR_MASK              (~(PGDIR_SIZE-1))
 91 
 92 /*
 93  * section address mask and size definitions.
 94  */
 95 #define SECTION_SHIFT           20
 96 #define SECTION_SIZE            (1UL << SECTION_SHIFT)
 97 #define SECTION_MASK            (~(SECTION_SIZE-1))
 98 
 99 /*
100  * ARMv6 supersection address mask and size definitions.
101  */
102 #define SUPERSECTION_SHIFT      24
103 #define SUPERSECTION_SIZE       (1UL << SUPERSECTION_SHIFT)
104 #define SUPERSECTION_MASK       (~(SUPERSECTION_SIZE-1))
105 
106 #define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
107 
108 /*
109  * "Linux" PTE definitions.
110  *
111  * We keep two sets of PTEs - the hardware and the linux version.
112  * This allows greater flexibility in the way we map the Linux bits
113  * onto the hardware tables, and allows us to have YOUNG and DIRTY
114  * bits.
115  *
116  * The PTE table pointer refers to the hardware entries; the "Linux"
117  * entries are stored 1024 bytes below.
118  */
119 #define L_PTE_VALID             (_AT(pteval_t, 1) << 0)         /* Valid */
120 #define L_PTE_PRESENT           (_AT(pteval_t, 1) << 0)
121 #define L_PTE_YOUNG             (_AT(pteval_t, 1) << 1)
122 #define L_PTE_DIRTY             (_AT(pteval_t, 1) << 6)
123 #define L_PTE_RDONLY            (_AT(pteval_t, 1) << 7)
124 #define L_PTE_USER              (_AT(pteval_t, 1) << 8)
125 #define L_PTE_XN                (_AT(pteval_t, 1) << 9)
126 #define L_PTE_SHARED            (_AT(pteval_t, 1) << 10)        /* shared(v6), coherent(xsc3) */
127 #define L_PTE_NONE              (_AT(pteval_t, 1) << 11)
128 
129 /* We borrow bit 7 to store the exclusive marker in swap PTEs. */
130 #define L_PTE_SWP_EXCLUSIVE     L_PTE_RDONLY
131 
132 /*
133  * These are the memory types, defined to be compatible with
134  * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
135  * ARMv6+ without TEX remapping, they are a table index.
136  * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
137  *
138  * MT type              Pre-ARMv6       ARMv6+ type / cacheable status
139  * UNCACHED             Uncached        Strongly ordered
140  * BUFFERABLE           Bufferable      Normal memory / non-cacheable
141  * WRITETHROUGH         Writethrough    Normal memory / write through
142  * WRITEBACK            Writeback       Normal memory / write back, read alloc
143  * MINICACHE            Minicache       N/A
144  * WRITEALLOC           Writeback       Normal memory / write back, write alloc
145  * DEV_SHARED           Uncached        Device memory (shared)
146  * DEV_NONSHARED        Uncached        Device memory (non-shared)
147  * DEV_WC               Bufferable      Normal memory / non-cacheable
148  * DEV_CACHED           Writeback       Normal memory / write back, read alloc
149  * VECTORS              Variable        Normal memory / variable
150  *
151  * All normal memory mappings have the following properties:
152  * - reads can be repeated with no side effects
153  * - repeated reads return the last value written
154  * - reads can fetch additional locations without side effects
155  * - writes can be repeated (in certain cases) with no side effects
156  * - writes can be merged before accessing the target
157  * - unaligned accesses can be supported
158  *
159  * All device mappings have the following properties:
160  * - no access speculation
161  * - no repetition (eg, on return from an exception)
162  * - number, order and size of accesses are maintained
163  * - unaligned accesses are "unpredictable"
164  */
165 #define L_PTE_MT_UNCACHED       (_AT(pteval_t, 0x00) << 2)      /* 0000 */
166 #define L_PTE_MT_BUFFERABLE     (_AT(pteval_t, 0x01) << 2)      /* 0001 */
167 #define L_PTE_MT_WRITETHROUGH   (_AT(pteval_t, 0x02) << 2)      /* 0010 */
168 #define L_PTE_MT_WRITEBACK      (_AT(pteval_t, 0x03) << 2)      /* 0011 */
169 #define L_PTE_MT_MINICACHE      (_AT(pteval_t, 0x06) << 2)      /* 0110 (sa1100, xscale) */
170 #define L_PTE_MT_WRITEALLOC     (_AT(pteval_t, 0x07) << 2)      /* 0111 */
171 #define L_PTE_MT_DEV_SHARED     (_AT(pteval_t, 0x04) << 2)      /* 0100 */
172 #define L_PTE_MT_DEV_NONSHARED  (_AT(pteval_t, 0x0c) << 2)      /* 1100 */
173 #define L_PTE_MT_DEV_WC         (_AT(pteval_t, 0x09) << 2)      /* 1001 */
174 #define L_PTE_MT_DEV_CACHED     (_AT(pteval_t, 0x0b) << 2)      /* 1011 */
175 #define L_PTE_MT_VECTORS        (_AT(pteval_t, 0x0f) << 2)      /* 1111 */
176 #define L_PTE_MT_MASK           (_AT(pteval_t, 0x0f) << 2)
177 
178 #ifndef __ASSEMBLY__
179 
180 /*
181  * The "pud_xxx()" functions here are trivial when the pmd is folded into
182  * the pud: the pud entry is never bad, always exists, and can't be set or
183  * cleared.
184  */
185 static inline int pud_none(pud_t pud)
186 {
187         return 0;
188 }
189 
190 static inline int pud_bad(pud_t pud)
191 {
192         return 0;
193 }
194 
195 static inline int pud_present(pud_t pud)
196 {
197         return 1;
198 }
199 
200 static inline void pud_clear(pud_t *pudp)
201 {
202 }
203 
204 static inline void set_pud(pud_t *pudp, pud_t pud)
205 {
206 }
207 
208 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
209 {
210         return (pmd_t *)pud;
211 }
212 #define pmd_offset pmd_offset
213 
214 #define pmd_pfn(pmd)            (__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
215 
216 #define pmd_leaf(pmd)           (pmd_val(pmd) & PMD_TYPE_SECT)
217 #define pmd_bad(pmd)            pmd_leaf(pmd)
218 #define pmd_present(pmd)        (pmd_val(pmd))
219 
220 #define copy_pmd(pmdpd,pmdps)           \
221         do {                            \
222                 pmdpd[0] = pmdps[0];    \
223                 pmdpd[1] = pmdps[1];    \
224                 flush_pmd_entry(pmdpd); \
225         } while (0)
226 
227 #define pmd_clear(pmdp)                 \
228         do {                            \
229                 pmdp[0] = __pmd(0);     \
230                 pmdp[1] = __pmd(0);     \
231                 clean_pmd_entry(pmdp);  \
232         } while (0)
233 
234 /* we don't need complex calculations here as the pmd is folded into the pgd */
235 #define pmd_addr_end(addr,end) (end)
236 
237 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
238 
239 /*
240  * We don't have huge page support for short descriptors, for the moment
241  * define empty stubs for use by pin_page_for_write.
242  */
243 #define pmd_hugewillfault(pmd)  (0)
244 
245 #endif /* __ASSEMBLY__ */
246 
247 #endif /* _ASM_PGTABLE_2LEVEL_H */
248 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php