1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/setup.c 4 * 5 * Copyright (C) 1995-2001 Russell King 6 */ 7 #include <linux/efi.h> 8 #include <linux/export.h> 9 #include <linux/kernel.h> 10 #include <linux/stddef.h> 11 #include <linux/ioport.h> 12 #include <linux/delay.h> 13 #include <linux/utsname.h> 14 #include <linux/initrd.h> 15 #include <linux/console.h> 16 #include <linux/seq_file.h> 17 #include <linux/screen_info.h> 18 #include <linux/init.h> 19 #include <linux/kexec.h> 20 #include <linux/libfdt.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/cpu.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/proc_fs.h> 27 #include <linux/memblock.h> 28 #include <linux/bug.h> 29 #include <linux/compiler.h> 30 #include <linux/sort.h> 31 #include <linux/psci.h> 32 33 #include <asm/unified.h> 34 #include <asm/cp15.h> 35 #include <asm/cpu.h> 36 #include <asm/cputype.h> 37 #include <asm/efi.h> 38 #include <asm/elf.h> 39 #include <asm/early_ioremap.h> 40 #include <asm/fixmap.h> 41 #include <asm/procinfo.h> 42 #include <asm/psci.h> 43 #include <asm/sections.h> 44 #include <asm/setup.h> 45 #include <asm/smp_plat.h> 46 #include <asm/mach-types.h> 47 #include <asm/cacheflush.h> 48 #include <asm/cachetype.h> 49 #include <asm/tlbflush.h> 50 #include <asm/xen/hypervisor.h> 51 52 #include <asm/prom.h> 53 #include <asm/mach/arch.h> 54 #include <asm/mach/irq.h> 55 #include <asm/mach/time.h> 56 #include <asm/system_info.h> 57 #include <asm/system_misc.h> 58 #include <asm/traps.h> 59 #include <asm/unwind.h> 60 #include <asm/memblock.h> 61 #include <asm/virt.h> 62 #include <asm/kasan.h> 63 64 #include "atags.h" 65 66 67 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) 68 char fpe_type[8]; 69 70 static int __init fpe_setup(char *line) 71 { 72 memcpy(fpe_type, line, 8); 73 return 1; 74 } 75 76 __setup("fpe=", fpe_setup); 77 #endif 78 79 unsigned int processor_id; 80 EXPORT_SYMBOL(processor_id); 81 unsigned int __machine_arch_type __read_mostly; 82 EXPORT_SYMBOL(__machine_arch_type); 83 unsigned int cacheid __read_mostly; 84 EXPORT_SYMBOL(cacheid); 85 86 unsigned int __atags_pointer __initdata; 87 88 unsigned int system_rev; 89 EXPORT_SYMBOL(system_rev); 90 91 const char *system_serial; 92 EXPORT_SYMBOL(system_serial); 93 94 unsigned int system_serial_low; 95 EXPORT_SYMBOL(system_serial_low); 96 97 unsigned int system_serial_high; 98 EXPORT_SYMBOL(system_serial_high); 99 100 unsigned int elf_hwcap __read_mostly; 101 EXPORT_SYMBOL(elf_hwcap); 102 103 unsigned int elf_hwcap2 __read_mostly; 104 EXPORT_SYMBOL(elf_hwcap2); 105 106 107 #ifdef MULTI_CPU 108 struct processor processor __ro_after_init; 109 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 110 struct processor *cpu_vtable[NR_CPUS] = { 111 [0] = &processor, 112 }; 113 #endif 114 #endif 115 #ifdef MULTI_TLB 116 struct cpu_tlb_fns cpu_tlb __ro_after_init; 117 #endif 118 #ifdef MULTI_USER 119 struct cpu_user_fns cpu_user __ro_after_init; 120 #endif 121 #ifdef MULTI_CACHE 122 struct cpu_cache_fns cpu_cache __ro_after_init; 123 #endif 124 #ifdef CONFIG_OUTER_CACHE 125 struct outer_cache_fns outer_cache __ro_after_init; 126 EXPORT_SYMBOL(outer_cache); 127 #endif 128 129 /* 130 * Cached cpu_architecture() result for use by assembler code. 131 * C code should use the cpu_architecture() function instead of accessing this 132 * variable directly. 133 */ 134 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN; 135 136 struct stack { 137 u32 irq[4]; 138 u32 abt[4]; 139 u32 und[4]; 140 u32 fiq[4]; 141 } ____cacheline_aligned; 142 143 #ifndef CONFIG_CPU_V7M 144 static struct stack stacks[NR_CPUS]; 145 #endif 146 147 char elf_platform[ELF_PLATFORM_SIZE]; 148 EXPORT_SYMBOL(elf_platform); 149 150 static const char *cpu_name; 151 static const char *machine_name; 152 static char __initdata cmd_line[COMMAND_LINE_SIZE]; 153 const struct machine_desc *machine_desc __initdata; 154 155 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; 156 #define ENDIANNESS ((char)endian_test.l) 157 158 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); 159 160 /* 161 * Standard memory resources 162 */ 163 static struct resource mem_res[] = { 164 { 165 .name = "Video RAM", 166 .start = 0, 167 .end = 0, 168 .flags = IORESOURCE_MEM 169 }, 170 { 171 .name = "Kernel code", 172 .start = 0, 173 .end = 0, 174 .flags = IORESOURCE_SYSTEM_RAM 175 }, 176 { 177 .name = "Kernel data", 178 .start = 0, 179 .end = 0, 180 .flags = IORESOURCE_SYSTEM_RAM 181 } 182 }; 183 184 #define video_ram mem_res[0] 185 #define kernel_code mem_res[1] 186 #define kernel_data mem_res[2] 187 188 static struct resource io_res[] = { 189 { 190 .name = "reserved", 191 .start = 0x3bc, 192 .end = 0x3be, 193 .flags = IORESOURCE_IO | IORESOURCE_BUSY 194 }, 195 { 196 .name = "reserved", 197 .start = 0x378, 198 .end = 0x37f, 199 .flags = IORESOURCE_IO | IORESOURCE_BUSY 200 }, 201 { 202 .name = "reserved", 203 .start = 0x278, 204 .end = 0x27f, 205 .flags = IORESOURCE_IO | IORESOURCE_BUSY 206 } 207 }; 208 209 #define lp0 io_res[0] 210 #define lp1 io_res[1] 211 #define lp2 io_res[2] 212 213 static const char *proc_arch[] = { 214 "undefined/unknown", 215 "3", 216 "4", 217 "4T", 218 "5", 219 "5T", 220 "5TE", 221 "5TEJ", 222 "6TEJ", 223 "7", 224 "7M", 225 "?(12)", 226 "?(13)", 227 "?(14)", 228 "?(15)", 229 "?(16)", 230 "?(17)", 231 }; 232 233 #ifdef CONFIG_CPU_V7M 234 static int __get_cpu_architecture(void) 235 { 236 return CPU_ARCH_ARMv7M; 237 } 238 #else 239 static int __get_cpu_architecture(void) 240 { 241 int cpu_arch; 242 243 if ((read_cpuid_id() & 0x0008f000) == 0) { 244 cpu_arch = CPU_ARCH_UNKNOWN; 245 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { 246 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; 247 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { 248 cpu_arch = (read_cpuid_id() >> 16) & 7; 249 if (cpu_arch) 250 cpu_arch += CPU_ARCH_ARMv3; 251 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { 252 /* Revised CPUID format. Read the Memory Model Feature 253 * Register 0 and check for VMSAv7 or PMSAv7 */ 254 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0); 255 if ((mmfr0 & 0x0000000f) >= 0x00000003 || 256 (mmfr0 & 0x000000f0) >= 0x00000030) 257 cpu_arch = CPU_ARCH_ARMv7; 258 else if ((mmfr0 & 0x0000000f) == 0x00000002 || 259 (mmfr0 & 0x000000f0) == 0x00000020) 260 cpu_arch = CPU_ARCH_ARMv6; 261 else 262 cpu_arch = CPU_ARCH_UNKNOWN; 263 } else 264 cpu_arch = CPU_ARCH_UNKNOWN; 265 266 return cpu_arch; 267 } 268 #endif 269 270 int __pure cpu_architecture(void) 271 { 272 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN); 273 274 return __cpu_architecture; 275 } 276 277 static int cpu_has_aliasing_icache(unsigned int arch) 278 { 279 int aliasing_icache; 280 unsigned int id_reg, num_sets, line_size; 281 282 /* PIPT caches never alias. */ 283 if (icache_is_pipt()) 284 return 0; 285 286 /* arch specifies the register format */ 287 switch (arch) { 288 case CPU_ARCH_ARMv7: 289 set_csselr(CSSELR_ICACHE | CSSELR_L1); 290 isb(); 291 id_reg = read_ccsidr(); 292 line_size = 4 << ((id_reg & 0x7) + 2); 293 num_sets = ((id_reg >> 13) & 0x7fff) + 1; 294 aliasing_icache = (line_size * num_sets) > PAGE_SIZE; 295 break; 296 case CPU_ARCH_ARMv6: 297 aliasing_icache = read_cpuid_cachetype() & (1 << 11); 298 break; 299 default: 300 /* I-cache aliases will be handled by D-cache aliasing code */ 301 aliasing_icache = 0; 302 } 303 304 return aliasing_icache; 305 } 306 307 static void __init cacheid_init(void) 308 { 309 unsigned int arch = cpu_architecture(); 310 311 if (arch >= CPU_ARCH_ARMv6) { 312 unsigned int cachetype = read_cpuid_cachetype(); 313 314 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) { 315 cacheid = 0; 316 } else if ((cachetype & (7 << 29)) == 4 << 29) { 317 /* ARMv7 register format */ 318 arch = CPU_ARCH_ARMv7; 319 cacheid = CACHEID_VIPT_NONALIASING; 320 switch (cachetype & (3 << 14)) { 321 case (1 << 14): 322 cacheid |= CACHEID_ASID_TAGGED; 323 break; 324 case (3 << 14): 325 cacheid |= CACHEID_PIPT; 326 break; 327 } 328 } else { 329 arch = CPU_ARCH_ARMv6; 330 if (cachetype & (1 << 23)) 331 cacheid = CACHEID_VIPT_ALIASING; 332 else 333 cacheid = CACHEID_VIPT_NONALIASING; 334 } 335 if (cpu_has_aliasing_icache(arch)) 336 cacheid |= CACHEID_VIPT_I_ALIASING; 337 } else { 338 cacheid = CACHEID_VIVT; 339 } 340 341 pr_info("CPU: %s data cache, %s instruction cache\n", 342 cache_is_vivt() ? "VIVT" : 343 cache_is_vipt_aliasing() ? "VIPT aliasing" : 344 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown", 345 cache_is_vivt() ? "VIVT" : 346 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" : 347 icache_is_vipt_aliasing() ? "VIPT aliasing" : 348 icache_is_pipt() ? "PIPT" : 349 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown"); 350 } 351 352 /* 353 * These functions re-use the assembly code in head.S, which 354 * already provide the required functionality. 355 */ 356 extern struct proc_info_list *lookup_processor_type(unsigned int); 357 358 void __init early_print(const char *str, ...) 359 { 360 extern void printascii(const char *); 361 char buf[256]; 362 va_list ap; 363 364 va_start(ap, str); 365 vsnprintf(buf, sizeof(buf), str, ap); 366 va_end(ap); 367 368 #ifdef CONFIG_DEBUG_LL 369 printascii(buf); 370 #endif 371 printk("%s", buf); 372 } 373 374 #ifdef CONFIG_ARM_PATCH_IDIV 375 376 static inline u32 __attribute_const__ sdiv_instruction(void) 377 { 378 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 379 /* "sdiv r0, r0, r1" */ 380 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1); 381 return __opcode_to_mem_thumb32(insn); 382 } 383 384 /* "sdiv r0, r0, r1" */ 385 return __opcode_to_mem_arm(0xe710f110); 386 } 387 388 static inline u32 __attribute_const__ udiv_instruction(void) 389 { 390 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 391 /* "udiv r0, r0, r1" */ 392 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1); 393 return __opcode_to_mem_thumb32(insn); 394 } 395 396 /* "udiv r0, r0, r1" */ 397 return __opcode_to_mem_arm(0xe730f110); 398 } 399 400 static inline u32 __attribute_const__ bx_lr_instruction(void) 401 { 402 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 403 /* "bx lr; nop" */ 404 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0); 405 return __opcode_to_mem_thumb32(insn); 406 } 407 408 /* "bx lr" */ 409 return __opcode_to_mem_arm(0xe12fff1e); 410 } 411 412 static void __init patch_aeabi_idiv(void) 413 { 414 extern void __aeabi_uidiv(void); 415 extern void __aeabi_idiv(void); 416 uintptr_t fn_addr; 417 unsigned int mask; 418 419 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA; 420 if (!(elf_hwcap & mask)) 421 return; 422 423 pr_info("CPU: div instructions available: patching division code\n"); 424 425 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1; 426 asm ("" : "+g" (fn_addr)); 427 ((u32 *)fn_addr)[0] = udiv_instruction(); 428 ((u32 *)fn_addr)[1] = bx_lr_instruction(); 429 flush_icache_range(fn_addr, fn_addr + 8); 430 431 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1; 432 asm ("" : "+g" (fn_addr)); 433 ((u32 *)fn_addr)[0] = sdiv_instruction(); 434 ((u32 *)fn_addr)[1] = bx_lr_instruction(); 435 flush_icache_range(fn_addr, fn_addr + 8); 436 } 437 438 #else 439 static inline void patch_aeabi_idiv(void) { } 440 #endif 441 442 static void __init cpuid_init_hwcaps(void) 443 { 444 int block; 445 u32 isar5; 446 u32 isar6; 447 u32 pfr2; 448 449 if (cpu_architecture() < CPU_ARCH_ARMv7) 450 return; 451 452 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24); 453 if (block >= 2) 454 elf_hwcap |= HWCAP_IDIVA; 455 if (block >= 1) 456 elf_hwcap |= HWCAP_IDIVT; 457 458 /* LPAE implies atomic ldrd/strd instructions */ 459 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0); 460 if (block >= 5) 461 elf_hwcap |= HWCAP_LPAE; 462 463 /* check for supported v8 Crypto instructions */ 464 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5); 465 466 block = cpuid_feature_extract_field(isar5, 4); 467 if (block >= 2) 468 elf_hwcap2 |= HWCAP2_PMULL; 469 if (block >= 1) 470 elf_hwcap2 |= HWCAP2_AES; 471 472 block = cpuid_feature_extract_field(isar5, 8); 473 if (block >= 1) 474 elf_hwcap2 |= HWCAP2_SHA1; 475 476 block = cpuid_feature_extract_field(isar5, 12); 477 if (block >= 1) 478 elf_hwcap2 |= HWCAP2_SHA2; 479 480 block = cpuid_feature_extract_field(isar5, 16); 481 if (block >= 1) 482 elf_hwcap2 |= HWCAP2_CRC32; 483 484 /* Check for Speculation barrier instruction */ 485 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6); 486 block = cpuid_feature_extract_field(isar6, 12); 487 if (block >= 1) 488 elf_hwcap2 |= HWCAP2_SB; 489 490 /* Check for Speculative Store Bypassing control */ 491 pfr2 = read_cpuid_ext(CPUID_EXT_PFR2); 492 block = cpuid_feature_extract_field(pfr2, 4); 493 if (block >= 1) 494 elf_hwcap2 |= HWCAP2_SSBS; 495 } 496 497 static void __init elf_hwcap_fixup(void) 498 { 499 unsigned id = read_cpuid_id(); 500 501 /* 502 * HWCAP_TLS is available only on 1136 r1p0 and later, 503 * see also kuser_get_tls_init. 504 */ 505 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 && 506 ((id >> 20) & 3) == 0) { 507 elf_hwcap &= ~HWCAP_TLS; 508 return; 509 } 510 511 /* Verify if CPUID scheme is implemented */ 512 if ((id & 0x000f0000) != 0x000f0000) 513 return; 514 515 /* 516 * If the CPU supports LDREX/STREX and LDREXB/STREXB, 517 * avoid advertising SWP; it may not be atomic with 518 * multiprocessing cores. 519 */ 520 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 || 521 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 && 522 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3)) 523 elf_hwcap &= ~HWCAP_SWP; 524 } 525 526 /* 527 * cpu_init - initialise one CPU. 528 * 529 * cpu_init sets up the per-CPU stacks. 530 */ 531 void notrace cpu_init(void) 532 { 533 #ifndef CONFIG_CPU_V7M 534 unsigned int cpu = smp_processor_id(); 535 struct stack *stk = &stacks[cpu]; 536 537 if (cpu >= NR_CPUS) { 538 pr_crit("CPU%u: bad primary CPU number\n", cpu); 539 BUG(); 540 } 541 542 /* 543 * This only works on resume and secondary cores. For booting on the 544 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup. 545 */ 546 set_my_cpu_offset(per_cpu_offset(cpu)); 547 548 cpu_proc_init(); 549 550 /* 551 * Define the placement constraint for the inline asm directive below. 552 * In Thumb-2, msr with an immediate value is not allowed. 553 */ 554 #ifdef CONFIG_THUMB2_KERNEL 555 #define PLC_l "l" 556 #define PLC_r "r" 557 #else 558 #define PLC_l "I" 559 #define PLC_r "I" 560 #endif 561 562 /* 563 * setup stacks for re-entrant exception handlers 564 */ 565 __asm__ ( 566 "msr cpsr_c, %1\n\t" 567 "add r14, %0, %2\n\t" 568 "mov sp, r14\n\t" 569 "msr cpsr_c, %3\n\t" 570 "add r14, %0, %4\n\t" 571 "mov sp, r14\n\t" 572 "msr cpsr_c, %5\n\t" 573 "add r14, %0, %6\n\t" 574 "mov sp, r14\n\t" 575 "msr cpsr_c, %7\n\t" 576 "add r14, %0, %8\n\t" 577 "mov sp, r14\n\t" 578 "msr cpsr_c, %9" 579 : 580 : "r" (stk), 581 PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), 582 "I" (offsetof(struct stack, irq[0])), 583 PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE), 584 "I" (offsetof(struct stack, abt[0])), 585 PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE), 586 "I" (offsetof(struct stack, und[0])), 587 PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE), 588 "I" (offsetof(struct stack, fiq[0])), 589 PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE) 590 : "r14"); 591 #endif 592 } 593 594 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID }; 595 596 void __init smp_setup_processor_id(void) 597 { 598 int i; 599 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0; 600 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 601 602 cpu_logical_map(0) = cpu; 603 for (i = 1; i < nr_cpu_ids; ++i) 604 cpu_logical_map(i) = i == cpu ? 0 : i; 605 606 /* 607 * clear __my_cpu_offset on boot CPU to avoid hang caused by 608 * using percpu variable early, for example, lockdep will 609 * access percpu variable inside lock_release 610 */ 611 set_my_cpu_offset(0); 612 613 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr); 614 } 615 616 struct mpidr_hash mpidr_hash; 617 #ifdef CONFIG_SMP 618 /** 619 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 620 * level in order to build a linear index from an 621 * MPIDR value. Resulting algorithm is a collision 622 * free hash carried out through shifting and ORing 623 */ 624 static void __init smp_build_mpidr_hash(void) 625 { 626 u32 i, affinity; 627 u32 fs[3], bits[3], ls, mask = 0; 628 /* 629 * Pre-scan the list of MPIDRS and filter out bits that do 630 * not contribute to affinity levels, ie they never toggle. 631 */ 632 for_each_possible_cpu(i) 633 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 634 pr_debug("mask of set bits 0x%x\n", mask); 635 /* 636 * Find and stash the last and first bit set at all affinity levels to 637 * check how many bits are required to represent them. 638 */ 639 for (i = 0; i < 3; i++) { 640 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 641 /* 642 * Find the MSB bit and LSB bits position 643 * to determine how many bits are required 644 * to express the affinity level. 645 */ 646 ls = fls(affinity); 647 fs[i] = affinity ? ffs(affinity) - 1 : 0; 648 bits[i] = ls - fs[i]; 649 } 650 /* 651 * An index can be created from the MPIDR by isolating the 652 * significant bits at each affinity level and by shifting 653 * them in order to compress the 24 bits values space to a 654 * compressed set of values. This is equivalent to hashing 655 * the MPIDR through shifting and ORing. It is a collision free 656 * hash though not minimal since some levels might contain a number 657 * of CPUs that is not an exact power of 2 and their bit 658 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}. 659 */ 660 mpidr_hash.shift_aff[0] = fs[0]; 661 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0]; 662 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] - 663 (bits[1] + bits[0]); 664 mpidr_hash.mask = mask; 665 mpidr_hash.bits = bits[2] + bits[1] + bits[0]; 666 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n", 667 mpidr_hash.shift_aff[0], 668 mpidr_hash.shift_aff[1], 669 mpidr_hash.shift_aff[2], 670 mpidr_hash.mask, 671 mpidr_hash.bits); 672 /* 673 * 4x is an arbitrary value used to warn on a hash table much bigger 674 * than expected on most systems. 675 */ 676 if (mpidr_hash_size() > 4 * num_possible_cpus()) 677 pr_warn("Large number of MPIDR hash buckets detected\n"); 678 sync_cache_w(&mpidr_hash); 679 } 680 #endif 681 682 /* 683 * locate processor in the list of supported processor types. The linker 684 * builds this table for us from the entries in arch/arm/mm/proc-*.S 685 */ 686 struct proc_info_list *lookup_processor(u32 midr) 687 { 688 struct proc_info_list *list = lookup_processor_type(midr); 689 690 if (!list) { 691 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n", 692 smp_processor_id(), midr); 693 while (1) 694 /* can't use cpu_relax() here as it may require MMU setup */; 695 } 696 697 return list; 698 } 699 700 static void __init setup_processor(void) 701 { 702 unsigned int midr = read_cpuid_id(); 703 struct proc_info_list *list = lookup_processor(midr); 704 705 cpu_name = list->cpu_name; 706 __cpu_architecture = __get_cpu_architecture(); 707 708 init_proc_vtable(list->proc); 709 #ifdef MULTI_TLB 710 cpu_tlb = *list->tlb; 711 #endif 712 #ifdef MULTI_USER 713 cpu_user = *list->user; 714 #endif 715 #ifdef MULTI_CACHE 716 cpu_cache = *list->cache; 717 #endif 718 719 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", 720 list->cpu_name, midr, midr & 15, 721 proc_arch[cpu_architecture()], get_cr()); 722 723 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c", 724 list->arch_name, ENDIANNESS); 725 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c", 726 list->elf_name, ENDIANNESS); 727 elf_hwcap = list->elf_hwcap; 728 729 cpuid_init_hwcaps(); 730 patch_aeabi_idiv(); 731 732 #ifndef CONFIG_ARM_THUMB 733 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT); 734 #endif 735 #ifdef CONFIG_MMU 736 init_default_cache_policy(list->__cpu_mm_mmu_flags); 737 #endif 738 erratum_a15_798181_init(); 739 740 elf_hwcap_fixup(); 741 742 cacheid_init(); 743 cpu_init(); 744 } 745 746 void __init dump_machine_table(void) 747 { 748 const struct machine_desc *p; 749 750 early_print("Available machine support:\n\nID (hex)\tNAME\n"); 751 for_each_machine_desc(p) 752 early_print("%08x\t%s\n", p->nr, p->name); 753 754 early_print("\nPlease check your kernel config and/or bootloader.\n"); 755 756 while (true) 757 /* can't use cpu_relax() here as it may require MMU setup */; 758 } 759 760 int __init arm_add_memory(u64 start, u64 size) 761 { 762 u64 aligned_start; 763 764 /* 765 * Ensure that start/size are aligned to a page boundary. 766 * Size is rounded down, start is rounded up. 767 */ 768 aligned_start = PAGE_ALIGN(start); 769 if (aligned_start > start + size) 770 size = 0; 771 else 772 size -= aligned_start - start; 773 774 #ifndef CONFIG_PHYS_ADDR_T_64BIT 775 if (aligned_start > ULONG_MAX) { 776 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n", 777 start); 778 return -EINVAL; 779 } 780 781 if (aligned_start + size > ULONG_MAX) { 782 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n", 783 (long long)start); 784 /* 785 * To ensure bank->start + bank->size is representable in 786 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB. 787 * This means we lose a page after masking. 788 */ 789 size = ULONG_MAX - aligned_start; 790 } 791 #endif 792 793 if (aligned_start < PHYS_OFFSET) { 794 if (aligned_start + size <= PHYS_OFFSET) { 795 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 796 aligned_start, aligned_start + size); 797 return -EINVAL; 798 } 799 800 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 801 aligned_start, (u64)PHYS_OFFSET); 802 803 size -= PHYS_OFFSET - aligned_start; 804 aligned_start = PHYS_OFFSET; 805 } 806 807 start = aligned_start; 808 size = size & ~(phys_addr_t)(PAGE_SIZE - 1); 809 810 /* 811 * Check whether this memory region has non-zero size or 812 * invalid node number. 813 */ 814 if (size == 0) 815 return -EINVAL; 816 817 memblock_add(start, size); 818 return 0; 819 } 820 821 /* 822 * Pick out the memory size. We look for mem=size@start, 823 * where start and size are "size[KkMm]" 824 */ 825 826 static int __init early_mem(char *p) 827 { 828 static int usermem __initdata = 0; 829 u64 size; 830 u64 start; 831 char *endp; 832 833 /* 834 * If the user specifies memory size, we 835 * blow away any automatically generated 836 * size. 837 */ 838 if (usermem == 0) { 839 usermem = 1; 840 memblock_remove(memblock_start_of_DRAM(), 841 memblock_end_of_DRAM() - memblock_start_of_DRAM()); 842 } 843 844 start = PHYS_OFFSET; 845 size = memparse(p, &endp); 846 if (*endp == '@') 847 start = memparse(endp + 1, NULL); 848 849 arm_add_memory(start, size); 850 851 return 0; 852 } 853 early_param("mem", early_mem); 854 855 static void __init request_standard_resources(const struct machine_desc *mdesc) 856 { 857 phys_addr_t start, end, res_end; 858 struct resource *res; 859 u64 i; 860 861 kernel_code.start = virt_to_phys(_text); 862 kernel_code.end = virt_to_phys(__init_begin - 1); 863 kernel_data.start = virt_to_phys(_sdata); 864 kernel_data.end = virt_to_phys(_end - 1); 865 866 for_each_mem_range(i, &start, &end) { 867 unsigned long boot_alias_start; 868 869 /* 870 * In memblock, end points to the first byte after the 871 * range while in resourses, end points to the last byte in 872 * the range. 873 */ 874 res_end = end - 1; 875 876 /* 877 * Some systems have a special memory alias which is only 878 * used for booting. We need to advertise this region to 879 * kexec-tools so they know where bootable RAM is located. 880 */ 881 boot_alias_start = phys_to_idmap(start); 882 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) { 883 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES); 884 if (!res) 885 panic("%s: Failed to allocate %zu bytes\n", 886 __func__, sizeof(*res)); 887 res->name = "System RAM (boot alias)"; 888 res->start = boot_alias_start; 889 res->end = phys_to_idmap(res_end); 890 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 891 request_resource(&iomem_resource, res); 892 } 893 894 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES); 895 if (!res) 896 panic("%s: Failed to allocate %zu bytes\n", __func__, 897 sizeof(*res)); 898 res->name = "System RAM"; 899 res->start = start; 900 res->end = res_end; 901 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 902 903 request_resource(&iomem_resource, res); 904 905 if (kernel_code.start >= res->start && 906 kernel_code.end <= res->end) 907 request_resource(res, &kernel_code); 908 if (kernel_data.start >= res->start && 909 kernel_data.end <= res->end) 910 request_resource(res, &kernel_data); 911 } 912 913 if (mdesc->video_start) { 914 video_ram.start = mdesc->video_start; 915 video_ram.end = mdesc->video_end; 916 request_resource(&iomem_resource, &video_ram); 917 } 918 919 /* 920 * Some machines don't have the possibility of ever 921 * possessing lp0, lp1 or lp2 922 */ 923 if (mdesc->reserve_lp0) 924 request_resource(&ioport_resource, &lp0); 925 if (mdesc->reserve_lp1) 926 request_resource(&ioport_resource, &lp1); 927 if (mdesc->reserve_lp2) 928 request_resource(&ioport_resource, &lp2); 929 } 930 931 #if defined(CONFIG_VGA_CONSOLE) 932 struct screen_info vgacon_screen_info = { 933 .orig_video_lines = 30, 934 .orig_video_cols = 80, 935 .orig_video_mode = 0, 936 .orig_video_ega_bx = 0, 937 .orig_video_isVGA = 1, 938 .orig_video_points = 8 939 }; 940 #endif 941 942 static int __init customize_machine(void) 943 { 944 /* 945 * customizes platform devices, or adds new ones 946 * On DT based machines, we fall back to populating the 947 * machine from the device tree, if no callback is provided, 948 * otherwise we would always need an init_machine callback. 949 */ 950 if (machine_desc->init_machine) 951 machine_desc->init_machine(); 952 953 return 0; 954 } 955 arch_initcall(customize_machine); 956 957 static int __init init_machine_late(void) 958 { 959 struct device_node *root; 960 int ret; 961 962 if (machine_desc->init_late) 963 machine_desc->init_late(); 964 965 root = of_find_node_by_path("/"); 966 if (root) { 967 ret = of_property_read_string(root, "serial-number", 968 &system_serial); 969 if (ret) 970 system_serial = NULL; 971 } 972 973 if (!system_serial) 974 system_serial = kasprintf(GFP_KERNEL, "%08x%08x", 975 system_serial_high, 976 system_serial_low); 977 978 return 0; 979 } 980 late_initcall(init_machine_late); 981 982 #ifdef CONFIG_CRASH_RESERVE 983 /* 984 * The crash region must be aligned to 128MB to avoid 985 * zImage relocating below the reserved region. 986 */ 987 #define CRASH_ALIGN (128 << 20) 988 989 static inline unsigned long long get_total_mem(void) 990 { 991 unsigned long total; 992 993 total = max_low_pfn - min_low_pfn; 994 return total << PAGE_SHIFT; 995 } 996 997 /** 998 * reserve_crashkernel() - reserves memory are for crash kernel 999 * 1000 * This function reserves memory area given in "crashkernel=" kernel command 1001 * line parameter. The memory reserved is used by a dump capture kernel when 1002 * primary kernel is crashing. 1003 */ 1004 static void __init reserve_crashkernel(void) 1005 { 1006 unsigned long long crash_size, crash_base; 1007 unsigned long long total_mem; 1008 int ret; 1009 1010 total_mem = get_total_mem(); 1011 ret = parse_crashkernel(boot_command_line, total_mem, 1012 &crash_size, &crash_base, 1013 NULL, NULL); 1014 /* invalid value specified or crashkernel=0 */ 1015 if (ret || !crash_size) 1016 return; 1017 1018 if (crash_base <= 0) { 1019 unsigned long long crash_max = idmap_to_phys((u32)~0); 1020 unsigned long long lowmem_max = __pa(high_memory - 1) + 1; 1021 if (crash_max > lowmem_max) 1022 crash_max = lowmem_max; 1023 1024 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, 1025 CRASH_ALIGN, crash_max); 1026 if (!crash_base) { 1027 pr_err("crashkernel reservation failed - No suitable area found.\n"); 1028 return; 1029 } 1030 } else { 1031 unsigned long long crash_max = crash_base + crash_size; 1032 unsigned long long start; 1033 1034 start = memblock_phys_alloc_range(crash_size, SECTION_SIZE, 1035 crash_base, crash_max); 1036 if (!start) { 1037 pr_err("crashkernel reservation failed - memory is in use.\n"); 1038 return; 1039 } 1040 } 1041 1042 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 1043 (unsigned long)(crash_size >> 20), 1044 (unsigned long)(crash_base >> 20), 1045 (unsigned long)(total_mem >> 20)); 1046 1047 /* The crashk resource must always be located in normal mem */ 1048 crashk_res.start = crash_base; 1049 crashk_res.end = crash_base + crash_size - 1; 1050 insert_resource(&iomem_resource, &crashk_res); 1051 1052 if (arm_has_idmap_alias()) { 1053 /* 1054 * If we have a special RAM alias for use at boot, we 1055 * need to advertise to kexec tools where the alias is. 1056 */ 1057 static struct resource crashk_boot_res = { 1058 .name = "Crash kernel (boot alias)", 1059 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 1060 }; 1061 1062 crashk_boot_res.start = phys_to_idmap(crash_base); 1063 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1; 1064 insert_resource(&iomem_resource, &crashk_boot_res); 1065 } 1066 } 1067 #else 1068 static inline void reserve_crashkernel(void) {} 1069 #endif /* CONFIG_CRASH_RESERVE*/ 1070 1071 void __init hyp_mode_check(void) 1072 { 1073 #ifdef CONFIG_ARM_VIRT_EXT 1074 sync_boot_mode(); 1075 1076 if (is_hyp_mode_available()) { 1077 pr_info("CPU: All CPU(s) started in HYP mode.\n"); 1078 pr_info("CPU: Virtualization extensions available.\n"); 1079 } else if (is_hyp_mode_mismatched()) { 1080 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n", 1081 __boot_cpu_mode & MODE_MASK); 1082 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n"); 1083 } else 1084 pr_info("CPU: All CPU(s) started in SVC mode.\n"); 1085 #endif 1086 } 1087 1088 static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); 1089 1090 static int arm_restart(struct notifier_block *nb, unsigned long action, 1091 void *data) 1092 { 1093 __arm_pm_restart(action, data); 1094 return NOTIFY_DONE; 1095 } 1096 1097 static struct notifier_block arm_restart_nb = { 1098 .notifier_call = arm_restart, 1099 .priority = 128, 1100 }; 1101 1102 void __init setup_arch(char **cmdline_p) 1103 { 1104 const struct machine_desc *mdesc = NULL; 1105 void *atags_vaddr = NULL; 1106 1107 if (__atags_pointer) 1108 atags_vaddr = FDT_VIRT_BASE(__atags_pointer); 1109 1110 setup_processor(); 1111 if (atags_vaddr) { 1112 mdesc = setup_machine_fdt(atags_vaddr); 1113 if (mdesc) 1114 memblock_reserve(__atags_pointer, 1115 fdt_totalsize(atags_vaddr)); 1116 } 1117 if (!mdesc) 1118 mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type); 1119 if (!mdesc) { 1120 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n"); 1121 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type, 1122 __atags_pointer); 1123 if (__atags_pointer) 1124 early_print(" r2[]=%*ph\n", 16, atags_vaddr); 1125 dump_machine_table(); 1126 } 1127 1128 machine_desc = mdesc; 1129 machine_name = mdesc->name; 1130 dump_stack_set_arch_desc("%s", mdesc->name); 1131 1132 if (mdesc->reboot_mode != REBOOT_HARD) 1133 reboot_mode = mdesc->reboot_mode; 1134 1135 setup_initial_init_mm(_text, _etext, _edata, _end); 1136 1137 /* populate cmd_line too for later use, preserving boot_command_line */ 1138 strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); 1139 *cmdline_p = cmd_line; 1140 1141 early_fixmap_init(); 1142 early_ioremap_init(); 1143 1144 parse_early_param(); 1145 1146 #ifdef CONFIG_MMU 1147 early_mm_init(mdesc); 1148 #endif 1149 setup_dma_zone(mdesc); 1150 xen_early_init(); 1151 arm_efi_init(); 1152 /* 1153 * Make sure the calculation for lowmem/highmem is set appropriately 1154 * before reserving/allocating any memory 1155 */ 1156 adjust_lowmem_bounds(); 1157 arm_memblock_init(mdesc); 1158 /* Memory may have been removed so recalculate the bounds. */ 1159 adjust_lowmem_bounds(); 1160 1161 early_ioremap_reset(); 1162 1163 paging_init(mdesc); 1164 kasan_init(); 1165 request_standard_resources(mdesc); 1166 1167 if (mdesc->restart) { 1168 __arm_pm_restart = mdesc->restart; 1169 register_restart_handler(&arm_restart_nb); 1170 } 1171 1172 unflatten_device_tree(); 1173 1174 arm_dt_init_cpu_maps(); 1175 psci_dt_init(); 1176 #ifdef CONFIG_SMP 1177 if (is_smp()) { 1178 if (!mdesc->smp_init || !mdesc->smp_init()) { 1179 if (psci_smp_available()) 1180 smp_set_ops(&psci_smp_ops); 1181 else if (mdesc->smp) 1182 smp_set_ops(mdesc->smp); 1183 } 1184 smp_init_cpus(); 1185 smp_build_mpidr_hash(); 1186 } 1187 #endif 1188 1189 if (!is_smp()) 1190 hyp_mode_check(); 1191 1192 reserve_crashkernel(); 1193 1194 #ifdef CONFIG_VT 1195 #if defined(CONFIG_VGA_CONSOLE) 1196 vgacon_register_screen(&vgacon_screen_info); 1197 #endif 1198 #endif 1199 1200 if (mdesc->init_early) 1201 mdesc->init_early(); 1202 } 1203 1204 1205 static int __init topology_init(void) 1206 { 1207 int cpu; 1208 1209 for_each_possible_cpu(cpu) { 1210 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); 1211 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu); 1212 register_cpu(&cpuinfo->cpu, cpu); 1213 } 1214 1215 return 0; 1216 } 1217 subsys_initcall(topology_init); 1218 1219 #ifdef CONFIG_HAVE_PROC_CPU 1220 static int __init proc_cpu_init(void) 1221 { 1222 struct proc_dir_entry *res; 1223 1224 res = proc_mkdir("cpu", NULL); 1225 if (!res) 1226 return -ENOMEM; 1227 return 0; 1228 } 1229 fs_initcall(proc_cpu_init); 1230 #endif 1231 1232 static const char *hwcap_str[] = { 1233 "swp", 1234 "half", 1235 "thumb", 1236 "26bit", 1237 "fastmult", 1238 "fpa", 1239 "vfp", 1240 "edsp", 1241 "java", 1242 "iwmmxt", 1243 "crunch", 1244 "thumbee", 1245 "neon", 1246 "vfpv3", 1247 "vfpv3d16", 1248 "tls", 1249 "vfpv4", 1250 "idiva", 1251 "idivt", 1252 "vfpd32", 1253 "lpae", 1254 "evtstrm", 1255 "fphp", 1256 "asimdhp", 1257 "asimddp", 1258 "asimdfhm", 1259 "asimdbf16", 1260 "i8mm", 1261 NULL 1262 }; 1263 1264 static const char *hwcap2_str[] = { 1265 "aes", 1266 "pmull", 1267 "sha1", 1268 "sha2", 1269 "crc32", 1270 "sb", 1271 "ssbs", 1272 NULL 1273 }; 1274 1275 static int c_show(struct seq_file *m, void *v) 1276 { 1277 int i, j; 1278 u32 cpuid; 1279 1280 for_each_online_cpu(i) { 1281 /* 1282 * glibc reads /proc/cpuinfo to determine the number of 1283 * online processors, looking for lines beginning with 1284 * "processor". Give glibc what it expects. 1285 */ 1286 seq_printf(m, "processor\t: %d\n", i); 1287 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id(); 1288 seq_printf(m, "model name\t: %s rev %d (%s)\n", 1289 cpu_name, cpuid & 15, elf_platform); 1290 1291 #if defined(CONFIG_SMP) 1292 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 1293 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), 1294 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); 1295 #else 1296 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 1297 loops_per_jiffy / (500000/HZ), 1298 (loops_per_jiffy / (5000/HZ)) % 100); 1299 #endif 1300 /* dump out the processor features */ 1301 seq_puts(m, "Features\t: "); 1302 1303 for (j = 0; hwcap_str[j]; j++) 1304 if (elf_hwcap & (1 << j)) 1305 seq_printf(m, "%s ", hwcap_str[j]); 1306 1307 for (j = 0; hwcap2_str[j]; j++) 1308 if (elf_hwcap2 & (1 << j)) 1309 seq_printf(m, "%s ", hwcap2_str[j]); 1310 1311 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24); 1312 seq_printf(m, "CPU architecture: %s\n", 1313 proc_arch[cpu_architecture()]); 1314 1315 if ((cpuid & 0x0008f000) == 0x00000000) { 1316 /* pre-ARM7 */ 1317 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4); 1318 } else { 1319 if ((cpuid & 0x0008f000) == 0x00007000) { 1320 /* ARM7 */ 1321 seq_printf(m, "CPU variant\t: 0x%02x\n", 1322 (cpuid >> 16) & 127); 1323 } else { 1324 /* post-ARM7 */ 1325 seq_printf(m, "CPU variant\t: 0x%x\n", 1326 (cpuid >> 20) & 15); 1327 } 1328 seq_printf(m, "CPU part\t: 0x%03x\n", 1329 (cpuid >> 4) & 0xfff); 1330 } 1331 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15); 1332 } 1333 1334 seq_printf(m, "Hardware\t: %s\n", machine_name); 1335 seq_printf(m, "Revision\t: %04x\n", system_rev); 1336 seq_printf(m, "Serial\t\t: %s\n", system_serial); 1337 1338 return 0; 1339 } 1340 1341 static void *c_start(struct seq_file *m, loff_t *pos) 1342 { 1343 return *pos < 1 ? (void *)1 : NULL; 1344 } 1345 1346 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 1347 { 1348 ++*pos; 1349 return NULL; 1350 } 1351 1352 static void c_stop(struct seq_file *m, void *v) 1353 { 1354 } 1355 1356 const struct seq_operations cpuinfo_op = { 1357 .start = c_start, 1358 .next = c_next, 1359 .stop = c_stop, 1360 .show = c_show 1361 }; 1362
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.