~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm/kernel/setup.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/arch/arm/kernel/setup.c
  4  *
  5  *  Copyright (C) 1995-2001 Russell King
  6  */
  7 #include <linux/efi.h>
  8 #include <linux/export.h>
  9 #include <linux/kernel.h>
 10 #include <linux/stddef.h>
 11 #include <linux/ioport.h>
 12 #include <linux/delay.h>
 13 #include <linux/utsname.h>
 14 #include <linux/initrd.h>
 15 #include <linux/console.h>
 16 #include <linux/seq_file.h>
 17 #include <linux/screen_info.h>
 18 #include <linux/init.h>
 19 #include <linux/kexec.h>
 20 #include <linux/libfdt.h>
 21 #include <linux/of.h>
 22 #include <linux/of_fdt.h>
 23 #include <linux/cpu.h>
 24 #include <linux/interrupt.h>
 25 #include <linux/smp.h>
 26 #include <linux/proc_fs.h>
 27 #include <linux/memblock.h>
 28 #include <linux/bug.h>
 29 #include <linux/compiler.h>
 30 #include <linux/sort.h>
 31 #include <linux/psci.h>
 32 
 33 #include <asm/unified.h>
 34 #include <asm/cp15.h>
 35 #include <asm/cpu.h>
 36 #include <asm/cputype.h>
 37 #include <asm/efi.h>
 38 #include <asm/elf.h>
 39 #include <asm/early_ioremap.h>
 40 #include <asm/fixmap.h>
 41 #include <asm/procinfo.h>
 42 #include <asm/psci.h>
 43 #include <asm/sections.h>
 44 #include <asm/setup.h>
 45 #include <asm/smp_plat.h>
 46 #include <asm/mach-types.h>
 47 #include <asm/cacheflush.h>
 48 #include <asm/cachetype.h>
 49 #include <asm/tlbflush.h>
 50 #include <asm/xen/hypervisor.h>
 51 
 52 #include <asm/prom.h>
 53 #include <asm/mach/arch.h>
 54 #include <asm/mach/irq.h>
 55 #include <asm/mach/time.h>
 56 #include <asm/system_info.h>
 57 #include <asm/system_misc.h>
 58 #include <asm/traps.h>
 59 #include <asm/unwind.h>
 60 #include <asm/memblock.h>
 61 #include <asm/virt.h>
 62 #include <asm/kasan.h>
 63 
 64 #include "atags.h"
 65 
 66 
 67 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
 68 char fpe_type[8];
 69 
 70 static int __init fpe_setup(char *line)
 71 {
 72         memcpy(fpe_type, line, 8);
 73         return 1;
 74 }
 75 
 76 __setup("fpe=", fpe_setup);
 77 #endif
 78 
 79 unsigned int processor_id;
 80 EXPORT_SYMBOL(processor_id);
 81 unsigned int __machine_arch_type __read_mostly;
 82 EXPORT_SYMBOL(__machine_arch_type);
 83 unsigned int cacheid __read_mostly;
 84 EXPORT_SYMBOL(cacheid);
 85 
 86 unsigned int __atags_pointer __initdata;
 87 
 88 unsigned int system_rev;
 89 EXPORT_SYMBOL(system_rev);
 90 
 91 const char *system_serial;
 92 EXPORT_SYMBOL(system_serial);
 93 
 94 unsigned int system_serial_low;
 95 EXPORT_SYMBOL(system_serial_low);
 96 
 97 unsigned int system_serial_high;
 98 EXPORT_SYMBOL(system_serial_high);
 99 
100 unsigned int elf_hwcap __read_mostly;
101 EXPORT_SYMBOL(elf_hwcap);
102 
103 unsigned int elf_hwcap2 __read_mostly;
104 EXPORT_SYMBOL(elf_hwcap2);
105 
106 
107 #ifdef MULTI_CPU
108 struct processor processor __ro_after_init;
109 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
110 struct processor *cpu_vtable[NR_CPUS] = {
111         [0] = &processor,
112 };
113 #endif
114 #endif
115 #ifdef MULTI_TLB
116 struct cpu_tlb_fns cpu_tlb __ro_after_init;
117 #endif
118 #ifdef MULTI_USER
119 struct cpu_user_fns cpu_user __ro_after_init;
120 #endif
121 #ifdef MULTI_CACHE
122 struct cpu_cache_fns cpu_cache __ro_after_init;
123 #endif
124 #ifdef CONFIG_OUTER_CACHE
125 struct outer_cache_fns outer_cache __ro_after_init;
126 EXPORT_SYMBOL(outer_cache);
127 #endif
128 
129 /*
130  * Cached cpu_architecture() result for use by assembler code.
131  * C code should use the cpu_architecture() function instead of accessing this
132  * variable directly.
133  */
134 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
135 
136 struct stack {
137         u32 irq[4];
138         u32 abt[4];
139         u32 und[4];
140         u32 fiq[4];
141 } ____cacheline_aligned;
142 
143 #ifndef CONFIG_CPU_V7M
144 static struct stack stacks[NR_CPUS];
145 #endif
146 
147 char elf_platform[ELF_PLATFORM_SIZE];
148 EXPORT_SYMBOL(elf_platform);
149 
150 static const char *cpu_name;
151 static const char *machine_name;
152 static char __initdata cmd_line[COMMAND_LINE_SIZE];
153 const struct machine_desc *machine_desc __initdata;
154 
155 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
156 #define ENDIANNESS ((char)endian_test.l)
157 
158 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
159 
160 /*
161  * Standard memory resources
162  */
163 static struct resource mem_res[] = {
164         {
165                 .name = "Video RAM",
166                 .start = 0,
167                 .end = 0,
168                 .flags = IORESOURCE_MEM
169         },
170         {
171                 .name = "Kernel code",
172                 .start = 0,
173                 .end = 0,
174                 .flags = IORESOURCE_SYSTEM_RAM
175         },
176         {
177                 .name = "Kernel data",
178                 .start = 0,
179                 .end = 0,
180                 .flags = IORESOURCE_SYSTEM_RAM
181         }
182 };
183 
184 #define video_ram   mem_res[0]
185 #define kernel_code mem_res[1]
186 #define kernel_data mem_res[2]
187 
188 static struct resource io_res[] = {
189         {
190                 .name = "reserved",
191                 .start = 0x3bc,
192                 .end = 0x3be,
193                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
194         },
195         {
196                 .name = "reserved",
197                 .start = 0x378,
198                 .end = 0x37f,
199                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
200         },
201         {
202                 .name = "reserved",
203                 .start = 0x278,
204                 .end = 0x27f,
205                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
206         }
207 };
208 
209 #define lp0 io_res[0]
210 #define lp1 io_res[1]
211 #define lp2 io_res[2]
212 
213 static const char *proc_arch[] = {
214         "undefined/unknown",
215         "3",
216         "4",
217         "4T",
218         "5",
219         "5T",
220         "5TE",
221         "5TEJ",
222         "6TEJ",
223         "7",
224         "7M",
225         "?(12)",
226         "?(13)",
227         "?(14)",
228         "?(15)",
229         "?(16)",
230         "?(17)",
231 };
232 
233 #ifdef CONFIG_CPU_V7M
234 static int __get_cpu_architecture(void)
235 {
236         return CPU_ARCH_ARMv7M;
237 }
238 #else
239 static int __get_cpu_architecture(void)
240 {
241         int cpu_arch;
242 
243         if ((read_cpuid_id() & 0x0008f000) == 0) {
244                 cpu_arch = CPU_ARCH_UNKNOWN;
245         } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
246                 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
247         } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
248                 cpu_arch = (read_cpuid_id() >> 16) & 7;
249                 if (cpu_arch)
250                         cpu_arch += CPU_ARCH_ARMv3;
251         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
252                 /* Revised CPUID format. Read the Memory Model Feature
253                  * Register 0 and check for VMSAv7 or PMSAv7 */
254                 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
255                 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
256                     (mmfr0 & 0x000000f0) >= 0x00000030)
257                         cpu_arch = CPU_ARCH_ARMv7;
258                 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
259                          (mmfr0 & 0x000000f0) == 0x00000020)
260                         cpu_arch = CPU_ARCH_ARMv6;
261                 else
262                         cpu_arch = CPU_ARCH_UNKNOWN;
263         } else
264                 cpu_arch = CPU_ARCH_UNKNOWN;
265 
266         return cpu_arch;
267 }
268 #endif
269 
270 int __pure cpu_architecture(void)
271 {
272         BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
273 
274         return __cpu_architecture;
275 }
276 
277 static int cpu_has_aliasing_icache(unsigned int arch)
278 {
279         int aliasing_icache;
280         unsigned int id_reg, num_sets, line_size;
281 
282         /* PIPT caches never alias. */
283         if (icache_is_pipt())
284                 return 0;
285 
286         /* arch specifies the register format */
287         switch (arch) {
288         case CPU_ARCH_ARMv7:
289                 set_csselr(CSSELR_ICACHE | CSSELR_L1);
290                 isb();
291                 id_reg = read_ccsidr();
292                 line_size = 4 << ((id_reg & 0x7) + 2);
293                 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
294                 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
295                 break;
296         case CPU_ARCH_ARMv6:
297                 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
298                 break;
299         default:
300                 /* I-cache aliases will be handled by D-cache aliasing code */
301                 aliasing_icache = 0;
302         }
303 
304         return aliasing_icache;
305 }
306 
307 static void __init cacheid_init(void)
308 {
309         unsigned int arch = cpu_architecture();
310 
311         if (arch >= CPU_ARCH_ARMv6) {
312                 unsigned int cachetype = read_cpuid_cachetype();
313 
314                 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
315                         cacheid = 0;
316                 } else if ((cachetype & (7 << 29)) == 4 << 29) {
317                         /* ARMv7 register format */
318                         arch = CPU_ARCH_ARMv7;
319                         cacheid = CACHEID_VIPT_NONALIASING;
320                         switch (cachetype & (3 << 14)) {
321                         case (1 << 14):
322                                 cacheid |= CACHEID_ASID_TAGGED;
323                                 break;
324                         case (3 << 14):
325                                 cacheid |= CACHEID_PIPT;
326                                 break;
327                         }
328                 } else {
329                         arch = CPU_ARCH_ARMv6;
330                         if (cachetype & (1 << 23))
331                                 cacheid = CACHEID_VIPT_ALIASING;
332                         else
333                                 cacheid = CACHEID_VIPT_NONALIASING;
334                 }
335                 if (cpu_has_aliasing_icache(arch))
336                         cacheid |= CACHEID_VIPT_I_ALIASING;
337         } else {
338                 cacheid = CACHEID_VIVT;
339         }
340 
341         pr_info("CPU: %s data cache, %s instruction cache\n",
342                 cache_is_vivt() ? "VIVT" :
343                 cache_is_vipt_aliasing() ? "VIPT aliasing" :
344                 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
345                 cache_is_vivt() ? "VIVT" :
346                 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
347                 icache_is_vipt_aliasing() ? "VIPT aliasing" :
348                 icache_is_pipt() ? "PIPT" :
349                 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
350 }
351 
352 /*
353  * These functions re-use the assembly code in head.S, which
354  * already provide the required functionality.
355  */
356 extern struct proc_info_list *lookup_processor_type(unsigned int);
357 
358 void __init early_print(const char *str, ...)
359 {
360         extern void printascii(const char *);
361         char buf[256];
362         va_list ap;
363 
364         va_start(ap, str);
365         vsnprintf(buf, sizeof(buf), str, ap);
366         va_end(ap);
367 
368 #ifdef CONFIG_DEBUG_LL
369         printascii(buf);
370 #endif
371         printk("%s", buf);
372 }
373 
374 #ifdef CONFIG_ARM_PATCH_IDIV
375 
376 static inline u32 __attribute_const__ sdiv_instruction(void)
377 {
378         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
379                 /* "sdiv r0, r0, r1" */
380                 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
381                 return __opcode_to_mem_thumb32(insn);
382         }
383 
384         /* "sdiv r0, r0, r1" */
385         return __opcode_to_mem_arm(0xe710f110);
386 }
387 
388 static inline u32 __attribute_const__ udiv_instruction(void)
389 {
390         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
391                 /* "udiv r0, r0, r1" */
392                 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
393                 return __opcode_to_mem_thumb32(insn);
394         }
395 
396         /* "udiv r0, r0, r1" */
397         return __opcode_to_mem_arm(0xe730f110);
398 }
399 
400 static inline u32 __attribute_const__ bx_lr_instruction(void)
401 {
402         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
403                 /* "bx lr; nop" */
404                 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
405                 return __opcode_to_mem_thumb32(insn);
406         }
407 
408         /* "bx lr" */
409         return __opcode_to_mem_arm(0xe12fff1e);
410 }
411 
412 static void __init patch_aeabi_idiv(void)
413 {
414         extern void __aeabi_uidiv(void);
415         extern void __aeabi_idiv(void);
416         uintptr_t fn_addr;
417         unsigned int mask;
418 
419         mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
420         if (!(elf_hwcap & mask))
421                 return;
422 
423         pr_info("CPU: div instructions available: patching division code\n");
424 
425         fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
426         asm ("" : "+g" (fn_addr));
427         ((u32 *)fn_addr)[0] = udiv_instruction();
428         ((u32 *)fn_addr)[1] = bx_lr_instruction();
429         flush_icache_range(fn_addr, fn_addr + 8);
430 
431         fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
432         asm ("" : "+g" (fn_addr));
433         ((u32 *)fn_addr)[0] = sdiv_instruction();
434         ((u32 *)fn_addr)[1] = bx_lr_instruction();
435         flush_icache_range(fn_addr, fn_addr + 8);
436 }
437 
438 #else
439 static inline void patch_aeabi_idiv(void) { }
440 #endif
441 
442 static void __init cpuid_init_hwcaps(void)
443 {
444         int block;
445         u32 isar5;
446         u32 isar6;
447         u32 pfr2;
448 
449         if (cpu_architecture() < CPU_ARCH_ARMv7)
450                 return;
451 
452         block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
453         if (block >= 2)
454                 elf_hwcap |= HWCAP_IDIVA;
455         if (block >= 1)
456                 elf_hwcap |= HWCAP_IDIVT;
457 
458         /* LPAE implies atomic ldrd/strd instructions */
459         block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
460         if (block >= 5)
461                 elf_hwcap |= HWCAP_LPAE;
462 
463         /* check for supported v8 Crypto instructions */
464         isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
465 
466         block = cpuid_feature_extract_field(isar5, 4);
467         if (block >= 2)
468                 elf_hwcap2 |= HWCAP2_PMULL;
469         if (block >= 1)
470                 elf_hwcap2 |= HWCAP2_AES;
471 
472         block = cpuid_feature_extract_field(isar5, 8);
473         if (block >= 1)
474                 elf_hwcap2 |= HWCAP2_SHA1;
475 
476         block = cpuid_feature_extract_field(isar5, 12);
477         if (block >= 1)
478                 elf_hwcap2 |= HWCAP2_SHA2;
479 
480         block = cpuid_feature_extract_field(isar5, 16);
481         if (block >= 1)
482                 elf_hwcap2 |= HWCAP2_CRC32;
483 
484         /* Check for Speculation barrier instruction */
485         isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
486         block = cpuid_feature_extract_field(isar6, 12);
487         if (block >= 1)
488                 elf_hwcap2 |= HWCAP2_SB;
489 
490         /* Check for Speculative Store Bypassing control */
491         pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
492         block = cpuid_feature_extract_field(pfr2, 4);
493         if (block >= 1)
494                 elf_hwcap2 |= HWCAP2_SSBS;
495 }
496 
497 static void __init elf_hwcap_fixup(void)
498 {
499         unsigned id = read_cpuid_id();
500 
501         /*
502          * HWCAP_TLS is available only on 1136 r1p0 and later,
503          * see also kuser_get_tls_init.
504          */
505         if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
506             ((id >> 20) & 3) == 0) {
507                 elf_hwcap &= ~HWCAP_TLS;
508                 return;
509         }
510 
511         /* Verify if CPUID scheme is implemented */
512         if ((id & 0x000f0000) != 0x000f0000)
513                 return;
514 
515         /*
516          * If the CPU supports LDREX/STREX and LDREXB/STREXB,
517          * avoid advertising SWP; it may not be atomic with
518          * multiprocessing cores.
519          */
520         if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
521             (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
522              cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
523                 elf_hwcap &= ~HWCAP_SWP;
524 }
525 
526 /*
527  * cpu_init - initialise one CPU.
528  *
529  * cpu_init sets up the per-CPU stacks.
530  */
531 void notrace cpu_init(void)
532 {
533 #ifndef CONFIG_CPU_V7M
534         unsigned int cpu = smp_processor_id();
535         struct stack *stk = &stacks[cpu];
536 
537         if (cpu >= NR_CPUS) {
538                 pr_crit("CPU%u: bad primary CPU number\n", cpu);
539                 BUG();
540         }
541 
542         /*
543          * This only works on resume and secondary cores. For booting on the
544          * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
545          */
546         set_my_cpu_offset(per_cpu_offset(cpu));
547 
548         cpu_proc_init();
549 
550         /*
551          * Define the placement constraint for the inline asm directive below.
552          * In Thumb-2, msr with an immediate value is not allowed.
553          */
554 #ifdef CONFIG_THUMB2_KERNEL
555 #define PLC_l   "l"
556 #define PLC_r   "r"
557 #else
558 #define PLC_l   "I"
559 #define PLC_r   "I"
560 #endif
561 
562         /*
563          * setup stacks for re-entrant exception handlers
564          */
565         __asm__ (
566         "msr    cpsr_c, %1\n\t"
567         "add    r14, %0, %2\n\t"
568         "mov    sp, r14\n\t"
569         "msr    cpsr_c, %3\n\t"
570         "add    r14, %0, %4\n\t"
571         "mov    sp, r14\n\t"
572         "msr    cpsr_c, %5\n\t"
573         "add    r14, %0, %6\n\t"
574         "mov    sp, r14\n\t"
575         "msr    cpsr_c, %7\n\t"
576         "add    r14, %0, %8\n\t"
577         "mov    sp, r14\n\t"
578         "msr    cpsr_c, %9"
579             :
580             : "r" (stk),
581               PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
582               "I" (offsetof(struct stack, irq[0])),
583               PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
584               "I" (offsetof(struct stack, abt[0])),
585               PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
586               "I" (offsetof(struct stack, und[0])),
587               PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
588               "I" (offsetof(struct stack, fiq[0])),
589               PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
590             : "r14");
591 #endif
592 }
593 
594 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
595 
596 void __init smp_setup_processor_id(void)
597 {
598         int i;
599         u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
600         u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
601 
602         cpu_logical_map(0) = cpu;
603         for (i = 1; i < nr_cpu_ids; ++i)
604                 cpu_logical_map(i) = i == cpu ? 0 : i;
605 
606         /*
607          * clear __my_cpu_offset on boot CPU to avoid hang caused by
608          * using percpu variable early, for example, lockdep will
609          * access percpu variable inside lock_release
610          */
611         set_my_cpu_offset(0);
612 
613         pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
614 }
615 
616 struct mpidr_hash mpidr_hash;
617 #ifdef CONFIG_SMP
618 /**
619  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
620  *                        level in order to build a linear index from an
621  *                        MPIDR value. Resulting algorithm is a collision
622  *                        free hash carried out through shifting and ORing
623  */
624 static void __init smp_build_mpidr_hash(void)
625 {
626         u32 i, affinity;
627         u32 fs[3], bits[3], ls, mask = 0;
628         /*
629          * Pre-scan the list of MPIDRS and filter out bits that do
630          * not contribute to affinity levels, ie they never toggle.
631          */
632         for_each_possible_cpu(i)
633                 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
634         pr_debug("mask of set bits 0x%x\n", mask);
635         /*
636          * Find and stash the last and first bit set at all affinity levels to
637          * check how many bits are required to represent them.
638          */
639         for (i = 0; i < 3; i++) {
640                 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
641                 /*
642                  * Find the MSB bit and LSB bits position
643                  * to determine how many bits are required
644                  * to express the affinity level.
645                  */
646                 ls = fls(affinity);
647                 fs[i] = affinity ? ffs(affinity) - 1 : 0;
648                 bits[i] = ls - fs[i];
649         }
650         /*
651          * An index can be created from the MPIDR by isolating the
652          * significant bits at each affinity level and by shifting
653          * them in order to compress the 24 bits values space to a
654          * compressed set of values. This is equivalent to hashing
655          * the MPIDR through shifting and ORing. It is a collision free
656          * hash though not minimal since some levels might contain a number
657          * of CPUs that is not an exact power of 2 and their bit
658          * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
659          */
660         mpidr_hash.shift_aff[0] = fs[0];
661         mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
662         mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
663                                                 (bits[1] + bits[0]);
664         mpidr_hash.mask = mask;
665         mpidr_hash.bits = bits[2] + bits[1] + bits[0];
666         pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
667                                 mpidr_hash.shift_aff[0],
668                                 mpidr_hash.shift_aff[1],
669                                 mpidr_hash.shift_aff[2],
670                                 mpidr_hash.mask,
671                                 mpidr_hash.bits);
672         /*
673          * 4x is an arbitrary value used to warn on a hash table much bigger
674          * than expected on most systems.
675          */
676         if (mpidr_hash_size() > 4 * num_possible_cpus())
677                 pr_warn("Large number of MPIDR hash buckets detected\n");
678         sync_cache_w(&mpidr_hash);
679 }
680 #endif
681 
682 /*
683  * locate processor in the list of supported processor types.  The linker
684  * builds this table for us from the entries in arch/arm/mm/proc-*.S
685  */
686 struct proc_info_list *lookup_processor(u32 midr)
687 {
688         struct proc_info_list *list = lookup_processor_type(midr);
689 
690         if (!list) {
691                 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
692                        smp_processor_id(), midr);
693                 while (1)
694                 /* can't use cpu_relax() here as it may require MMU setup */;
695         }
696 
697         return list;
698 }
699 
700 static void __init setup_processor(void)
701 {
702         unsigned int midr = read_cpuid_id();
703         struct proc_info_list *list = lookup_processor(midr);
704 
705         cpu_name = list->cpu_name;
706         __cpu_architecture = __get_cpu_architecture();
707 
708         init_proc_vtable(list->proc);
709 #ifdef MULTI_TLB
710         cpu_tlb = *list->tlb;
711 #endif
712 #ifdef MULTI_USER
713         cpu_user = *list->user;
714 #endif
715 #ifdef MULTI_CACHE
716         cpu_cache = *list->cache;
717 #endif
718 
719         pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
720                 list->cpu_name, midr, midr & 15,
721                 proc_arch[cpu_architecture()], get_cr());
722 
723         snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
724                  list->arch_name, ENDIANNESS);
725         snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
726                  list->elf_name, ENDIANNESS);
727         elf_hwcap = list->elf_hwcap;
728 
729         cpuid_init_hwcaps();
730         patch_aeabi_idiv();
731 
732 #ifndef CONFIG_ARM_THUMB
733         elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
734 #endif
735 #ifdef CONFIG_MMU
736         init_default_cache_policy(list->__cpu_mm_mmu_flags);
737 #endif
738         erratum_a15_798181_init();
739 
740         elf_hwcap_fixup();
741 
742         cacheid_init();
743         cpu_init();
744 }
745 
746 void __init dump_machine_table(void)
747 {
748         const struct machine_desc *p;
749 
750         early_print("Available machine support:\n\nID (hex)\tNAME\n");
751         for_each_machine_desc(p)
752                 early_print("%08x\t%s\n", p->nr, p->name);
753 
754         early_print("\nPlease check your kernel config and/or bootloader.\n");
755 
756         while (true)
757                 /* can't use cpu_relax() here as it may require MMU setup */;
758 }
759 
760 int __init arm_add_memory(u64 start, u64 size)
761 {
762         u64 aligned_start;
763 
764         /*
765          * Ensure that start/size are aligned to a page boundary.
766          * Size is rounded down, start is rounded up.
767          */
768         aligned_start = PAGE_ALIGN(start);
769         if (aligned_start > start + size)
770                 size = 0;
771         else
772                 size -= aligned_start - start;
773 
774 #ifndef CONFIG_PHYS_ADDR_T_64BIT
775         if (aligned_start > ULONG_MAX) {
776                 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
777                         start);
778                 return -EINVAL;
779         }
780 
781         if (aligned_start + size > ULONG_MAX) {
782                 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
783                         (long long)start);
784                 /*
785                  * To ensure bank->start + bank->size is representable in
786                  * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
787                  * This means we lose a page after masking.
788                  */
789                 size = ULONG_MAX - aligned_start;
790         }
791 #endif
792 
793         if (aligned_start < PHYS_OFFSET) {
794                 if (aligned_start + size <= PHYS_OFFSET) {
795                         pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
796                                 aligned_start, aligned_start + size);
797                         return -EINVAL;
798                 }
799 
800                 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
801                         aligned_start, (u64)PHYS_OFFSET);
802 
803                 size -= PHYS_OFFSET - aligned_start;
804                 aligned_start = PHYS_OFFSET;
805         }
806 
807         start = aligned_start;
808         size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
809 
810         /*
811          * Check whether this memory region has non-zero size or
812          * invalid node number.
813          */
814         if (size == 0)
815                 return -EINVAL;
816 
817         memblock_add(start, size);
818         return 0;
819 }
820 
821 /*
822  * Pick out the memory size.  We look for mem=size@start,
823  * where start and size are "size[KkMm]"
824  */
825 
826 static int __init early_mem(char *p)
827 {
828         static int usermem __initdata = 0;
829         u64 size;
830         u64 start;
831         char *endp;
832 
833         /*
834          * If the user specifies memory size, we
835          * blow away any automatically generated
836          * size.
837          */
838         if (usermem == 0) {
839                 usermem = 1;
840                 memblock_remove(memblock_start_of_DRAM(),
841                         memblock_end_of_DRAM() - memblock_start_of_DRAM());
842         }
843 
844         start = PHYS_OFFSET;
845         size  = memparse(p, &endp);
846         if (*endp == '@')
847                 start = memparse(endp + 1, NULL);
848 
849         arm_add_memory(start, size);
850 
851         return 0;
852 }
853 early_param("mem", early_mem);
854 
855 static void __init request_standard_resources(const struct machine_desc *mdesc)
856 {
857         phys_addr_t start, end, res_end;
858         struct resource *res;
859         u64 i;
860 
861         kernel_code.start   = virt_to_phys(_text);
862         kernel_code.end     = virt_to_phys(__init_begin - 1);
863         kernel_data.start   = virt_to_phys(_sdata);
864         kernel_data.end     = virt_to_phys(_end - 1);
865 
866         for_each_mem_range(i, &start, &end) {
867                 unsigned long boot_alias_start;
868 
869                 /*
870                  * In memblock, end points to the first byte after the
871                  * range while in resourses, end points to the last byte in
872                  * the range.
873                  */
874                 res_end = end - 1;
875 
876                 /*
877                  * Some systems have a special memory alias which is only
878                  * used for booting.  We need to advertise this region to
879                  * kexec-tools so they know where bootable RAM is located.
880                  */
881                 boot_alias_start = phys_to_idmap(start);
882                 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
883                         res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
884                         if (!res)
885                                 panic("%s: Failed to allocate %zu bytes\n",
886                                       __func__, sizeof(*res));
887                         res->name = "System RAM (boot alias)";
888                         res->start = boot_alias_start;
889                         res->end = phys_to_idmap(res_end);
890                         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
891                         request_resource(&iomem_resource, res);
892                 }
893 
894                 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
895                 if (!res)
896                         panic("%s: Failed to allocate %zu bytes\n", __func__,
897                               sizeof(*res));
898                 res->name  = "System RAM";
899                 res->start = start;
900                 res->end = res_end;
901                 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
902 
903                 request_resource(&iomem_resource, res);
904 
905                 if (kernel_code.start >= res->start &&
906                     kernel_code.end <= res->end)
907                         request_resource(res, &kernel_code);
908                 if (kernel_data.start >= res->start &&
909                     kernel_data.end <= res->end)
910                         request_resource(res, &kernel_data);
911         }
912 
913         if (mdesc->video_start) {
914                 video_ram.start = mdesc->video_start;
915                 video_ram.end   = mdesc->video_end;
916                 request_resource(&iomem_resource, &video_ram);
917         }
918 
919         /*
920          * Some machines don't have the possibility of ever
921          * possessing lp0, lp1 or lp2
922          */
923         if (mdesc->reserve_lp0)
924                 request_resource(&ioport_resource, &lp0);
925         if (mdesc->reserve_lp1)
926                 request_resource(&ioport_resource, &lp1);
927         if (mdesc->reserve_lp2)
928                 request_resource(&ioport_resource, &lp2);
929 }
930 
931 #if defined(CONFIG_VGA_CONSOLE)
932 struct screen_info vgacon_screen_info = {
933  .orig_video_lines      = 30,
934  .orig_video_cols       = 80,
935  .orig_video_mode       = 0,
936  .orig_video_ega_bx     = 0,
937  .orig_video_isVGA      = 1,
938  .orig_video_points     = 8
939 };
940 #endif
941 
942 static int __init customize_machine(void)
943 {
944         /*
945          * customizes platform devices, or adds new ones
946          * On DT based machines, we fall back to populating the
947          * machine from the device tree, if no callback is provided,
948          * otherwise we would always need an init_machine callback.
949          */
950         if (machine_desc->init_machine)
951                 machine_desc->init_machine();
952 
953         return 0;
954 }
955 arch_initcall(customize_machine);
956 
957 static int __init init_machine_late(void)
958 {
959         struct device_node *root;
960         int ret;
961 
962         if (machine_desc->init_late)
963                 machine_desc->init_late();
964 
965         root = of_find_node_by_path("/");
966         if (root) {
967                 ret = of_property_read_string(root, "serial-number",
968                                               &system_serial);
969                 if (ret)
970                         system_serial = NULL;
971         }
972 
973         if (!system_serial)
974                 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
975                                           system_serial_high,
976                                           system_serial_low);
977 
978         return 0;
979 }
980 late_initcall(init_machine_late);
981 
982 #ifdef CONFIG_CRASH_RESERVE
983 /*
984  * The crash region must be aligned to 128MB to avoid
985  * zImage relocating below the reserved region.
986  */
987 #define CRASH_ALIGN     (128 << 20)
988 
989 static inline unsigned long long get_total_mem(void)
990 {
991         unsigned long total;
992 
993         total = max_low_pfn - min_low_pfn;
994         return total << PAGE_SHIFT;
995 }
996 
997 /**
998  * reserve_crashkernel() - reserves memory are for crash kernel
999  *
1000  * This function reserves memory area given in "crashkernel=" kernel command
1001  * line parameter. The memory reserved is used by a dump capture kernel when
1002  * primary kernel is crashing.
1003  */
1004 static void __init reserve_crashkernel(void)
1005 {
1006         unsigned long long crash_size, crash_base;
1007         unsigned long long total_mem;
1008         int ret;
1009 
1010         total_mem = get_total_mem();
1011         ret = parse_crashkernel(boot_command_line, total_mem,
1012                                 &crash_size, &crash_base,
1013                                 NULL, NULL);
1014         /* invalid value specified or crashkernel=0 */
1015         if (ret || !crash_size)
1016                 return;
1017 
1018         if (crash_base <= 0) {
1019                 unsigned long long crash_max = idmap_to_phys((u32)~0);
1020                 unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1021                 if (crash_max > lowmem_max)
1022                         crash_max = lowmem_max;
1023 
1024                 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1025                                                        CRASH_ALIGN, crash_max);
1026                 if (!crash_base) {
1027                         pr_err("crashkernel reservation failed - No suitable area found.\n");
1028                         return;
1029                 }
1030         } else {
1031                 unsigned long long crash_max = crash_base + crash_size;
1032                 unsigned long long start;
1033 
1034                 start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1035                                                   crash_base, crash_max);
1036                 if (!start) {
1037                         pr_err("crashkernel reservation failed - memory is in use.\n");
1038                         return;
1039                 }
1040         }
1041 
1042         pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1043                 (unsigned long)(crash_size >> 20),
1044                 (unsigned long)(crash_base >> 20),
1045                 (unsigned long)(total_mem >> 20));
1046 
1047         /* The crashk resource must always be located in normal mem */
1048         crashk_res.start = crash_base;
1049         crashk_res.end = crash_base + crash_size - 1;
1050         insert_resource(&iomem_resource, &crashk_res);
1051 
1052         if (arm_has_idmap_alias()) {
1053                 /*
1054                  * If we have a special RAM alias for use at boot, we
1055                  * need to advertise to kexec tools where the alias is.
1056                  */
1057                 static struct resource crashk_boot_res = {
1058                         .name = "Crash kernel (boot alias)",
1059                         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1060                 };
1061 
1062                 crashk_boot_res.start = phys_to_idmap(crash_base);
1063                 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1064                 insert_resource(&iomem_resource, &crashk_boot_res);
1065         }
1066 }
1067 #else
1068 static inline void reserve_crashkernel(void) {}
1069 #endif /* CONFIG_CRASH_RESERVE*/
1070 
1071 void __init hyp_mode_check(void)
1072 {
1073 #ifdef CONFIG_ARM_VIRT_EXT
1074         sync_boot_mode();
1075 
1076         if (is_hyp_mode_available()) {
1077                 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1078                 pr_info("CPU: Virtualization extensions available.\n");
1079         } else if (is_hyp_mode_mismatched()) {
1080                 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1081                         __boot_cpu_mode & MODE_MASK);
1082                 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1083         } else
1084                 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1085 #endif
1086 }
1087 
1088 static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1089 
1090 static int arm_restart(struct notifier_block *nb, unsigned long action,
1091                        void *data)
1092 {
1093         __arm_pm_restart(action, data);
1094         return NOTIFY_DONE;
1095 }
1096 
1097 static struct notifier_block arm_restart_nb = {
1098         .notifier_call = arm_restart,
1099         .priority = 128,
1100 };
1101 
1102 void __init setup_arch(char **cmdline_p)
1103 {
1104         const struct machine_desc *mdesc = NULL;
1105         void *atags_vaddr = NULL;
1106 
1107         if (__atags_pointer)
1108                 atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1109 
1110         setup_processor();
1111         if (atags_vaddr) {
1112                 mdesc = setup_machine_fdt(atags_vaddr);
1113                 if (mdesc)
1114                         memblock_reserve(__atags_pointer,
1115                                          fdt_totalsize(atags_vaddr));
1116         }
1117         if (!mdesc)
1118                 mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1119         if (!mdesc) {
1120                 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1121                 early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1122                             __atags_pointer);
1123                 if (__atags_pointer)
1124                         early_print("  r2[]=%*ph\n", 16, atags_vaddr);
1125                 dump_machine_table();
1126         }
1127 
1128         machine_desc = mdesc;
1129         machine_name = mdesc->name;
1130         dump_stack_set_arch_desc("%s", mdesc->name);
1131 
1132         if (mdesc->reboot_mode != REBOOT_HARD)
1133                 reboot_mode = mdesc->reboot_mode;
1134 
1135         setup_initial_init_mm(_text, _etext, _edata, _end);
1136 
1137         /* populate cmd_line too for later use, preserving boot_command_line */
1138         strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1139         *cmdline_p = cmd_line;
1140 
1141         early_fixmap_init();
1142         early_ioremap_init();
1143 
1144         parse_early_param();
1145 
1146 #ifdef CONFIG_MMU
1147         early_mm_init(mdesc);
1148 #endif
1149         setup_dma_zone(mdesc);
1150         xen_early_init();
1151         arm_efi_init();
1152         /*
1153          * Make sure the calculation for lowmem/highmem is set appropriately
1154          * before reserving/allocating any memory
1155          */
1156         adjust_lowmem_bounds();
1157         arm_memblock_init(mdesc);
1158         /* Memory may have been removed so recalculate the bounds. */
1159         adjust_lowmem_bounds();
1160 
1161         early_ioremap_reset();
1162 
1163         paging_init(mdesc);
1164         kasan_init();
1165         request_standard_resources(mdesc);
1166 
1167         if (mdesc->restart) {
1168                 __arm_pm_restart = mdesc->restart;
1169                 register_restart_handler(&arm_restart_nb);
1170         }
1171 
1172         unflatten_device_tree();
1173 
1174         arm_dt_init_cpu_maps();
1175         psci_dt_init();
1176 #ifdef CONFIG_SMP
1177         if (is_smp()) {
1178                 if (!mdesc->smp_init || !mdesc->smp_init()) {
1179                         if (psci_smp_available())
1180                                 smp_set_ops(&psci_smp_ops);
1181                         else if (mdesc->smp)
1182                                 smp_set_ops(mdesc->smp);
1183                 }
1184                 smp_init_cpus();
1185                 smp_build_mpidr_hash();
1186         }
1187 #endif
1188 
1189         if (!is_smp())
1190                 hyp_mode_check();
1191 
1192         reserve_crashkernel();
1193 
1194 #ifdef CONFIG_VT
1195 #if defined(CONFIG_VGA_CONSOLE)
1196         vgacon_register_screen(&vgacon_screen_info);
1197 #endif
1198 #endif
1199 
1200         if (mdesc->init_early)
1201                 mdesc->init_early();
1202 }
1203 
1204 
1205 static int __init topology_init(void)
1206 {
1207         int cpu;
1208 
1209         for_each_possible_cpu(cpu) {
1210                 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1211                 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1212                 register_cpu(&cpuinfo->cpu, cpu);
1213         }
1214 
1215         return 0;
1216 }
1217 subsys_initcall(topology_init);
1218 
1219 #ifdef CONFIG_HAVE_PROC_CPU
1220 static int __init proc_cpu_init(void)
1221 {
1222         struct proc_dir_entry *res;
1223 
1224         res = proc_mkdir("cpu", NULL);
1225         if (!res)
1226                 return -ENOMEM;
1227         return 0;
1228 }
1229 fs_initcall(proc_cpu_init);
1230 #endif
1231 
1232 static const char *hwcap_str[] = {
1233         "swp",
1234         "half",
1235         "thumb",
1236         "26bit",
1237         "fastmult",
1238         "fpa",
1239         "vfp",
1240         "edsp",
1241         "java",
1242         "iwmmxt",
1243         "crunch",
1244         "thumbee",
1245         "neon",
1246         "vfpv3",
1247         "vfpv3d16",
1248         "tls",
1249         "vfpv4",
1250         "idiva",
1251         "idivt",
1252         "vfpd32",
1253         "lpae",
1254         "evtstrm",
1255         "fphp",
1256         "asimdhp",
1257         "asimddp",
1258         "asimdfhm",
1259         "asimdbf16",
1260         "i8mm",
1261         NULL
1262 };
1263 
1264 static const char *hwcap2_str[] = {
1265         "aes",
1266         "pmull",
1267         "sha1",
1268         "sha2",
1269         "crc32",
1270         "sb",
1271         "ssbs",
1272         NULL
1273 };
1274 
1275 static int c_show(struct seq_file *m, void *v)
1276 {
1277         int i, j;
1278         u32 cpuid;
1279 
1280         for_each_online_cpu(i) {
1281                 /*
1282                  * glibc reads /proc/cpuinfo to determine the number of
1283                  * online processors, looking for lines beginning with
1284                  * "processor".  Give glibc what it expects.
1285                  */
1286                 seq_printf(m, "processor\t: %d\n", i);
1287                 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1288                 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1289                            cpu_name, cpuid & 15, elf_platform);
1290 
1291 #if defined(CONFIG_SMP)
1292                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1293                            per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1294                            (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1295 #else
1296                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1297                            loops_per_jiffy / (500000/HZ),
1298                            (loops_per_jiffy / (5000/HZ)) % 100);
1299 #endif
1300                 /* dump out the processor features */
1301                 seq_puts(m, "Features\t: ");
1302 
1303                 for (j = 0; hwcap_str[j]; j++)
1304                         if (elf_hwcap & (1 << j))
1305                                 seq_printf(m, "%s ", hwcap_str[j]);
1306 
1307                 for (j = 0; hwcap2_str[j]; j++)
1308                         if (elf_hwcap2 & (1 << j))
1309                                 seq_printf(m, "%s ", hwcap2_str[j]);
1310 
1311                 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1312                 seq_printf(m, "CPU architecture: %s\n",
1313                            proc_arch[cpu_architecture()]);
1314 
1315                 if ((cpuid & 0x0008f000) == 0x00000000) {
1316                         /* pre-ARM7 */
1317                         seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1318                 } else {
1319                         if ((cpuid & 0x0008f000) == 0x00007000) {
1320                                 /* ARM7 */
1321                                 seq_printf(m, "CPU variant\t: 0x%02x\n",
1322                                            (cpuid >> 16) & 127);
1323                         } else {
1324                                 /* post-ARM7 */
1325                                 seq_printf(m, "CPU variant\t: 0x%x\n",
1326                                            (cpuid >> 20) & 15);
1327                         }
1328                         seq_printf(m, "CPU part\t: 0x%03x\n",
1329                                    (cpuid >> 4) & 0xfff);
1330                 }
1331                 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1332         }
1333 
1334         seq_printf(m, "Hardware\t: %s\n", machine_name);
1335         seq_printf(m, "Revision\t: %04x\n", system_rev);
1336         seq_printf(m, "Serial\t\t: %s\n", system_serial);
1337 
1338         return 0;
1339 }
1340 
1341 static void *c_start(struct seq_file *m, loff_t *pos)
1342 {
1343         return *pos < 1 ? (void *)1 : NULL;
1344 }
1345 
1346 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1347 {
1348         ++*pos;
1349         return NULL;
1350 }
1351 
1352 static void c_stop(struct seq_file *m, void *v)
1353 {
1354 }
1355 
1356 const struct seq_operations cpuinfo_op = {
1357         .start  = c_start,
1358         .next   = c_next,
1359         .stop   = c_stop,
1360         .show   = c_show
1361 };
1362 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php