1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Broadcom Brahma-B15 CPU read-ahead cache management functions 4 * 5 * Copyright (C) 2015-2016 Broadcom 6 */ 7 8 #include <linux/cfi_types.h> 9 #include <linux/err.h> 10 #include <linux/spinlock.h> 11 #include <linux/io.h> 12 #include <linux/bitops.h> 13 #include <linux/of_address.h> 14 #include <linux/notifier.h> 15 #include <linux/cpu.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/reboot.h> 18 19 #include <asm/cacheflush.h> 20 #include <asm/hardware/cache-b15-rac.h> 21 22 extern void v7_flush_kern_cache_all(void); 23 24 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */ 25 #define RAC_CONFIG0_REG (0x78) 26 #define RACENPREF_MASK (0x3) 27 #define RACPREFINST_SHIFT (0) 28 #define RACENINST_SHIFT (2) 29 #define RACPREFDATA_SHIFT (4) 30 #define RACENDATA_SHIFT (6) 31 #define RAC_CPU_SHIFT (8) 32 #define RACCFG_MASK (0xff) 33 #define RAC_CONFIG1_REG (0x7c) 34 /* Brahma-B15 is a quad-core only design */ 35 #define B15_RAC_FLUSH_REG (0x80) 36 /* Brahma-B53 is an octo-core design */ 37 #define B53_RAC_FLUSH_REG (0x84) 38 #define FLUSH_RAC (1 << 0) 39 40 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */ 41 #define RAC_DATA_INST_EN_MASK (1 << RACPREFINST_SHIFT | \ 42 RACENPREF_MASK << RACENINST_SHIFT | \ 43 1 << RACPREFDATA_SHIFT | \ 44 RACENPREF_MASK << RACENDATA_SHIFT) 45 46 #define RAC_ENABLED 0 47 /* Special state where we want to bypass the spinlock and call directly 48 * into the v7 cache maintenance operations during suspend/resume 49 */ 50 #define RAC_SUSPENDED 1 51 52 static void __iomem *b15_rac_base; 53 static DEFINE_SPINLOCK(rac_lock); 54 55 static u32 rac_config0_reg; 56 static u32 rac_flush_offset; 57 58 /* Initialization flag to avoid checking for b15_rac_base, and to prevent 59 * multi-platform kernels from crashing here as well. 60 */ 61 static unsigned long b15_rac_flags; 62 63 static inline u32 __b15_rac_disable(void) 64 { 65 u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG); 66 __raw_writel(0, b15_rac_base + RAC_CONFIG0_REG); 67 dmb(); 68 return val; 69 } 70 71 static inline void __b15_rac_flush(void) 72 { 73 u32 reg; 74 75 __raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset); 76 do { 77 /* This dmb() is required to force the Bus Interface Unit 78 * to clean outstanding writes, and forces an idle cycle 79 * to be inserted. 80 */ 81 dmb(); 82 reg = __raw_readl(b15_rac_base + rac_flush_offset); 83 } while (reg & FLUSH_RAC); 84 } 85 86 static inline u32 b15_rac_disable_and_flush(void) 87 { 88 u32 reg; 89 90 reg = __b15_rac_disable(); 91 __b15_rac_flush(); 92 return reg; 93 } 94 95 static inline void __b15_rac_enable(u32 val) 96 { 97 __raw_writel(val, b15_rac_base + RAC_CONFIG0_REG); 98 /* dsb() is required here to be consistent with __flush_icache_all() */ 99 dsb(); 100 } 101 102 #define BUILD_RAC_CACHE_OP(name, bar) \ 103 void b15_flush_##name(void) \ 104 { \ 105 unsigned int do_flush; \ 106 u32 val = 0; \ 107 \ 108 if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) { \ 109 v7_flush_##name(); \ 110 bar; \ 111 return; \ 112 } \ 113 \ 114 spin_lock(&rac_lock); \ 115 do_flush = test_bit(RAC_ENABLED, &b15_rac_flags); \ 116 if (do_flush) \ 117 val = b15_rac_disable_and_flush(); \ 118 v7_flush_##name(); \ 119 if (!do_flush) \ 120 bar; \ 121 else \ 122 __b15_rac_enable(val); \ 123 spin_unlock(&rac_lock); \ 124 } 125 126 #define nobarrier 127 128 /* The readahead cache present in the Brahma-B15 CPU is a special piece of 129 * hardware after the integrated L2 cache of the B15 CPU complex whose purpose 130 * is to prefetch instruction and/or data with a line size of either 64 bytes 131 * or 256 bytes. The rationale is that the data-bus of the CPU interface is 132 * optimized for 256-bytes transactions, and enabling the readahead cache 133 * provides a significant performance boost we want it enabled (typically 134 * twice the performance for a memcpy benchmark application). 135 * 136 * The readahead cache is transparent for Modified Virtual Addresses 137 * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and 138 * DCCIMVAC. 139 * 140 * It is however not transparent for the following cache maintenance 141 * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely 142 * what we are patching here with our BUILD_RAC_CACHE_OP here. 143 */ 144 BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier); 145 146 static void b15_rac_enable(void) 147 { 148 unsigned int cpu; 149 u32 enable = 0; 150 151 for_each_possible_cpu(cpu) 152 enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT)); 153 154 b15_rac_disable_and_flush(); 155 __b15_rac_enable(enable); 156 } 157 158 static int b15_rac_reboot_notifier(struct notifier_block *nb, 159 unsigned long action, 160 void *data) 161 { 162 /* During kexec, we are not yet migrated on the boot CPU, so we need to 163 * make sure we are SMP safe here. Once the RAC is disabled, flag it as 164 * suspended such that the hotplug notifier returns early. 165 */ 166 if (action == SYS_RESTART) { 167 spin_lock(&rac_lock); 168 b15_rac_disable_and_flush(); 169 clear_bit(RAC_ENABLED, &b15_rac_flags); 170 set_bit(RAC_SUSPENDED, &b15_rac_flags); 171 spin_unlock(&rac_lock); 172 } 173 174 return NOTIFY_DONE; 175 } 176 177 static struct notifier_block b15_rac_reboot_nb = { 178 .notifier_call = b15_rac_reboot_notifier, 179 }; 180 181 /* The CPU hotplug case is the most interesting one, we basically need to make 182 * sure that the RAC is disabled for the entire system prior to having a CPU 183 * die, in particular prior to this dying CPU having exited the coherency 184 * domain. 185 * 186 * Once this CPU is marked dead, we can safely re-enable the RAC for the 187 * remaining CPUs in the system which are still online. 188 * 189 * Offlining a CPU is the problematic case, onlining a CPU is not much of an 190 * issue since the CPU and its cache-level hierarchy will start filling with 191 * the RAC disabled, so L1 and L2 only. 192 * 193 * In this function, we should NOT have to verify any unsafe setting/condition 194 * b15_rac_base: 195 * 196 * It is protected by the RAC_ENABLED flag which is cleared by default, and 197 * being cleared when initial procedure is done. b15_rac_base had been set at 198 * that time. 199 * 200 * RAC_ENABLED: 201 * There is a small timing windows, in b15_rac_init(), between 202 * cpuhp_setup_state_*() 203 * ... 204 * set RAC_ENABLED 205 * However, there is no hotplug activity based on the Linux booting procedure. 206 * 207 * Since we have to disable RAC for all cores, we keep RAC on as long as as 208 * possible (disable it as late as possible) to gain the cache benefit. 209 * 210 * Thus, dying/dead states are chosen here 211 * 212 * We are choosing not do disable the RAC on a per-CPU basis, here, if we did 213 * we would want to consider disabling it as early as possible to benefit the 214 * other active CPUs. 215 */ 216 217 /* Running on the dying CPU */ 218 static int b15_rac_dying_cpu(unsigned int cpu) 219 { 220 /* During kexec/reboot, the RAC is disabled via the reboot notifier 221 * return early here. 222 */ 223 if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) 224 return 0; 225 226 spin_lock(&rac_lock); 227 228 /* Indicate that we are starting a hotplug procedure */ 229 __clear_bit(RAC_ENABLED, &b15_rac_flags); 230 231 /* Disable the readahead cache and save its value to a global */ 232 rac_config0_reg = b15_rac_disable_and_flush(); 233 234 spin_unlock(&rac_lock); 235 236 return 0; 237 } 238 239 /* Running on a non-dying CPU */ 240 static int b15_rac_dead_cpu(unsigned int cpu) 241 { 242 /* During kexec/reboot, the RAC is disabled via the reboot notifier 243 * return early here. 244 */ 245 if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) 246 return 0; 247 248 spin_lock(&rac_lock); 249 250 /* And enable it */ 251 __b15_rac_enable(rac_config0_reg); 252 __set_bit(RAC_ENABLED, &b15_rac_flags); 253 254 spin_unlock(&rac_lock); 255 256 return 0; 257 } 258 259 static int b15_rac_suspend(void) 260 { 261 /* Suspend the read-ahead cache oeprations, forcing our cache 262 * implementation to fallback to the regular ARMv7 calls. 263 * 264 * We are guaranteed to be running on the boot CPU at this point and 265 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy 266 * here. 267 */ 268 rac_config0_reg = b15_rac_disable_and_flush(); 269 set_bit(RAC_SUSPENDED, &b15_rac_flags); 270 271 return 0; 272 } 273 274 static void b15_rac_resume(void) 275 { 276 /* Coming out of a S3 suspend/resume cycle, the read-ahead cache 277 * register RAC_CONFIG0_REG will be restored to its default value, make 278 * sure we re-enable it and set the enable flag, we are also guaranteed 279 * to run on the boot CPU, so not racy again. 280 */ 281 __b15_rac_enable(rac_config0_reg); 282 clear_bit(RAC_SUSPENDED, &b15_rac_flags); 283 } 284 285 static struct syscore_ops b15_rac_syscore_ops = { 286 .suspend = b15_rac_suspend, 287 .resume = b15_rac_resume, 288 }; 289 290 static int __init b15_rac_init(void) 291 { 292 struct device_node *dn, *cpu_dn; 293 int ret = 0, cpu; 294 u32 reg, en_mask = 0; 295 296 dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl"); 297 if (!dn) 298 return -ENODEV; 299 300 if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n")) 301 goto out; 302 303 b15_rac_base = of_iomap(dn, 0); 304 if (!b15_rac_base) { 305 pr_err("failed to remap BIU control base\n"); 306 ret = -ENOMEM; 307 goto out; 308 } 309 310 cpu_dn = of_get_cpu_node(0, NULL); 311 if (!cpu_dn) { 312 ret = -ENODEV; 313 goto out; 314 } 315 316 if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15")) 317 rac_flush_offset = B15_RAC_FLUSH_REG; 318 else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53")) 319 rac_flush_offset = B53_RAC_FLUSH_REG; 320 else { 321 pr_err("Unsupported CPU\n"); 322 of_node_put(cpu_dn); 323 ret = -EINVAL; 324 goto out; 325 } 326 of_node_put(cpu_dn); 327 328 ret = register_reboot_notifier(&b15_rac_reboot_nb); 329 if (ret) { 330 pr_err("failed to register reboot notifier\n"); 331 iounmap(b15_rac_base); 332 goto out; 333 } 334 335 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 336 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD, 337 "arm/cache-b15-rac:dead", 338 NULL, b15_rac_dead_cpu); 339 if (ret) 340 goto out_unmap; 341 342 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING, 343 "arm/cache-b15-rac:dying", 344 NULL, b15_rac_dying_cpu); 345 if (ret) 346 goto out_cpu_dead; 347 } 348 349 if (IS_ENABLED(CONFIG_PM_SLEEP)) 350 register_syscore_ops(&b15_rac_syscore_ops); 351 352 spin_lock(&rac_lock); 353 reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG); 354 for_each_possible_cpu(cpu) 355 en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT)); 356 WARN(reg & en_mask, "Read-ahead cache not previously disabled\n"); 357 358 b15_rac_enable(); 359 set_bit(RAC_ENABLED, &b15_rac_flags); 360 spin_unlock(&rac_lock); 361 362 pr_info("%pOF: Broadcom Brahma-B15 readahead cache\n", dn); 363 364 goto out; 365 366 out_cpu_dead: 367 cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING); 368 out_unmap: 369 unregister_reboot_notifier(&b15_rac_reboot_nb); 370 iounmap(b15_rac_base); 371 out: 372 of_node_put(dn); 373 return ret; 374 } 375 arch_initcall(b15_rac_init); 376
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.