~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm/mm/cache-b15-rac.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Broadcom Brahma-B15 CPU read-ahead cache management functions
  4  *
  5  * Copyright (C) 2015-2016 Broadcom
  6  */
  7 
  8 #include <linux/cfi_types.h>
  9 #include <linux/err.h>
 10 #include <linux/spinlock.h>
 11 #include <linux/io.h>
 12 #include <linux/bitops.h>
 13 #include <linux/of_address.h>
 14 #include <linux/notifier.h>
 15 #include <linux/cpu.h>
 16 #include <linux/syscore_ops.h>
 17 #include <linux/reboot.h>
 18 
 19 #include <asm/cacheflush.h>
 20 #include <asm/hardware/cache-b15-rac.h>
 21 
 22 extern void v7_flush_kern_cache_all(void);
 23 
 24 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
 25 #define RAC_CONFIG0_REG                 (0x78)
 26 #define  RACENPREF_MASK                 (0x3)
 27 #define  RACPREFINST_SHIFT              (0)
 28 #define  RACENINST_SHIFT                (2)
 29 #define  RACPREFDATA_SHIFT              (4)
 30 #define  RACENDATA_SHIFT                (6)
 31 #define  RAC_CPU_SHIFT                  (8)
 32 #define  RACCFG_MASK                    (0xff)
 33 #define RAC_CONFIG1_REG                 (0x7c)
 34 /* Brahma-B15 is a quad-core only design */
 35 #define B15_RAC_FLUSH_REG               (0x80)
 36 /* Brahma-B53 is an octo-core design */
 37 #define B53_RAC_FLUSH_REG               (0x84)
 38 #define  FLUSH_RAC                      (1 << 0)
 39 
 40 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
 41 #define RAC_DATA_INST_EN_MASK           (1 << RACPREFINST_SHIFT | \
 42                                          RACENPREF_MASK << RACENINST_SHIFT | \
 43                                          1 << RACPREFDATA_SHIFT | \
 44                                          RACENPREF_MASK << RACENDATA_SHIFT)
 45 
 46 #define RAC_ENABLED                     0
 47 /* Special state where we want to bypass the spinlock and call directly
 48  * into the v7 cache maintenance operations during suspend/resume
 49  */
 50 #define RAC_SUSPENDED                   1
 51 
 52 static void __iomem *b15_rac_base;
 53 static DEFINE_SPINLOCK(rac_lock);
 54 
 55 static u32 rac_config0_reg;
 56 static u32 rac_flush_offset;
 57 
 58 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
 59  * multi-platform kernels from crashing here as well.
 60  */
 61 static unsigned long b15_rac_flags;
 62 
 63 static inline u32 __b15_rac_disable(void)
 64 {
 65         u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
 66         __raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
 67         dmb();
 68         return val;
 69 }
 70 
 71 static inline void __b15_rac_flush(void)
 72 {
 73         u32 reg;
 74 
 75         __raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
 76         do {
 77                 /* This dmb() is required to force the Bus Interface Unit
 78                  * to clean outstanding writes, and forces an idle cycle
 79                  * to be inserted.
 80                  */
 81                 dmb();
 82                 reg = __raw_readl(b15_rac_base + rac_flush_offset);
 83         } while (reg & FLUSH_RAC);
 84 }
 85 
 86 static inline u32 b15_rac_disable_and_flush(void)
 87 {
 88         u32 reg;
 89 
 90         reg = __b15_rac_disable();
 91         __b15_rac_flush();
 92         return reg;
 93 }
 94 
 95 static inline void __b15_rac_enable(u32 val)
 96 {
 97         __raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
 98         /* dsb() is required here to be consistent with __flush_icache_all() */
 99         dsb();
100 }
101 
102 #define BUILD_RAC_CACHE_OP(name, bar)                           \
103 void b15_flush_##name(void)                                     \
104 {                                                               \
105         unsigned int do_flush;                                  \
106         u32 val = 0;                                            \
107                                                                 \
108         if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {          \
109                 v7_flush_##name();                              \
110                 bar;                                            \
111                 return;                                         \
112         }                                                       \
113                                                                 \
114         spin_lock(&rac_lock);                                   \
115         do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);       \
116         if (do_flush)                                           \
117                 val = b15_rac_disable_and_flush();              \
118         v7_flush_##name();                                      \
119         if (!do_flush)                                          \
120                 bar;                                            \
121         else                                                    \
122                 __b15_rac_enable(val);                          \
123         spin_unlock(&rac_lock);                                 \
124 }
125 
126 #define nobarrier
127 
128 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
129  * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
130  * is to prefetch instruction and/or data with a line size of either 64 bytes
131  * or 256 bytes. The rationale is that the data-bus of the CPU interface is
132  * optimized for 256-bytes transactions, and enabling the readahead cache
133  * provides a significant performance boost we want it enabled (typically
134  * twice the performance for a memcpy benchmark application).
135  *
136  * The readahead cache is transparent for Modified Virtual Addresses
137  * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
138  * DCCIMVAC.
139  *
140  * It is however not transparent for the following cache maintenance
141  * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
142  * what we are patching here with our BUILD_RAC_CACHE_OP here.
143  */
144 BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
145 
146 static void b15_rac_enable(void)
147 {
148         unsigned int cpu;
149         u32 enable = 0;
150 
151         for_each_possible_cpu(cpu)
152                 enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
153 
154         b15_rac_disable_and_flush();
155         __b15_rac_enable(enable);
156 }
157 
158 static int b15_rac_reboot_notifier(struct notifier_block *nb,
159                                    unsigned long action,
160                                    void *data)
161 {
162         /* During kexec, we are not yet migrated on the boot CPU, so we need to
163          * make sure we are SMP safe here. Once the RAC is disabled, flag it as
164          * suspended such that the hotplug notifier returns early.
165          */
166         if (action == SYS_RESTART) {
167                 spin_lock(&rac_lock);
168                 b15_rac_disable_and_flush();
169                 clear_bit(RAC_ENABLED, &b15_rac_flags);
170                 set_bit(RAC_SUSPENDED, &b15_rac_flags);
171                 spin_unlock(&rac_lock);
172         }
173 
174         return NOTIFY_DONE;
175 }
176 
177 static struct notifier_block b15_rac_reboot_nb = {
178         .notifier_call  = b15_rac_reboot_notifier,
179 };
180 
181 /* The CPU hotplug case is the most interesting one, we basically need to make
182  * sure that the RAC is disabled for the entire system prior to having a CPU
183  * die, in particular prior to this dying CPU having exited the coherency
184  * domain.
185  *
186  * Once this CPU is marked dead, we can safely re-enable the RAC for the
187  * remaining CPUs in the system which are still online.
188  *
189  * Offlining a CPU is the problematic case, onlining a CPU is not much of an
190  * issue since the CPU and its cache-level hierarchy will start filling with
191  * the RAC disabled, so L1 and L2 only.
192  *
193  * In this function, we should NOT have to verify any unsafe setting/condition
194  * b15_rac_base:
195  *
196  *   It is protected by the RAC_ENABLED flag which is cleared by default, and
197  *   being cleared when initial procedure is done. b15_rac_base had been set at
198  *   that time.
199  *
200  * RAC_ENABLED:
201  *   There is a small timing windows, in b15_rac_init(), between
202  *      cpuhp_setup_state_*()
203  *      ...
204  *      set RAC_ENABLED
205  *   However, there is no hotplug activity based on the Linux booting procedure.
206  *
207  * Since we have to disable RAC for all cores, we keep RAC on as long as as
208  * possible (disable it as late as possible) to gain the cache benefit.
209  *
210  * Thus, dying/dead states are chosen here
211  *
212  * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
213  * we would want to consider disabling it as early as possible to benefit the
214  * other active CPUs.
215  */
216 
217 /* Running on the dying CPU */
218 static int b15_rac_dying_cpu(unsigned int cpu)
219 {
220         /* During kexec/reboot, the RAC is disabled via the reboot notifier
221          * return early here.
222          */
223         if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
224                 return 0;
225 
226         spin_lock(&rac_lock);
227 
228         /* Indicate that we are starting a hotplug procedure */
229         __clear_bit(RAC_ENABLED, &b15_rac_flags);
230 
231         /* Disable the readahead cache and save its value to a global */
232         rac_config0_reg = b15_rac_disable_and_flush();
233 
234         spin_unlock(&rac_lock);
235 
236         return 0;
237 }
238 
239 /* Running on a non-dying CPU */
240 static int b15_rac_dead_cpu(unsigned int cpu)
241 {
242         /* During kexec/reboot, the RAC is disabled via the reboot notifier
243          * return early here.
244          */
245         if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
246                 return 0;
247 
248         spin_lock(&rac_lock);
249 
250         /* And enable it */
251         __b15_rac_enable(rac_config0_reg);
252         __set_bit(RAC_ENABLED, &b15_rac_flags);
253 
254         spin_unlock(&rac_lock);
255 
256         return 0;
257 }
258 
259 static int b15_rac_suspend(void)
260 {
261         /* Suspend the read-ahead cache oeprations, forcing our cache
262          * implementation to fallback to the regular ARMv7 calls.
263          *
264          * We are guaranteed to be running on the boot CPU at this point and
265          * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
266          * here.
267          */
268         rac_config0_reg = b15_rac_disable_and_flush();
269         set_bit(RAC_SUSPENDED, &b15_rac_flags);
270 
271         return 0;
272 }
273 
274 static void b15_rac_resume(void)
275 {
276         /* Coming out of a S3 suspend/resume cycle, the read-ahead cache
277          * register RAC_CONFIG0_REG will be restored to its default value, make
278          * sure we re-enable it and set the enable flag, we are also guaranteed
279          * to run on the boot CPU, so not racy again.
280          */
281         __b15_rac_enable(rac_config0_reg);
282         clear_bit(RAC_SUSPENDED, &b15_rac_flags);
283 }
284 
285 static struct syscore_ops b15_rac_syscore_ops = {
286         .suspend        = b15_rac_suspend,
287         .resume         = b15_rac_resume,
288 };
289 
290 static int __init b15_rac_init(void)
291 {
292         struct device_node *dn, *cpu_dn;
293         int ret = 0, cpu;
294         u32 reg, en_mask = 0;
295 
296         dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
297         if (!dn)
298                 return -ENODEV;
299 
300         if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
301                 goto out;
302 
303         b15_rac_base = of_iomap(dn, 0);
304         if (!b15_rac_base) {
305                 pr_err("failed to remap BIU control base\n");
306                 ret = -ENOMEM;
307                 goto out;
308         }
309 
310         cpu_dn = of_get_cpu_node(0, NULL);
311         if (!cpu_dn) {
312                 ret = -ENODEV;
313                 goto out;
314         }
315 
316         if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
317                 rac_flush_offset = B15_RAC_FLUSH_REG;
318         else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
319                 rac_flush_offset = B53_RAC_FLUSH_REG;
320         else {
321                 pr_err("Unsupported CPU\n");
322                 of_node_put(cpu_dn);
323                 ret = -EINVAL;
324                 goto out;
325         }
326         of_node_put(cpu_dn);
327 
328         ret = register_reboot_notifier(&b15_rac_reboot_nb);
329         if (ret) {
330                 pr_err("failed to register reboot notifier\n");
331                 iounmap(b15_rac_base);
332                 goto out;
333         }
334 
335         if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
336                 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
337                                         "arm/cache-b15-rac:dead",
338                                         NULL, b15_rac_dead_cpu);
339                 if (ret)
340                         goto out_unmap;
341 
342                 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
343                                         "arm/cache-b15-rac:dying",
344                                         NULL, b15_rac_dying_cpu);
345                 if (ret)
346                         goto out_cpu_dead;
347         }
348 
349         if (IS_ENABLED(CONFIG_PM_SLEEP))
350                 register_syscore_ops(&b15_rac_syscore_ops);
351 
352         spin_lock(&rac_lock);
353         reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
354         for_each_possible_cpu(cpu)
355                 en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
356         WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
357 
358         b15_rac_enable();
359         set_bit(RAC_ENABLED, &b15_rac_flags);
360         spin_unlock(&rac_lock);
361 
362         pr_info("%pOF: Broadcom Brahma-B15 readahead cache\n", dn);
363 
364         goto out;
365 
366 out_cpu_dead:
367         cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
368 out_unmap:
369         unregister_reboot_notifier(&b15_rac_reboot_nb);
370         iounmap(b15_rac_base);
371 out:
372         of_node_put(dn);
373         return ret;
374 }
375 arch_initcall(b15_rac_init);
376 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php