~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm/mm/fault.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/arch/arm/mm/fault.c
  4  *
  5  *  Copyright (C) 1995  Linus Torvalds
  6  *  Modifications for ARM processor (c) 1995-2004 Russell King
  7  */
  8 #include <linux/extable.h>
  9 #include <linux/signal.h>
 10 #include <linux/mm.h>
 11 #include <linux/hardirq.h>
 12 #include <linux/init.h>
 13 #include <linux/kprobes.h>
 14 #include <linux/uaccess.h>
 15 #include <linux/page-flags.h>
 16 #include <linux/sched/signal.h>
 17 #include <linux/sched/debug.h>
 18 #include <linux/highmem.h>
 19 #include <linux/perf_event.h>
 20 #include <linux/kfence.h>
 21 
 22 #include <asm/system_misc.h>
 23 #include <asm/system_info.h>
 24 #include <asm/tlbflush.h>
 25 
 26 #include "fault.h"
 27 
 28 #ifdef CONFIG_MMU
 29 
 30 bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size)
 31 {
 32         unsigned long addr = (unsigned long)unsafe_src;
 33 
 34         return addr >= TASK_SIZE && ULONG_MAX - addr >= size;
 35 }
 36 
 37 /*
 38  * This is useful to dump out the page tables associated with
 39  * 'addr' in mm 'mm'.
 40  */
 41 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
 42 {
 43         pgd_t *pgd;
 44 
 45         if (!mm)
 46                 mm = &init_mm;
 47 
 48         pgd = pgd_offset(mm, addr);
 49         printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
 50 
 51         do {
 52                 p4d_t *p4d;
 53                 pud_t *pud;
 54                 pmd_t *pmd;
 55                 pte_t *pte;
 56 
 57                 p4d = p4d_offset(pgd, addr);
 58                 if (p4d_none(*p4d))
 59                         break;
 60 
 61                 if (p4d_bad(*p4d)) {
 62                         pr_cont("(bad)");
 63                         break;
 64                 }
 65 
 66                 pud = pud_offset(p4d, addr);
 67                 if (PTRS_PER_PUD != 1)
 68                         pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
 69 
 70                 if (pud_none(*pud))
 71                         break;
 72 
 73                 if (pud_bad(*pud)) {
 74                         pr_cont("(bad)");
 75                         break;
 76                 }
 77 
 78                 pmd = pmd_offset(pud, addr);
 79                 if (PTRS_PER_PMD != 1)
 80                         pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
 81 
 82                 if (pmd_none(*pmd))
 83                         break;
 84 
 85                 if (pmd_bad(*pmd)) {
 86                         pr_cont("(bad)");
 87                         break;
 88                 }
 89 
 90                 /* We must not map this if we have highmem enabled */
 91                 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
 92                         break;
 93 
 94                 pte = pte_offset_map(pmd, addr);
 95                 if (!pte)
 96                         break;
 97 
 98                 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
 99 #ifndef CONFIG_ARM_LPAE
100                 pr_cont(", *ppte=%08llx",
101                        (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
102 #endif
103                 pte_unmap(pte);
104         } while(0);
105 
106         pr_cont("\n");
107 }
108 #else                                   /* CONFIG_MMU */
109 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
110 { }
111 #endif                                  /* CONFIG_MMU */
112 
113 static inline bool is_write_fault(unsigned int fsr)
114 {
115         return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
116 }
117 
118 static inline bool is_translation_fault(unsigned int fsr)
119 {
120         int fs = fsr_fs(fsr);
121 #ifdef CONFIG_ARM_LPAE
122         if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL)
123                 return true;
124 #else
125         if (fs == FS_L1_TRANS || fs == FS_L2_TRANS)
126                 return true;
127 #endif
128         return false;
129 }
130 
131 static void die_kernel_fault(const char *msg, struct mm_struct *mm,
132                              unsigned long addr, unsigned int fsr,
133                              struct pt_regs *regs)
134 {
135         bust_spinlocks(1);
136         pr_alert("8<--- cut here ---\n");
137         pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n",
138                  msg, addr, fsr & FSR_LNX_PF ? "execute" :
139                  fsr & FSR_WRITE ? "write" : "read");
140 
141         show_pte(KERN_ALERT, mm, addr);
142         die("Oops", regs, fsr);
143         bust_spinlocks(0);
144         make_task_dead(SIGKILL);
145 }
146 
147 /*
148  * Oops.  The kernel tried to access some page that wasn't present.
149  */
150 static void
151 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
152                   struct pt_regs *regs)
153 {
154         const char *msg;
155         /*
156          * Are we prepared to handle this kernel fault?
157          */
158         if (fixup_exception(regs))
159                 return;
160 
161         /*
162          * No handler, we'll have to terminate things with extreme prejudice.
163          */
164         if (addr < PAGE_SIZE) {
165                 msg = "NULL pointer dereference";
166         } else {
167                 if (is_translation_fault(fsr) &&
168                     kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
169                         return;
170 
171                 msg = "paging request";
172         }
173 
174         die_kernel_fault(msg, mm, addr, fsr, regs);
175 }
176 
177 /*
178  * Something tried to access memory that isn't in our memory map..
179  * User mode accesses just cause a SIGSEGV
180  */
181 static void
182 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
183                 int code, struct pt_regs *regs)
184 {
185         struct task_struct *tsk = current;
186 
187         if (addr > TASK_SIZE)
188                 harden_branch_predictor();
189 
190 #ifdef CONFIG_DEBUG_USER
191         if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
192             ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
193                 pr_err("8<--- cut here ---\n");
194                 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
195                        tsk->comm, sig, addr, fsr);
196                 show_pte(KERN_ERR, tsk->mm, addr);
197                 show_regs(regs);
198         }
199 #endif
200 #ifndef CONFIG_KUSER_HELPERS
201         if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
202                 printk_ratelimited(KERN_DEBUG
203                                    "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
204                                    tsk->comm, addr);
205 #endif
206 
207         tsk->thread.address = addr;
208         tsk->thread.error_code = fsr;
209         tsk->thread.trap_no = 14;
210         force_sig_fault(sig, code, (void __user *)addr);
211 }
212 
213 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
214 {
215         struct task_struct *tsk = current;
216         struct mm_struct *mm = tsk->active_mm;
217 
218         /*
219          * If we are in kernel mode at this point, we
220          * have no context to handle this fault with.
221          */
222         if (user_mode(regs))
223                 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
224         else
225                 __do_kernel_fault(mm, addr, fsr, regs);
226 }
227 
228 #ifdef CONFIG_MMU
229 static inline bool is_permission_fault(unsigned int fsr)
230 {
231         int fs = fsr_fs(fsr);
232 #ifdef CONFIG_ARM_LPAE
233         if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL)
234                 return true;
235 #else
236         if (fs == FS_L1_PERM || fs == FS_L2_PERM)
237                 return true;
238 #endif
239         return false;
240 }
241 
242 #ifdef CONFIG_CPU_TTBR0_PAN
243 static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs)
244 {
245         struct svc_pt_regs *svcregs;
246 
247         /* If we are in user mode: permission granted */
248         if (user_mode(regs))
249                 return true;
250 
251         /* uaccess state saved above pt_regs on SVC exception entry */
252         svcregs = to_svc_pt_regs(regs);
253 
254         return !(svcregs->ttbcr & TTBCR_EPD0);
255 }
256 #else
257 static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs)
258 {
259         return true;
260 }
261 #endif
262 
263 static int __kprobes
264 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
265 {
266         struct mm_struct *mm = current->mm;
267         struct vm_area_struct *vma;
268         int sig, code;
269         vm_fault_t fault;
270         unsigned int flags = FAULT_FLAG_DEFAULT;
271         unsigned long vm_flags = VM_ACCESS_FLAGS;
272 
273         if (kprobe_page_fault(regs, fsr))
274                 return 0;
275 
276 
277         /* Enable interrupts if they were enabled in the parent context. */
278         if (interrupts_enabled(regs))
279                 local_irq_enable();
280 
281         /*
282          * If we're in an interrupt or have no user
283          * context, we must not take the fault..
284          */
285         if (faulthandler_disabled() || !mm)
286                 goto no_context;
287 
288         if (user_mode(regs))
289                 flags |= FAULT_FLAG_USER;
290 
291         if (is_write_fault(fsr)) {
292                 flags |= FAULT_FLAG_WRITE;
293                 vm_flags = VM_WRITE;
294         }
295 
296         if (fsr & FSR_LNX_PF) {
297                 vm_flags = VM_EXEC;
298 
299                 if (is_permission_fault(fsr) && !user_mode(regs))
300                         die_kernel_fault("execution of memory",
301                                          mm, addr, fsr, regs);
302         }
303 
304         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
305 
306         /*
307          * Privileged access aborts with CONFIG_CPU_TTBR0_PAN enabled are
308          * routed via the translation fault mechanism. Check whether uaccess
309          * is disabled while in kernel mode.
310          */
311         if (!ttbr0_usermode_access_allowed(regs))
312                 goto no_context;
313 
314         if (!(flags & FAULT_FLAG_USER))
315                 goto lock_mmap;
316 
317         vma = lock_vma_under_rcu(mm, addr);
318         if (!vma)
319                 goto lock_mmap;
320 
321         if (!(vma->vm_flags & vm_flags)) {
322                 vma_end_read(vma);
323                 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
324                 fault = 0;
325                 code = SEGV_ACCERR;
326                 goto bad_area;
327         }
328         fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
329         if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
330                 vma_end_read(vma);
331 
332         if (!(fault & VM_FAULT_RETRY)) {
333                 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
334                 goto done;
335         }
336         count_vm_vma_lock_event(VMA_LOCK_RETRY);
337         if (fault & VM_FAULT_MAJOR)
338                 flags |= FAULT_FLAG_TRIED;
339 
340         /* Quick path to respond to signals */
341         if (fault_signal_pending(fault, regs)) {
342                 if (!user_mode(regs))
343                         goto no_context;
344                 return 0;
345         }
346 lock_mmap:
347 
348 retry:
349         vma = lock_mm_and_find_vma(mm, addr, regs);
350         if (unlikely(!vma)) {
351                 fault = 0;
352                 code = SEGV_MAPERR;
353                 goto bad_area;
354         }
355 
356         /*
357          * ok, we have a good vm_area for this memory access, check the
358          * permissions on the VMA allow for the fault which occurred.
359          */
360         if (!(vma->vm_flags & vm_flags)) {
361                 mmap_read_unlock(mm);
362                 fault = 0;
363                 code = SEGV_ACCERR;
364                 goto bad_area;
365         }
366 
367         fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
368 
369         /* If we need to retry but a fatal signal is pending, handle the
370          * signal first. We do not need to release the mmap_lock because
371          * it would already be released in __lock_page_or_retry in
372          * mm/filemap.c. */
373         if (fault_signal_pending(fault, regs)) {
374                 if (!user_mode(regs))
375                         goto no_context;
376                 return 0;
377         }
378 
379         /* The fault is fully completed (including releasing mmap lock) */
380         if (fault & VM_FAULT_COMPLETED)
381                 return 0;
382 
383         if (!(fault & VM_FAULT_ERROR)) {
384                 if (fault & VM_FAULT_RETRY) {
385                         flags |= FAULT_FLAG_TRIED;
386                         goto retry;
387                 }
388         }
389 
390         mmap_read_unlock(mm);
391 done:
392 
393         /* Handle the "normal" case first */
394         if (likely(!(fault & VM_FAULT_ERROR)))
395                 return 0;
396 
397         code = SEGV_MAPERR;
398 bad_area:
399         /*
400          * If we are in kernel mode at this point, we
401          * have no context to handle this fault with.
402          */
403         if (!user_mode(regs))
404                 goto no_context;
405 
406         if (fault & VM_FAULT_OOM) {
407                 /*
408                  * We ran out of memory, call the OOM killer, and return to
409                  * userspace (which will retry the fault, or kill us if we
410                  * got oom-killed)
411                  */
412                 pagefault_out_of_memory();
413                 return 0;
414         }
415 
416         if (fault & VM_FAULT_SIGBUS) {
417                 /*
418                  * We had some memory, but were unable to
419                  * successfully fix up this page fault.
420                  */
421                 sig = SIGBUS;
422                 code = BUS_ADRERR;
423         } else {
424                 /*
425                  * Something tried to access memory that
426                  * isn't in our memory map..
427                  */
428                 sig = SIGSEGV;
429         }
430 
431         __do_user_fault(addr, fsr, sig, code, regs);
432         return 0;
433 
434 no_context:
435         __do_kernel_fault(mm, addr, fsr, regs);
436         return 0;
437 }
438 #else                                   /* CONFIG_MMU */
439 static int
440 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
441 {
442         return 0;
443 }
444 #endif                                  /* CONFIG_MMU */
445 
446 /*
447  * First Level Translation Fault Handler
448  *
449  * We enter here because the first level page table doesn't contain
450  * a valid entry for the address.
451  *
452  * If the address is in kernel space (>= TASK_SIZE), then we are
453  * probably faulting in the vmalloc() area.
454  *
455  * If the init_task's first level page tables contains the relevant
456  * entry, we copy the it to this task.  If not, we send the process
457  * a signal, fixup the exception, or oops the kernel.
458  *
459  * NOTE! We MUST NOT take any locks for this case. We may be in an
460  * interrupt or a critical region, and should only copy the information
461  * from the master page table, nothing more.
462  */
463 #ifdef CONFIG_MMU
464 static int __kprobes
465 do_translation_fault(unsigned long addr, unsigned int fsr,
466                      struct pt_regs *regs)
467 {
468         unsigned int index;
469         pgd_t *pgd, *pgd_k;
470         p4d_t *p4d, *p4d_k;
471         pud_t *pud, *pud_k;
472         pmd_t *pmd, *pmd_k;
473 
474         if (addr < TASK_SIZE)
475                 return do_page_fault(addr, fsr, regs);
476 
477         if (user_mode(regs))
478                 goto bad_area;
479 
480         index = pgd_index(addr);
481 
482         pgd = cpu_get_pgd() + index;
483         pgd_k = init_mm.pgd + index;
484 
485         p4d = p4d_offset(pgd, addr);
486         p4d_k = p4d_offset(pgd_k, addr);
487 
488         if (p4d_none(*p4d_k))
489                 goto bad_area;
490         if (!p4d_present(*p4d))
491                 set_p4d(p4d, *p4d_k);
492 
493         pud = pud_offset(p4d, addr);
494         pud_k = pud_offset(p4d_k, addr);
495 
496         if (pud_none(*pud_k))
497                 goto bad_area;
498         if (!pud_present(*pud))
499                 set_pud(pud, *pud_k);
500 
501         pmd = pmd_offset(pud, addr);
502         pmd_k = pmd_offset(pud_k, addr);
503 
504 #ifdef CONFIG_ARM_LPAE
505         /*
506          * Only one hardware entry per PMD with LPAE.
507          */
508         index = 0;
509 #else
510         /*
511          * On ARM one Linux PGD entry contains two hardware entries (see page
512          * tables layout in pgtable.h). We normally guarantee that we always
513          * fill both L1 entries. But create_mapping() doesn't follow the rule.
514          * It can create inidividual L1 entries, so here we have to call
515          * pmd_none() check for the entry really corresponded to address, not
516          * for the first of pair.
517          */
518         index = (addr >> SECTION_SHIFT) & 1;
519 #endif
520         if (pmd_none(pmd_k[index]))
521                 goto bad_area;
522 
523         copy_pmd(pmd, pmd_k);
524         return 0;
525 
526 bad_area:
527         do_bad_area(addr, fsr, regs);
528         return 0;
529 }
530 #else                                   /* CONFIG_MMU */
531 static int
532 do_translation_fault(unsigned long addr, unsigned int fsr,
533                      struct pt_regs *regs)
534 {
535         return 0;
536 }
537 #endif                                  /* CONFIG_MMU */
538 
539 /*
540  * Some section permission faults need to be handled gracefully.
541  * They can happen due to a __{get,put}_user during an oops.
542  */
543 #ifndef CONFIG_ARM_LPAE
544 static int
545 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
546 {
547         do_bad_area(addr, fsr, regs);
548         return 0;
549 }
550 #endif /* CONFIG_ARM_LPAE */
551 
552 /*
553  * This abort handler always returns "fault".
554  */
555 static int
556 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
557 {
558         return 1;
559 }
560 
561 struct fsr_info {
562         int     (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
563         int     sig;
564         int     code;
565         const char *name;
566 };
567 
568 /* FSR definition */
569 #ifdef CONFIG_ARM_LPAE
570 #include "fsr-3level.c"
571 #else
572 #include "fsr-2level.c"
573 #endif
574 
575 void __init
576 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
577                 int sig, int code, const char *name)
578 {
579         if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
580                 BUG();
581 
582         fsr_info[nr].fn   = fn;
583         fsr_info[nr].sig  = sig;
584         fsr_info[nr].code = code;
585         fsr_info[nr].name = name;
586 }
587 
588 /*
589  * Dispatch a data abort to the relevant handler.
590  */
591 asmlinkage void
592 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
593 {
594         const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
595 
596         if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
597                 return;
598 
599         pr_alert("8<--- cut here ---\n");
600         pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
601                 inf->name, fsr, addr);
602         show_pte(KERN_ALERT, current->mm, addr);
603 
604         arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
605                        fsr, 0);
606 }
607 
608 void __init
609 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
610                  int sig, int code, const char *name)
611 {
612         if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
613                 BUG();
614 
615         ifsr_info[nr].fn   = fn;
616         ifsr_info[nr].sig  = sig;
617         ifsr_info[nr].code = code;
618         ifsr_info[nr].name = name;
619 }
620 
621 asmlinkage void
622 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
623 {
624         const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
625 
626         if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
627                 return;
628 
629         pr_alert("8<--- cut here ---\n");
630         pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
631                 inf->name, ifsr, addr);
632 
633         arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
634                        ifsr, 0);
635 }
636 
637 /*
638  * Abort handler to be used only during first unmasking of asynchronous aborts
639  * on the boot CPU. This makes sure that the machine will not die if the
640  * firmware/bootloader left an imprecise abort pending for us to trip over.
641  */
642 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
643                                       struct pt_regs *regs)
644 {
645         pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
646                 "first unmask, this is most likely caused by a "
647                 "firmware/bootloader bug.\n", fsr);
648 
649         return 0;
650 }
651 
652 void __init early_abt_enable(void)
653 {
654         fsr_info[FSR_FS_AEA].fn = early_abort_handler;
655         local_abt_enable();
656         fsr_info[FSR_FS_AEA].fn = do_bad;
657 }
658 
659 #ifndef CONFIG_ARM_LPAE
660 static int __init exceptions_init(void)
661 {
662         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
663                 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
664                                 "I-cache maintenance fault");
665         }
666 
667         if (cpu_architecture() >= CPU_ARCH_ARMv7) {
668                 /*
669                  * TODO: Access flag faults introduced in ARMv6K.
670                  * Runtime check for 'K' extension is needed
671                  */
672                 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
673                                 "section access flag fault");
674                 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
675                                 "section access flag fault");
676         }
677 
678         return 0;
679 }
680 
681 arch_initcall(exceptions_init);
682 #endif
683 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php