~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm/net/bpf_jit_32.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Just-In-Time compiler for eBPF filters on 32bit ARM
  4  *
  5  * Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com>
  6  * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
  7  * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
  8  */
  9 
 10 #include <linux/bpf.h>
 11 #include <linux/bitops.h>
 12 #include <linux/compiler.h>
 13 #include <linux/errno.h>
 14 #include <linux/filter.h>
 15 #include <linux/netdevice.h>
 16 #include <linux/string.h>
 17 #include <linux/slab.h>
 18 #include <linux/if_vlan.h>
 19 #include <linux/math64.h>
 20 
 21 #include <asm/cacheflush.h>
 22 #include <asm/hwcap.h>
 23 #include <asm/opcodes.h>
 24 #include <asm/system_info.h>
 25 
 26 #include "bpf_jit_32.h"
 27 
 28 /*
 29  * eBPF prog stack layout:
 30  *
 31  *                         high
 32  * original ARM_SP =>     +-----+
 33  *                        |     | callee saved registers
 34  *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
 35  *                        | ... | eBPF JIT scratch space
 36  * eBPF fp register =>    +-----+
 37  *   (BPF_FP)             | ... | eBPF prog stack
 38  *                        +-----+
 39  *                        |RSVD | JIT scratchpad
 40  * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
 41  *                        | ... | caller-saved registers
 42  *                        +-----+
 43  *                        | ... | arguments passed on stack
 44  * ARM_SP during call =>  +-----|
 45  *                        |     |
 46  *                        | ... | Function call stack
 47  *                        |     |
 48  *                        +-----+
 49  *                          low
 50  *
 51  * The callee saved registers depends on whether frame pointers are enabled.
 52  * With frame pointers (to be compliant with the ABI):
 53  *
 54  *                              high
 55  * original ARM_SP =>     +--------------+ \
 56  *                        |      pc      | |
 57  * current ARM_FP =>      +--------------+ } callee saved registers
 58  *                        |r4-r9,fp,ip,lr| |
 59  *                        +--------------+ /
 60  *                              low
 61  *
 62  * Without frame pointers:
 63  *
 64  *                              high
 65  * original ARM_SP =>     +--------------+
 66  *                        |  r4-r9,fp,lr | callee saved registers
 67  * current ARM_FP =>      +--------------+
 68  *                              low
 69  *
 70  * When popping registers off the stack at the end of a BPF function, we
 71  * reference them via the current ARM_FP register.
 72  *
 73  * Some eBPF operations are implemented via a call to a helper function.
 74  * Such calls are "invisible" in the eBPF code, so it is up to the calling
 75  * program to preserve any caller-saved ARM registers during the call. The
 76  * JIT emits code to push and pop those registers onto the stack, immediately
 77  * above the callee stack frame.
 78  */
 79 #define CALLEE_MASK     (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
 80                          1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
 81                          1 << ARM_FP)
 82 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
 83 #define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
 84 
 85 #define CALLER_MASK     (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
 86 
 87 enum {
 88         /* Stack layout - these are offsets from (top of stack - 4) */
 89         BPF_R2_HI,
 90         BPF_R2_LO,
 91         BPF_R3_HI,
 92         BPF_R3_LO,
 93         BPF_R4_HI,
 94         BPF_R4_LO,
 95         BPF_R5_HI,
 96         BPF_R5_LO,
 97         BPF_R7_HI,
 98         BPF_R7_LO,
 99         BPF_R8_HI,
100         BPF_R8_LO,
101         BPF_R9_HI,
102         BPF_R9_LO,
103         BPF_FP_HI,
104         BPF_FP_LO,
105         BPF_TC_HI,
106         BPF_TC_LO,
107         BPF_AX_HI,
108         BPF_AX_LO,
109         /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
110          * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
111          * BPF_REG_FP and Tail call counts.
112          */
113         BPF_JIT_SCRATCH_REGS,
114 };
115 
116 /*
117  * Negative "register" values indicate the register is stored on the stack
118  * and are the offset from the top of the eBPF JIT scratch space.
119  */
120 #define STACK_OFFSET(k) (-4 - (k) * 4)
121 #define SCRATCH_SIZE    (BPF_JIT_SCRATCH_REGS * 4)
122 
123 #ifdef CONFIG_FRAME_POINTER
124 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
125 #else
126 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
127 #endif
128 
129 #define TMP_REG_1       (MAX_BPF_JIT_REG + 0)   /* TEMP Register 1 */
130 #define TMP_REG_2       (MAX_BPF_JIT_REG + 1)   /* TEMP Register 2 */
131 #define TCALL_CNT       (MAX_BPF_JIT_REG + 2)   /* Tail Call Count */
132 
133 #define FLAG_IMM_OVERFLOW       (1 << 0)
134 
135 /*
136  * Map eBPF registers to ARM 32bit registers or stack scratch space.
137  *
138  * 1. First argument is passed using the arm 32bit registers and rest of the
139  * arguments are passed on stack scratch space.
140  * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
141  * arguments are mapped to scratch space on stack.
142  * 3. We need two 64 bit temp registers to do complex operations on eBPF
143  * registers.
144  *
145  * As the eBPF registers are all 64 bit registers and arm has only 32 bit
146  * registers, we have to map each eBPF registers with two arm 32 bit regs or
147  * scratch memory space and we have to build eBPF 64 bit register from those.
148  *
149  */
150 static const s8 bpf2a32[][2] = {
151         /* return value from in-kernel function, and exit value from eBPF */
152         [BPF_REG_0] = {ARM_R1, ARM_R0},
153         /* arguments from eBPF program to in-kernel function */
154         [BPF_REG_1] = {ARM_R3, ARM_R2},
155         /* Stored on stack scratch space */
156         [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
157         [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
158         [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
159         [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
160         /* callee saved registers that in-kernel function will preserve */
161         [BPF_REG_6] = {ARM_R5, ARM_R4},
162         /* Stored on stack scratch space */
163         [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
164         [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
165         [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
166         /* Read only Frame Pointer to access Stack */
167         [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
168         /* Temporary Register for BPF JIT, can be used
169          * for constant blindings and others.
170          */
171         [TMP_REG_1] = {ARM_R7, ARM_R6},
172         [TMP_REG_2] = {ARM_R9, ARM_R8},
173         /* Tail call count. Stored on stack scratch space. */
174         [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
175         /* temporary register for blinding constants.
176          * Stored on stack scratch space.
177          */
178         [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
179 };
180 
181 #define dst_lo  dst[1]
182 #define dst_hi  dst[0]
183 #define src_lo  src[1]
184 #define src_hi  src[0]
185 
186 /*
187  * JIT Context:
188  *
189  * prog                 :       bpf_prog
190  * idx                  :       index of current last JITed instruction.
191  * prologue_bytes       :       bytes used in prologue.
192  * epilogue_offset      :       offset of epilogue starting.
193  * offsets              :       array of eBPF instruction offsets in
194  *                              JITed code.
195  * target               :       final JITed code.
196  * epilogue_bytes       :       no of bytes used in epilogue.
197  * imm_count            :       no of immediate counts used for global
198  *                              variables.
199  * imms                 :       array of global variable addresses.
200  */
201 
202 struct jit_ctx {
203         const struct bpf_prog *prog;
204         unsigned int idx;
205         unsigned int prologue_bytes;
206         unsigned int epilogue_offset;
207         unsigned int cpu_architecture;
208         u32 flags;
209         u32 *offsets;
210         u32 *target;
211         u32 stack_size;
212 #if __LINUX_ARM_ARCH__ < 7
213         u16 epilogue_bytes;
214         u16 imm_count;
215         u32 *imms;
216 #endif
217 };
218 
219 /*
220  * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
221  * (where the assembly routines like __aeabi_uidiv could cause problems).
222  */
223 static u32 jit_udiv32(u32 dividend, u32 divisor)
224 {
225         return dividend / divisor;
226 }
227 
228 static u32 jit_mod32(u32 dividend, u32 divisor)
229 {
230         return dividend % divisor;
231 }
232 
233 static s32 jit_sdiv32(s32 dividend, s32 divisor)
234 {
235         return dividend / divisor;
236 }
237 
238 static s32 jit_smod32(s32 dividend, s32 divisor)
239 {
240         return dividend % divisor;
241 }
242 
243 /* Wrappers for 64-bit div/mod */
244 static u64 jit_udiv64(u64 dividend, u64 divisor)
245 {
246         return div64_u64(dividend, divisor);
247 }
248 
249 static u64 jit_mod64(u64 dividend, u64 divisor)
250 {
251         u64 rem;
252 
253         div64_u64_rem(dividend, divisor, &rem);
254         return rem;
255 }
256 
257 static s64 jit_sdiv64(s64 dividend, s64 divisor)
258 {
259         return div64_s64(dividend, divisor);
260 }
261 
262 static s64 jit_smod64(s64 dividend, s64 divisor)
263 {
264         u64 q;
265 
266         q = div64_s64(dividend, divisor);
267 
268         return dividend - q * divisor;
269 }
270 
271 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
272 {
273         inst |= (cond << 28);
274         inst = __opcode_to_mem_arm(inst);
275 
276         if (ctx->target != NULL)
277                 ctx->target[ctx->idx] = inst;
278 
279         ctx->idx++;
280 }
281 
282 /*
283  * Emit an instruction that will be executed unconditionally.
284  */
285 static inline void emit(u32 inst, struct jit_ctx *ctx)
286 {
287         _emit(ARM_COND_AL, inst, ctx);
288 }
289 
290 /*
291  * This is rather horrid, but necessary to convert an integer constant
292  * to an immediate operand for the opcodes, and be able to detect at
293  * build time whether the constant can't be converted (iow, usable in
294  * BUILD_BUG_ON()).
295  */
296 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
297 #define const_imm8m(x)                                  \
298         ({ int r;                                       \
299            u32 v = (x);                                 \
300            if (!(v & ~0x000000ff))                      \
301                 r = imm12val(v, 0);                     \
302            else if (!(v & ~0xc000003f))                 \
303                 r = imm12val(v, 2);                     \
304            else if (!(v & ~0xf000000f))                 \
305                 r = imm12val(v, 4);                     \
306            else if (!(v & ~0xfc000003))                 \
307                 r = imm12val(v, 6);                     \
308            else if (!(v & ~0xff000000))                 \
309                 r = imm12val(v, 8);                     \
310            else if (!(v & ~0x3fc00000))                 \
311                 r = imm12val(v, 10);                    \
312            else if (!(v & ~0x0ff00000))                 \
313                 r = imm12val(v, 12);                    \
314            else if (!(v & ~0x03fc0000))                 \
315                 r = imm12val(v, 14);                    \
316            else if (!(v & ~0x00ff0000))                 \
317                 r = imm12val(v, 16);                    \
318            else if (!(v & ~0x003fc000))                 \
319                 r = imm12val(v, 18);                    \
320            else if (!(v & ~0x000ff000))                 \
321                 r = imm12val(v, 20);                    \
322            else if (!(v & ~0x0003fc00))                 \
323                 r = imm12val(v, 22);                    \
324            else if (!(v & ~0x0000ff00))                 \
325                 r = imm12val(v, 24);                    \
326            else if (!(v & ~0x00003fc0))                 \
327                 r = imm12val(v, 26);                    \
328            else if (!(v & ~0x00000ff0))                 \
329                 r = imm12val(v, 28);                    \
330            else if (!(v & ~0x000003fc))                 \
331                 r = imm12val(v, 30);                    \
332            else                                         \
333                 r = -1;                                 \
334            r; })
335 
336 /*
337  * Checks if immediate value can be converted to imm12(12 bits) value.
338  */
339 static int imm8m(u32 x)
340 {
341         u32 rot;
342 
343         for (rot = 0; rot < 16; rot++)
344                 if ((x & ~ror32(0xff, 2 * rot)) == 0)
345                         return rol32(x, 2 * rot) | (rot << 8);
346         return -1;
347 }
348 
349 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
350 
351 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
352 {
353         op |= rt << 12 | rn << 16;
354         if (imm12 >= 0)
355                 op |= ARM_INST_LDST__U;
356         else
357                 imm12 = -imm12;
358         return op | (imm12 & ARM_INST_LDST__IMM12);
359 }
360 
361 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
362 {
363         op |= rt << 12 | rn << 16;
364         if (imm8 >= 0)
365                 op |= ARM_INST_LDST__U;
366         else
367                 imm8 = -imm8;
368         return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
369 }
370 
371 #define ARM_LDR_I(rt, rn, off)  arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
372 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
373 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
374 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
375 
376 #define ARM_LDRSH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSH_I, rt, rn, off)
377 #define ARM_LDRSB_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSB_I, rt, rn, off)
378 
379 #define ARM_STR_I(rt, rn, off)  arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
380 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
381 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
382 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
383 
384 /*
385  * Initializes the JIT space with undefined instructions.
386  */
387 static void jit_fill_hole(void *area, unsigned int size)
388 {
389         u32 *ptr;
390         /* We are guaranteed to have aligned memory. */
391         for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
392                 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
393 }
394 
395 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
396 /* EABI requires the stack to be aligned to 64-bit boundaries */
397 #define STACK_ALIGNMENT 8
398 #else
399 /* Stack must be aligned to 32-bit boundaries */
400 #define STACK_ALIGNMENT 4
401 #endif
402 
403 /* total stack size used in JITed code */
404 #define _STACK_SIZE     (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
405 #define STACK_SIZE      ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
406 
407 #if __LINUX_ARM_ARCH__ < 7
408 
409 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
410 {
411         unsigned int i = 0, offset;
412         u16 imm;
413 
414         /* on the "fake" run we just count them (duplicates included) */
415         if (ctx->target == NULL) {
416                 ctx->imm_count++;
417                 return 0;
418         }
419 
420         while ((i < ctx->imm_count) && ctx->imms[i]) {
421                 if (ctx->imms[i] == k)
422                         break;
423                 i++;
424         }
425 
426         if (ctx->imms[i] == 0)
427                 ctx->imms[i] = k;
428 
429         /* constants go just after the epilogue */
430         offset =  ctx->offsets[ctx->prog->len - 1] * 4;
431         offset += ctx->prologue_bytes;
432         offset += ctx->epilogue_bytes;
433         offset += i * 4;
434 
435         ctx->target[offset / 4] = k;
436 
437         /* PC in ARM mode == address of the instruction + 8 */
438         imm = offset - (8 + ctx->idx * 4);
439 
440         if (imm & ~0xfff) {
441                 /*
442                  * literal pool is too far, signal it into flags. we
443                  * can only detect it on the second pass unfortunately.
444                  */
445                 ctx->flags |= FLAG_IMM_OVERFLOW;
446                 return 0;
447         }
448 
449         return imm;
450 }
451 
452 #endif /* __LINUX_ARM_ARCH__ */
453 
454 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
455                                  const struct jit_ctx *ctx) {
456         int to, from;
457 
458         if (ctx->target == NULL)
459                 return 0;
460         to = ctx->offsets[bpf_to];
461         from = ctx->offsets[bpf_from];
462 
463         return to - from - 1;
464 }
465 
466 /*
467  * Move an immediate that's not an imm8m to a core register.
468  */
469 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
470 {
471 #if __LINUX_ARM_ARCH__ < 7
472         emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
473 #else
474         emit(ARM_MOVW(rd, val & 0xffff), ctx);
475         if (val > 0xffff)
476                 emit(ARM_MOVT(rd, val >> 16), ctx);
477 #endif
478 }
479 
480 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
481 {
482         int imm12 = imm8m(val);
483 
484         if (imm12 >= 0)
485                 emit(ARM_MOV_I(rd, imm12), ctx);
486         else
487                 emit_mov_i_no8m(rd, val, ctx);
488 }
489 
490 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
491 {
492         if (elf_hwcap & HWCAP_THUMB)
493                 emit(ARM_BX(tgt_reg), ctx);
494         else
495                 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
496 }
497 
498 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
499 {
500 #if __LINUX_ARM_ARCH__ < 5
501         emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
502         emit_bx_r(tgt_reg, ctx);
503 #else
504         emit(ARM_BLX_R(tgt_reg), ctx);
505 #endif
506 }
507 
508 static inline int epilogue_offset(const struct jit_ctx *ctx)
509 {
510         int to, from;
511         /* No need for 1st dummy run */
512         if (ctx->target == NULL)
513                 return 0;
514         to = ctx->epilogue_offset;
515         from = ctx->idx;
516 
517         return to - from - 2;
518 }
519 
520 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op, u8 sign)
521 {
522         const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
523         const s8 *tmp = bpf2a32[TMP_REG_1];
524         u32 dst;
525 
526 #if __LINUX_ARM_ARCH__ == 7
527         if (elf_hwcap & HWCAP_IDIVA) {
528                 if (op == BPF_DIV) {
529                         emit(sign ? ARM_SDIV(rd, rm, rn) : ARM_UDIV(rd, rm, rn), ctx);
530                 } else {
531                         emit(sign ? ARM_SDIV(ARM_IP, rm, rn) : ARM_UDIV(ARM_IP, rm, rn), ctx);
532                         emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
533                 }
534                 return;
535         }
536 #endif
537 
538         /*
539          * For BPF_ALU | BPF_DIV | BPF_K instructions
540          * As ARM_R1 and ARM_R0 contains 1st argument of bpf
541          * function, we need to save it on caller side to save
542          * it from getting destroyed within callee.
543          * After the return from the callee, we restore ARM_R0
544          * ARM_R1.
545          */
546         if (rn != ARM_R1) {
547                 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
548                 emit(ARM_MOV_R(ARM_R1, rn), ctx);
549         }
550         if (rm != ARM_R0) {
551                 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
552                 emit(ARM_MOV_R(ARM_R0, rm), ctx);
553         }
554 
555         /* Push caller-saved registers on stack */
556         emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
557 
558         /* Call appropriate function */
559         if (sign) {
560                 if (op == BPF_DIV)
561                         dst = (u32)jit_sdiv32;
562                 else
563                         dst = (u32)jit_smod32;
564         } else {
565                 if (op == BPF_DIV)
566                         dst = (u32)jit_udiv32;
567                 else
568                         dst = (u32)jit_mod32;
569         }
570 
571         emit_mov_i(ARM_IP, dst, ctx);
572         emit_blx_r(ARM_IP, ctx);
573 
574         /* Restore caller-saved registers from stack */
575         emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
576 
577         /* Save return value */
578         if (rd != ARM_R0)
579                 emit(ARM_MOV_R(rd, ARM_R0), ctx);
580 
581         /* Restore ARM_R0 and ARM_R1 */
582         if (rn != ARM_R1)
583                 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
584         if (rm != ARM_R0)
585                 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
586 }
587 
588 static inline void emit_udivmod64(const s8 *rd, const s8 *rm, const s8 *rn, struct jit_ctx *ctx,
589                                   u8 op, u8 sign)
590 {
591         u32 dst;
592 
593         /* Push caller-saved registers on stack */
594         emit(ARM_PUSH(CALLER_MASK), ctx);
595 
596         /*
597          * As we are implementing 64-bit div/mod as function calls, We need to put the dividend in
598          * R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack,
599          * we can recover them later after returning from the function call.
600          */
601         if (rm[1] != ARM_R0 || rn[1] != ARM_R2) {
602                 /*
603                  * Move Rm to {R1, R0} if it is not already there.
604                  */
605                 if (rm[1] != ARM_R0) {
606                         if (rn[1] == ARM_R0)
607                                 emit(ARM_PUSH(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
608                         emit(ARM_MOV_R(ARM_R1, rm[0]), ctx);
609                         emit(ARM_MOV_R(ARM_R0, rm[1]), ctx);
610                         if (rn[1] == ARM_R0) {
611                                 emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
612                                 goto cont;
613                         }
614                 }
615                 /*
616                  * Move Rn to {R3, R2} if it is not already there.
617                  */
618                 if (rn[1] != ARM_R2) {
619                         emit(ARM_MOV_R(ARM_R3, rn[0]), ctx);
620                         emit(ARM_MOV_R(ARM_R2, rn[1]), ctx);
621                 }
622         }
623 
624 cont:
625 
626         /* Call appropriate function */
627         if (sign) {
628                 if (op == BPF_DIV)
629                         dst = (u32)jit_sdiv64;
630                 else
631                         dst = (u32)jit_smod64;
632         } else {
633                 if (op == BPF_DIV)
634                         dst = (u32)jit_udiv64;
635                 else
636                         dst = (u32)jit_mod64;
637         }
638 
639         emit_mov_i(ARM_IP, dst, ctx);
640         emit_blx_r(ARM_IP, ctx);
641 
642         /* Save return value */
643         if (rd[1] != ARM_R0) {
644                 emit(ARM_MOV_R(rd[0], ARM_R1), ctx);
645                 emit(ARM_MOV_R(rd[1], ARM_R0), ctx);
646         }
647 
648         /* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */
649         if (rd[1] != ARM_R0 && rd[1] != ARM_R2) {
650                 emit(ARM_POP(CALLER_MASK), ctx);
651         } else if (rd[1] != ARM_R0) {
652                 emit(ARM_POP(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
653                 emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
654         } else {
655                 emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
656                 emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
657         }
658 }
659 
660 /* Is the translated BPF register on stack? */
661 static bool is_stacked(s8 reg)
662 {
663         return reg < 0;
664 }
665 
666 /* If a BPF register is on the stack (stk is true), load it to the
667  * supplied temporary register and return the temporary register
668  * for subsequent operations, otherwise just use the CPU register.
669  */
670 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
671 {
672         if (is_stacked(reg)) {
673                 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
674                 reg = tmp;
675         }
676         return reg;
677 }
678 
679 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
680                                    struct jit_ctx *ctx)
681 {
682         if (is_stacked(reg[1])) {
683                 if (__LINUX_ARM_ARCH__ >= 6 ||
684                     ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
685                         emit(ARM_LDRD_I(tmp[1], ARM_FP,
686                                         EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
687                 } else {
688                         emit(ARM_LDR_I(tmp[1], ARM_FP,
689                                        EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
690                         emit(ARM_LDR_I(tmp[0], ARM_FP,
691                                        EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
692                 }
693                 reg = tmp;
694         }
695         return reg;
696 }
697 
698 /* If a BPF register is on the stack (stk is true), save the register
699  * back to the stack.  If the source register is not the same, then
700  * move it into the correct register.
701  */
702 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
703 {
704         if (is_stacked(reg))
705                 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
706         else if (reg != src)
707                 emit(ARM_MOV_R(reg, src), ctx);
708 }
709 
710 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
711                               struct jit_ctx *ctx)
712 {
713         if (is_stacked(reg[1])) {
714                 if (__LINUX_ARM_ARCH__ >= 6 ||
715                     ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
716                         emit(ARM_STRD_I(src[1], ARM_FP,
717                                        EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
718                 } else {
719                         emit(ARM_STR_I(src[1], ARM_FP,
720                                        EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
721                         emit(ARM_STR_I(src[0], ARM_FP,
722                                        EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
723                 }
724         } else {
725                 if (reg[1] != src[1])
726                         emit(ARM_MOV_R(reg[1], src[1]), ctx);
727                 if (reg[0] != src[0])
728                         emit(ARM_MOV_R(reg[0], src[0]), ctx);
729         }
730 }
731 
732 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
733                                   struct jit_ctx *ctx)
734 {
735         const s8 *tmp = bpf2a32[TMP_REG_1];
736 
737         if (is_stacked(dst)) {
738                 emit_mov_i(tmp[1], val, ctx);
739                 arm_bpf_put_reg32(dst, tmp[1], ctx);
740         } else {
741                 emit_mov_i(dst, val, ctx);
742         }
743 }
744 
745 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
746 {
747         const s8 *tmp = bpf2a32[TMP_REG_1];
748         const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
749 
750         emit_mov_i(rd[1], (u32)val, ctx);
751         emit_mov_i(rd[0], val >> 32, ctx);
752 
753         arm_bpf_put_reg64(dst, rd, ctx);
754 }
755 
756 /* Sign extended move */
757 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
758                                        const u32 val, struct jit_ctx *ctx) {
759         u64 val64 = val;
760 
761         if (is64 && (val & (1<<31)))
762                 val64 |= 0xffffffff00000000ULL;
763         emit_a32_mov_i64(dst, val64, ctx);
764 }
765 
766 static inline void emit_a32_add_r(const u8 dst, const u8 src,
767                               const bool is64, const bool hi,
768                               struct jit_ctx *ctx) {
769         /* 64 bit :
770          *      adds dst_lo, dst_lo, src_lo
771          *      adc dst_hi, dst_hi, src_hi
772          * 32 bit :
773          *      add dst_lo, dst_lo, src_lo
774          */
775         if (!hi && is64)
776                 emit(ARM_ADDS_R(dst, dst, src), ctx);
777         else if (hi && is64)
778                 emit(ARM_ADC_R(dst, dst, src), ctx);
779         else
780                 emit(ARM_ADD_R(dst, dst, src), ctx);
781 }
782 
783 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
784                                   const bool is64, const bool hi,
785                                   struct jit_ctx *ctx) {
786         /* 64 bit :
787          *      subs dst_lo, dst_lo, src_lo
788          *      sbc dst_hi, dst_hi, src_hi
789          * 32 bit :
790          *      sub dst_lo, dst_lo, src_lo
791          */
792         if (!hi && is64)
793                 emit(ARM_SUBS_R(dst, dst, src), ctx);
794         else if (hi && is64)
795                 emit(ARM_SBC_R(dst, dst, src), ctx);
796         else
797                 emit(ARM_SUB_R(dst, dst, src), ctx);
798 }
799 
800 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
801                               const bool hi, const u8 op, struct jit_ctx *ctx){
802         switch (BPF_OP(op)) {
803         /* dst = dst + src */
804         case BPF_ADD:
805                 emit_a32_add_r(dst, src, is64, hi, ctx);
806                 break;
807         /* dst = dst - src */
808         case BPF_SUB:
809                 emit_a32_sub_r(dst, src, is64, hi, ctx);
810                 break;
811         /* dst = dst | src */
812         case BPF_OR:
813                 emit(ARM_ORR_R(dst, dst, src), ctx);
814                 break;
815         /* dst = dst & src */
816         case BPF_AND:
817                 emit(ARM_AND_R(dst, dst, src), ctx);
818                 break;
819         /* dst = dst ^ src */
820         case BPF_XOR:
821                 emit(ARM_EOR_R(dst, dst, src), ctx);
822                 break;
823         /* dst = dst * src */
824         case BPF_MUL:
825                 emit(ARM_MUL(dst, dst, src), ctx);
826                 break;
827         /* dst = dst << src */
828         case BPF_LSH:
829                 emit(ARM_LSL_R(dst, dst, src), ctx);
830                 break;
831         /* dst = dst >> src */
832         case BPF_RSH:
833                 emit(ARM_LSR_R(dst, dst, src), ctx);
834                 break;
835         /* dst = dst >> src (signed)*/
836         case BPF_ARSH:
837                 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
838                 break;
839         }
840 }
841 
842 /* ALU operation (64 bit) */
843 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
844                                   const s8 src[], struct jit_ctx *ctx,
845                                   const u8 op) {
846         const s8 *tmp = bpf2a32[TMP_REG_1];
847         const s8 *tmp2 = bpf2a32[TMP_REG_2];
848         const s8 *rd;
849 
850         rd = arm_bpf_get_reg64(dst, tmp, ctx);
851         if (is64) {
852                 const s8 *rs;
853 
854                 rs = arm_bpf_get_reg64(src, tmp2, ctx);
855 
856                 /* ALU operation */
857                 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
858                 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
859         } else {
860                 s8 rs;
861 
862                 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
863 
864                 /* ALU operation */
865                 emit_alu_r(rd[1], rs, true, false, op, ctx);
866                 if (!ctx->prog->aux->verifier_zext)
867                         emit_a32_mov_i(rd[0], 0, ctx);
868         }
869 
870         arm_bpf_put_reg64(dst, rd, ctx);
871 }
872 
873 /* dst = src (4 bytes)*/
874 static inline void emit_a32_mov_r(const s8 dst, const s8 src, struct jit_ctx *ctx) {
875         const s8 *tmp = bpf2a32[TMP_REG_1];
876         s8 rt;
877 
878         rt = arm_bpf_get_reg32(src, tmp[0], ctx);
879         arm_bpf_put_reg32(dst, rt, ctx);
880 }
881 
882 /* dst = src */
883 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
884                                   const s8 src[],
885                                   struct jit_ctx *ctx) {
886         if (!is64) {
887                 emit_a32_mov_r(dst_lo, src_lo, ctx);
888                 if (!ctx->prog->aux->verifier_zext)
889                         /* Zero out high 4 bytes */
890                         emit_a32_mov_i(dst_hi, 0, ctx);
891         } else if (__LINUX_ARM_ARCH__ < 6 &&
892                    ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
893                 /* complete 8 byte move */
894                 emit_a32_mov_r(dst_lo, src_lo, ctx);
895                 emit_a32_mov_r(dst_hi, src_hi, ctx);
896         } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
897                 const u8 *tmp = bpf2a32[TMP_REG_1];
898 
899                 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
900                 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
901         } else if (is_stacked(src_lo)) {
902                 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
903         } else if (is_stacked(dst_lo)) {
904                 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
905         } else {
906                 emit(ARM_MOV_R(dst[0], src[0]), ctx);
907                 emit(ARM_MOV_R(dst[1], src[1]), ctx);
908         }
909 }
910 
911 /* dst = (signed)src */
912 static inline void emit_a32_movsx_r64(const bool is64, const u8 off, const s8 dst[], const s8 src[],
913                                       struct jit_ctx *ctx) {
914         const s8 *tmp = bpf2a32[TMP_REG_1];
915         s8 rs;
916         s8 rd;
917 
918         if (is_stacked(dst_lo))
919                 rd = tmp[1];
920         else
921                 rd = dst_lo;
922         rs = arm_bpf_get_reg32(src_lo, rd, ctx);
923         /* rs may be one of src[1], dst[1], or tmp[1] */
924 
925         /* Sign extend rs if needed. If off == 32, lower 32-bits of src are moved to dst and sign
926          * extension only happens in the upper 64 bits.
927          */
928         if (off != 32) {
929                 /* Sign extend rs into rd */
930                 emit(ARM_LSL_I(rd, rs, 32 - off), ctx);
931                 emit(ARM_ASR_I(rd, rd, 32 - off), ctx);
932         } else {
933                 rd = rs;
934         }
935 
936         /* Write rd to dst_lo
937          *
938          * Optimization:
939          * Assume:
940          * 1. dst == src and stacked.
941          * 2. off == 32
942          *
943          * In this case src_lo was loaded into rd(tmp[1]) but rd was not sign extended as off==32.
944          * So, we don't need to write rd back to dst_lo as they have the same value.
945          * This saves us one str instruction.
946          */
947         if (dst_lo != src_lo || off != 32)
948                 arm_bpf_put_reg32(dst_lo, rd, ctx);
949 
950         if (!is64) {
951                 if (!ctx->prog->aux->verifier_zext)
952                         /* Zero out high 4 bytes */
953                         emit_a32_mov_i(dst_hi, 0, ctx);
954         } else {
955                 if (is_stacked(dst_hi)) {
956                         emit(ARM_ASR_I(tmp[0], rd, 31), ctx);
957                         arm_bpf_put_reg32(dst_hi, tmp[0], ctx);
958                 } else {
959                         emit(ARM_ASR_I(dst_hi, rd, 31), ctx);
960                 }
961         }
962 }
963 
964 /* Shift operations */
965 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
966                                 struct jit_ctx *ctx, const u8 op) {
967         const s8 *tmp = bpf2a32[TMP_REG_1];
968         s8 rd;
969 
970         rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
971 
972         /* Do shift operation */
973         switch (op) {
974         case BPF_LSH:
975                 emit(ARM_LSL_I(rd, rd, val), ctx);
976                 break;
977         case BPF_RSH:
978                 emit(ARM_LSR_I(rd, rd, val), ctx);
979                 break;
980         case BPF_ARSH:
981                 emit(ARM_ASR_I(rd, rd, val), ctx);
982                 break;
983         case BPF_NEG:
984                 emit(ARM_RSB_I(rd, rd, val), ctx);
985                 break;
986         }
987 
988         arm_bpf_put_reg32(dst, rd, ctx);
989 }
990 
991 /* dst = ~dst (64 bit) */
992 static inline void emit_a32_neg64(const s8 dst[],
993                                 struct jit_ctx *ctx){
994         const s8 *tmp = bpf2a32[TMP_REG_1];
995         const s8 *rd;
996 
997         /* Setup Operand */
998         rd = arm_bpf_get_reg64(dst, tmp, ctx);
999 
1000         /* Do Negate Operation */
1001         emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
1002         emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
1003 
1004         arm_bpf_put_reg64(dst, rd, ctx);
1005 }
1006 
1007 /* dst = dst << src */
1008 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
1009                                     struct jit_ctx *ctx) {
1010         const s8 *tmp = bpf2a32[TMP_REG_1];
1011         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1012         const s8 *rd;
1013         s8 rt;
1014 
1015         /* Setup Operands */
1016         rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1017         rd = arm_bpf_get_reg64(dst, tmp, ctx);
1018 
1019         /* Do LSH operation */
1020         emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
1021         emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
1022         emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
1023         emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
1024         emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
1025         emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
1026 
1027         arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1028         arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1029 }
1030 
1031 /* dst = dst >> src (signed)*/
1032 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
1033                                      struct jit_ctx *ctx) {
1034         const s8 *tmp = bpf2a32[TMP_REG_1];
1035         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1036         const s8 *rd;
1037         s8 rt;
1038 
1039         /* Setup Operands */
1040         rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1041         rd = arm_bpf_get_reg64(dst, tmp, ctx);
1042 
1043         /* Do the ARSH operation */
1044         emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1045         emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1046         emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1047         emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1048         _emit(ARM_COND_PL,
1049               ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
1050         emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
1051 
1052         arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1053         arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1054 }
1055 
1056 /* dst = dst >> src */
1057 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
1058                                     struct jit_ctx *ctx) {
1059         const s8 *tmp = bpf2a32[TMP_REG_1];
1060         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1061         const s8 *rd;
1062         s8 rt;
1063 
1064         /* Setup Operands */
1065         rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1066         rd = arm_bpf_get_reg64(dst, tmp, ctx);
1067 
1068         /* Do RSH operation */
1069         emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1070         emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1071         emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1072         emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1073         emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
1074         emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
1075 
1076         arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1077         arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1078 }
1079 
1080 /* dst = dst << val */
1081 static inline void emit_a32_lsh_i64(const s8 dst[],
1082                                     const u32 val, struct jit_ctx *ctx){
1083         const s8 *tmp = bpf2a32[TMP_REG_1];
1084         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1085         const s8 *rd;
1086 
1087         /* Setup operands */
1088         rd = arm_bpf_get_reg64(dst, tmp, ctx);
1089 
1090         /* Do LSH operation */
1091         if (val < 32) {
1092                 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
1093                 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
1094                 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
1095         } else {
1096                 if (val == 32)
1097                         emit(ARM_MOV_R(rd[0], rd[1]), ctx);
1098                 else
1099                         emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
1100                 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
1101         }
1102 
1103         arm_bpf_put_reg64(dst, rd, ctx);
1104 }
1105 
1106 /* dst = dst >> val */
1107 static inline void emit_a32_rsh_i64(const s8 dst[],
1108                                     const u32 val, struct jit_ctx *ctx) {
1109         const s8 *tmp = bpf2a32[TMP_REG_1];
1110         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1111         const s8 *rd;
1112 
1113         /* Setup operands */
1114         rd = arm_bpf_get_reg64(dst, tmp, ctx);
1115 
1116         /* Do LSR operation */
1117         if (val == 0) {
1118                 /* An immediate value of 0 encodes a shift amount of 32
1119                  * for LSR. To shift by 0, don't do anything.
1120                  */
1121         } else if (val < 32) {
1122                 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1123                 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1124                 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
1125         } else if (val == 32) {
1126                 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1127                 emit(ARM_MOV_I(rd[0], 0), ctx);
1128         } else {
1129                 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
1130                 emit(ARM_MOV_I(rd[0], 0), ctx);
1131         }
1132 
1133         arm_bpf_put_reg64(dst, rd, ctx);
1134 }
1135 
1136 /* dst = dst >> val (signed) */
1137 static inline void emit_a32_arsh_i64(const s8 dst[],
1138                                      const u32 val, struct jit_ctx *ctx){
1139         const s8 *tmp = bpf2a32[TMP_REG_1];
1140         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1141         const s8 *rd;
1142 
1143         /* Setup operands */
1144         rd = arm_bpf_get_reg64(dst, tmp, ctx);
1145 
1146         /* Do ARSH operation */
1147         if (val == 0) {
1148                 /* An immediate value of 0 encodes a shift amount of 32
1149                  * for ASR. To shift by 0, don't do anything.
1150                  */
1151         } else if (val < 32) {
1152                 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1153                 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1154                 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
1155         } else if (val == 32) {
1156                 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1157                 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1158         } else {
1159                 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
1160                 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1161         }
1162 
1163         arm_bpf_put_reg64(dst, rd, ctx);
1164 }
1165 
1166 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1167                                     struct jit_ctx *ctx) {
1168         const s8 *tmp = bpf2a32[TMP_REG_1];
1169         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1170         const s8 *rd, *rt;
1171 
1172         /* Setup operands for multiplication */
1173         rd = arm_bpf_get_reg64(dst, tmp, ctx);
1174         rt = arm_bpf_get_reg64(src, tmp2, ctx);
1175 
1176         /* Do Multiplication */
1177         emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1178         emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1179         emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1180 
1181         emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1182         emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1183 
1184         arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1185         arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1186 }
1187 
1188 static bool is_ldst_imm(s16 off, const u8 size)
1189 {
1190         s16 off_max = 0;
1191 
1192         switch (size) {
1193         case BPF_B:
1194         case BPF_W:
1195                 off_max = 0xfff;
1196                 break;
1197         case BPF_H:
1198                 off_max = 0xff;
1199                 break;
1200         case BPF_DW:
1201                 /* Need to make sure off+4 does not overflow. */
1202                 off_max = 0xfff - 4;
1203                 break;
1204         }
1205         return -off_max <= off && off <= off_max;
1206 }
1207 
1208 static bool is_ldst_imm8(s16 off, const u8 size)
1209 {
1210         s16 off_max = 0;
1211 
1212         switch (size) {
1213         case BPF_B:
1214                 off_max = 0xff;
1215                 break;
1216         case BPF_W:
1217                 off_max = 0xfff;
1218                 break;
1219         case BPF_H:
1220                 off_max = 0xff;
1221                 break;
1222         }
1223         return -off_max <= off && off <= off_max;
1224 }
1225 
1226 /* *(size *)(dst + off) = src */
1227 static inline void emit_str_r(const s8 dst, const s8 src[],
1228                               s16 off, struct jit_ctx *ctx, const u8 sz){
1229         const s8 *tmp = bpf2a32[TMP_REG_1];
1230         s8 rd;
1231 
1232         rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1233 
1234         if (!is_ldst_imm(off, sz)) {
1235                 emit_a32_mov_i(tmp[0], off, ctx);
1236                 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1237                 rd = tmp[0];
1238                 off = 0;
1239         }
1240         switch (sz) {
1241         case BPF_B:
1242                 /* Store a Byte */
1243                 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1244                 break;
1245         case BPF_H:
1246                 /* Store a HalfWord */
1247                 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1248                 break;
1249         case BPF_W:
1250                 /* Store a Word */
1251                 emit(ARM_STR_I(src_lo, rd, off), ctx);
1252                 break;
1253         case BPF_DW:
1254                 /* Store a Double Word */
1255                 emit(ARM_STR_I(src_lo, rd, off), ctx);
1256                 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1257                 break;
1258         }
1259 }
1260 
1261 /* dst = *(size*)(src + off) */
1262 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1263                               s16 off, struct jit_ctx *ctx, const u8 sz){
1264         const s8 *tmp = bpf2a32[TMP_REG_1];
1265         const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1266         s8 rm = src;
1267 
1268         if (!is_ldst_imm(off, sz)) {
1269                 emit_a32_mov_i(tmp[0], off, ctx);
1270                 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1271                 rm = tmp[0];
1272                 off = 0;
1273         } else if (rd[1] == rm) {
1274                 emit(ARM_MOV_R(tmp[0], rm), ctx);
1275                 rm = tmp[0];
1276         }
1277         switch (sz) {
1278         case BPF_B:
1279                 /* Load a Byte */
1280                 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1281                 if (!ctx->prog->aux->verifier_zext)
1282                         emit_a32_mov_i(rd[0], 0, ctx);
1283                 break;
1284         case BPF_H:
1285                 /* Load a HalfWord */
1286                 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1287                 if (!ctx->prog->aux->verifier_zext)
1288                         emit_a32_mov_i(rd[0], 0, ctx);
1289                 break;
1290         case BPF_W:
1291                 /* Load a Word */
1292                 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1293                 if (!ctx->prog->aux->verifier_zext)
1294                         emit_a32_mov_i(rd[0], 0, ctx);
1295                 break;
1296         case BPF_DW:
1297                 /* Load a Double Word */
1298                 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1299                 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1300                 break;
1301         }
1302         arm_bpf_put_reg64(dst, rd, ctx);
1303 }
1304 
1305 /* dst = *(signed size*)(src + off) */
1306 static inline void emit_ldsx_r(const s8 dst[], const s8 src,
1307                                s16 off, struct jit_ctx *ctx, const u8 sz){
1308         const s8 *tmp = bpf2a32[TMP_REG_1];
1309         const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1310         s8 rm = src;
1311         int add_off;
1312 
1313         if (!is_ldst_imm8(off, sz)) {
1314                 /*
1315                  * offset does not fit in the load/store immediate,
1316                  * construct an ADD instruction to apply the offset.
1317                  */
1318                 add_off = imm8m(off);
1319                 if (add_off > 0) {
1320                         emit(ARM_ADD_I(tmp[0], src, add_off), ctx);
1321                         rm = tmp[0];
1322                 } else {
1323                         emit_a32_mov_i(tmp[0], off, ctx);
1324                         emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1325                         rm = tmp[0];
1326                 }
1327                 off = 0;
1328         }
1329 
1330         switch (sz) {
1331         case BPF_B:
1332                 /* Load a Byte with sign extension*/
1333                 emit(ARM_LDRSB_I(rd[1], rm, off), ctx);
1334                 break;
1335         case BPF_H:
1336                 /* Load a HalfWord with sign extension*/
1337                 emit(ARM_LDRSH_I(rd[1], rm, off), ctx);
1338                 break;
1339         case BPF_W:
1340                 /* Load a Word*/
1341                 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1342                 break;
1343         }
1344         /* Carry the sign extension to upper 32 bits */
1345         emit(ARM_ASR_I(rd[0], rd[1], 31), ctx);
1346         arm_bpf_put_reg64(dst, rd, ctx);
1347 }
1348 
1349 /* Arithmatic Operation */
1350 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1351                              const u8 rn, struct jit_ctx *ctx, u8 op,
1352                              bool is_jmp64) {
1353         switch (op) {
1354         case BPF_JSET:
1355                 if (is_jmp64) {
1356                         emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1357                         emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1358                         emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1359                 } else {
1360                         emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1361                 }
1362                 break;
1363         case BPF_JEQ:
1364         case BPF_JNE:
1365         case BPF_JGT:
1366         case BPF_JGE:
1367         case BPF_JLE:
1368         case BPF_JLT:
1369                 if (is_jmp64) {
1370                         emit(ARM_CMP_R(rd, rm), ctx);
1371                         /* Only compare low halve if high halve are equal. */
1372                         _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1373                 } else {
1374                         emit(ARM_CMP_R(rt, rn), ctx);
1375                 }
1376                 break;
1377         case BPF_JSLE:
1378         case BPF_JSGT:
1379                 emit(ARM_CMP_R(rn, rt), ctx);
1380                 if (is_jmp64)
1381                         emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1382                 break;
1383         case BPF_JSLT:
1384         case BPF_JSGE:
1385                 emit(ARM_CMP_R(rt, rn), ctx);
1386                 if (is_jmp64)
1387                         emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1388                 break;
1389         }
1390 }
1391 
1392 static int out_offset = -1; /* initialized on the first pass of build_body() */
1393 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1394 {
1395 
1396         /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1397         const s8 *r2 = bpf2a32[BPF_REG_2];
1398         const s8 *r3 = bpf2a32[BPF_REG_3];
1399         const s8 *tmp = bpf2a32[TMP_REG_1];
1400         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1401         const s8 *tcc = bpf2a32[TCALL_CNT];
1402         const s8 *tc;
1403         const int idx0 = ctx->idx;
1404 #define cur_offset (ctx->idx - idx0)
1405 #define jmp_offset (out_offset - (cur_offset) - 2)
1406         u32 lo, hi;
1407         s8 r_array, r_index;
1408         int off;
1409 
1410         /* if (index >= array->map.max_entries)
1411          *      goto out;
1412          */
1413         BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1414                      ARM_INST_LDST__IMM12);
1415         off = offsetof(struct bpf_array, map.max_entries);
1416         r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1417         /* index is 32-bit for arrays */
1418         r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1419         /* array->map.max_entries */
1420         emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1421         /* index >= array->map.max_entries */
1422         emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1423         _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1424 
1425         /* tmp2[0] = array, tmp2[1] = index */
1426 
1427         /*
1428          * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1429          *      goto out;
1430          * tail_call_cnt++;
1431          */
1432         lo = (u32)MAX_TAIL_CALL_CNT;
1433         hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1434         tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1435         emit(ARM_CMP_I(tc[0], hi), ctx);
1436         _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1437         _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1438         emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1439         emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1440         arm_bpf_put_reg64(tcc, tmp, ctx);
1441 
1442         /* prog = array->ptrs[index]
1443          * if (prog == NULL)
1444          *      goto out;
1445          */
1446         BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1447         off = imm8m(offsetof(struct bpf_array, ptrs));
1448         emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1449         emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1450         emit(ARM_CMP_I(tmp[1], 0), ctx);
1451         _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1452 
1453         /* goto *(prog->bpf_func + prologue_size); */
1454         BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1455                      ARM_INST_LDST__IMM12);
1456         off = offsetof(struct bpf_prog, bpf_func);
1457         emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1458         emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1459         emit_bx_r(tmp[1], ctx);
1460 
1461         /* out: */
1462         if (out_offset == -1)
1463                 out_offset = cur_offset;
1464         if (cur_offset != out_offset) {
1465                 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1466                             cur_offset, out_offset);
1467                 return -1;
1468         }
1469         return 0;
1470 #undef cur_offset
1471 #undef jmp_offset
1472 }
1473 
1474 /* 0xabcd => 0xcdab */
1475 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1476 {
1477 #if __LINUX_ARM_ARCH__ < 6
1478         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1479 
1480         emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1481         emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1482         emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1483         emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1484 #else /* ARMv6+ */
1485         emit(ARM_REV16(rd, rn), ctx);
1486 #endif
1487 }
1488 
1489 /* 0xabcdefgh => 0xghefcdab */
1490 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1491 {
1492 #if __LINUX_ARM_ARCH__ < 6
1493         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1494 
1495         emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1496         emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1497         emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1498 
1499         emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1500         emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1501         emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1502         emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1503         emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1504         emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1505         emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1506 
1507 #else /* ARMv6+ */
1508         emit(ARM_REV(rd, rn), ctx);
1509 #endif
1510 }
1511 
1512 // push the scratch stack register on top of the stack
1513 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1514 {
1515         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1516         const s8 *rt;
1517         u16 reg_set = 0;
1518 
1519         rt = arm_bpf_get_reg64(src, tmp2, ctx);
1520 
1521         reg_set = (1 << rt[1]) | (1 << rt[0]);
1522         emit(ARM_PUSH(reg_set), ctx);
1523 }
1524 
1525 static void build_prologue(struct jit_ctx *ctx)
1526 {
1527         const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1528         const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1529         const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1530         const s8 *tcc = bpf2a32[TCALL_CNT];
1531 
1532         /* Save callee saved registers. */
1533 #ifdef CONFIG_FRAME_POINTER
1534         u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1535         emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1536         emit(ARM_PUSH(reg_set), ctx);
1537         emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1538 #else
1539         emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1540         emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1541 #endif
1542         /* mov r3, #0 */
1543         /* sub r2, sp, #SCRATCH_SIZE */
1544         emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1545         emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1546 
1547         ctx->stack_size = imm8m(STACK_SIZE);
1548 
1549         /* Set up function call stack */
1550         emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1551 
1552         /* Set up BPF prog stack base register */
1553         emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1554 
1555         /* Initialize Tail Count */
1556         emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1557         emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1558 
1559         /* Move BPF_CTX to BPF_R1 */
1560         emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1561 
1562         /* end of prologue */
1563 }
1564 
1565 /* restore callee saved registers. */
1566 static void build_epilogue(struct jit_ctx *ctx)
1567 {
1568 #ifdef CONFIG_FRAME_POINTER
1569         /* When using frame pointers, some additional registers need to
1570          * be loaded. */
1571         u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1572         emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1573         emit(ARM_LDM(ARM_SP, reg_set), ctx);
1574 #else
1575         /* Restore callee saved registers. */
1576         emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1577         emit(ARM_POP(CALLEE_POP_MASK), ctx);
1578 #endif
1579 }
1580 
1581 /*
1582  * Convert an eBPF instruction to native instruction, i.e
1583  * JITs an eBPF instruction.
1584  * Returns :
1585  *      0  - Successfully JITed an 8-byte eBPF instruction
1586  *      >0 - Successfully JITed a 16-byte eBPF instruction
1587  *      <0 - Failed to JIT.
1588  */
1589 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1590 {
1591         const u8 code = insn->code;
1592         const s8 *dst = bpf2a32[insn->dst_reg];
1593         const s8 *src = bpf2a32[insn->src_reg];
1594         const s8 *tmp = bpf2a32[TMP_REG_1];
1595         const s8 *tmp2 = bpf2a32[TMP_REG_2];
1596         const s16 off = insn->off;
1597         const s32 imm = insn->imm;
1598         const int i = insn - ctx->prog->insnsi;
1599         const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1600         const s8 *rd, *rs;
1601         s8 rd_lo, rt, rm, rn;
1602         s32 jmp_offset;
1603 
1604 #define check_imm(bits, imm) do {                               \
1605         if ((imm) >= (1 << ((bits) - 1)) ||                     \
1606             (imm) < -(1 << ((bits) - 1))) {                     \
1607                 pr_info("[%2d] imm=%d(0x%x) out of range\n",    \
1608                         i, imm, imm);                           \
1609                 return -EINVAL;                                 \
1610         }                                                       \
1611 } while (0)
1612 #define check_imm24(imm) check_imm(24, imm)
1613 
1614         switch (code) {
1615         /* ALU operations */
1616 
1617         /* dst = src */
1618         case BPF_ALU | BPF_MOV | BPF_K:
1619         case BPF_ALU | BPF_MOV | BPF_X:
1620         case BPF_ALU64 | BPF_MOV | BPF_K:
1621         case BPF_ALU64 | BPF_MOV | BPF_X:
1622                 switch (BPF_SRC(code)) {
1623                 case BPF_X:
1624                         if (imm == 1) {
1625                                 /* Special mov32 for zext */
1626                                 emit_a32_mov_i(dst_hi, 0, ctx);
1627                                 break;
1628                         }
1629                         if (insn->off)
1630                                 emit_a32_movsx_r64(is64, insn->off, dst, src, ctx);
1631                         else
1632                                 emit_a32_mov_r64(is64, dst, src, ctx);
1633                         break;
1634                 case BPF_K:
1635                         /* Sign-extend immediate value to destination reg */
1636                         emit_a32_mov_se_i64(is64, dst, imm, ctx);
1637                         break;
1638                 }
1639                 break;
1640         /* dst = dst + src/imm */
1641         /* dst = dst - src/imm */
1642         /* dst = dst | src/imm */
1643         /* dst = dst & src/imm */
1644         /* dst = dst ^ src/imm */
1645         /* dst = dst * src/imm */
1646         /* dst = dst << src */
1647         /* dst = dst >> src */
1648         case BPF_ALU | BPF_ADD | BPF_K:
1649         case BPF_ALU | BPF_ADD | BPF_X:
1650         case BPF_ALU | BPF_SUB | BPF_K:
1651         case BPF_ALU | BPF_SUB | BPF_X:
1652         case BPF_ALU | BPF_OR | BPF_K:
1653         case BPF_ALU | BPF_OR | BPF_X:
1654         case BPF_ALU | BPF_AND | BPF_K:
1655         case BPF_ALU | BPF_AND | BPF_X:
1656         case BPF_ALU | BPF_XOR | BPF_K:
1657         case BPF_ALU | BPF_XOR | BPF_X:
1658         case BPF_ALU | BPF_MUL | BPF_K:
1659         case BPF_ALU | BPF_MUL | BPF_X:
1660         case BPF_ALU | BPF_LSH | BPF_X:
1661         case BPF_ALU | BPF_RSH | BPF_X:
1662         case BPF_ALU | BPF_ARSH | BPF_X:
1663         case BPF_ALU64 | BPF_ADD | BPF_K:
1664         case BPF_ALU64 | BPF_ADD | BPF_X:
1665         case BPF_ALU64 | BPF_SUB | BPF_K:
1666         case BPF_ALU64 | BPF_SUB | BPF_X:
1667         case BPF_ALU64 | BPF_OR | BPF_K:
1668         case BPF_ALU64 | BPF_OR | BPF_X:
1669         case BPF_ALU64 | BPF_AND | BPF_K:
1670         case BPF_ALU64 | BPF_AND | BPF_X:
1671         case BPF_ALU64 | BPF_XOR | BPF_K:
1672         case BPF_ALU64 | BPF_XOR | BPF_X:
1673                 switch (BPF_SRC(code)) {
1674                 case BPF_X:
1675                         emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1676                         break;
1677                 case BPF_K:
1678                         /* Move immediate value to the temporary register
1679                          * and then do the ALU operation on the temporary
1680                          * register as this will sign-extend the immediate
1681                          * value into temporary reg and then it would be
1682                          * safe to do the operation on it.
1683                          */
1684                         emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1685                         emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1686                         break;
1687                 }
1688                 break;
1689         /* dst = dst / src(imm) */
1690         /* dst = dst % src(imm) */
1691         case BPF_ALU | BPF_DIV | BPF_K:
1692         case BPF_ALU | BPF_DIV | BPF_X:
1693         case BPF_ALU | BPF_MOD | BPF_K:
1694         case BPF_ALU | BPF_MOD | BPF_X:
1695                 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1696                 switch (BPF_SRC(code)) {
1697                 case BPF_X:
1698                         rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1699                         break;
1700                 case BPF_K:
1701                         rt = tmp2[0];
1702                         emit_a32_mov_i(rt, imm, ctx);
1703                         break;
1704                 default:
1705                         rt = src_lo;
1706                         break;
1707                 }
1708                 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code), off);
1709                 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1710                 if (!ctx->prog->aux->verifier_zext)
1711                         emit_a32_mov_i(dst_hi, 0, ctx);
1712                 break;
1713         case BPF_ALU64 | BPF_DIV | BPF_K:
1714         case BPF_ALU64 | BPF_DIV | BPF_X:
1715         case BPF_ALU64 | BPF_MOD | BPF_K:
1716         case BPF_ALU64 | BPF_MOD | BPF_X:
1717                 rd = arm_bpf_get_reg64(dst, tmp2, ctx);
1718                 switch (BPF_SRC(code)) {
1719                 case BPF_X:
1720                         rs = arm_bpf_get_reg64(src, tmp, ctx);
1721                         break;
1722                 case BPF_K:
1723                         rs = tmp;
1724                         emit_a32_mov_se_i64(is64, rs, imm, ctx);
1725                         break;
1726                 }
1727                 emit_udivmod64(rd, rd, rs, ctx, BPF_OP(code), off);
1728                 arm_bpf_put_reg64(dst, rd, ctx);
1729                 break;
1730         /* dst = dst << imm */
1731         /* dst = dst >> imm */
1732         /* dst = dst >> imm (signed) */
1733         case BPF_ALU | BPF_LSH | BPF_K:
1734         case BPF_ALU | BPF_RSH | BPF_K:
1735         case BPF_ALU | BPF_ARSH | BPF_K:
1736                 if (unlikely(imm > 31))
1737                         return -EINVAL;
1738                 if (imm)
1739                         emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1740                 if (!ctx->prog->aux->verifier_zext)
1741                         emit_a32_mov_i(dst_hi, 0, ctx);
1742                 break;
1743         /* dst = dst << imm */
1744         case BPF_ALU64 | BPF_LSH | BPF_K:
1745                 if (unlikely(imm > 63))
1746                         return -EINVAL;
1747                 emit_a32_lsh_i64(dst, imm, ctx);
1748                 break;
1749         /* dst = dst >> imm */
1750         case BPF_ALU64 | BPF_RSH | BPF_K:
1751                 if (unlikely(imm > 63))
1752                         return -EINVAL;
1753                 emit_a32_rsh_i64(dst, imm, ctx);
1754                 break;
1755         /* dst = dst << src */
1756         case BPF_ALU64 | BPF_LSH | BPF_X:
1757                 emit_a32_lsh_r64(dst, src, ctx);
1758                 break;
1759         /* dst = dst >> src */
1760         case BPF_ALU64 | BPF_RSH | BPF_X:
1761                 emit_a32_rsh_r64(dst, src, ctx);
1762                 break;
1763         /* dst = dst >> src (signed) */
1764         case BPF_ALU64 | BPF_ARSH | BPF_X:
1765                 emit_a32_arsh_r64(dst, src, ctx);
1766                 break;
1767         /* dst = dst >> imm (signed) */
1768         case BPF_ALU64 | BPF_ARSH | BPF_K:
1769                 if (unlikely(imm > 63))
1770                         return -EINVAL;
1771                 emit_a32_arsh_i64(dst, imm, ctx);
1772                 break;
1773         /* dst = ~dst */
1774         case BPF_ALU | BPF_NEG:
1775                 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1776                 if (!ctx->prog->aux->verifier_zext)
1777                         emit_a32_mov_i(dst_hi, 0, ctx);
1778                 break;
1779         /* dst = ~dst (64 bit) */
1780         case BPF_ALU64 | BPF_NEG:
1781                 emit_a32_neg64(dst, ctx);
1782                 break;
1783         /* dst = dst * src/imm */
1784         case BPF_ALU64 | BPF_MUL | BPF_X:
1785         case BPF_ALU64 | BPF_MUL | BPF_K:
1786                 switch (BPF_SRC(code)) {
1787                 case BPF_X:
1788                         emit_a32_mul_r64(dst, src, ctx);
1789                         break;
1790                 case BPF_K:
1791                         /* Move immediate value to the temporary register
1792                          * and then do the multiplication on it as this
1793                          * will sign-extend the immediate value into temp
1794                          * reg then it would be safe to do the operation
1795                          * on it.
1796                          */
1797                         emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1798                         emit_a32_mul_r64(dst, tmp2, ctx);
1799                         break;
1800                 }
1801                 break;
1802         /* dst = htole(dst) */
1803         /* dst = htobe(dst) */
1804         case BPF_ALU | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1805         case BPF_ALU | BPF_END | BPF_FROM_BE: /* also BPF_TO_BE */
1806         /* dst = bswap(dst) */
1807         case BPF_ALU64 | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1808                 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1809                 if (BPF_SRC(code) == BPF_FROM_LE && BPF_CLASS(code) != BPF_ALU64)
1810                         goto emit_bswap_uxt;
1811                 switch (imm) {
1812                 case 16:
1813                         emit_rev16(rd[1], rd[1], ctx);
1814                         goto emit_bswap_uxt;
1815                 case 32:
1816                         emit_rev32(rd[1], rd[1], ctx);
1817                         goto emit_bswap_uxt;
1818                 case 64:
1819                         emit_rev32(ARM_LR, rd[1], ctx);
1820                         emit_rev32(rd[1], rd[0], ctx);
1821                         emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1822                         break;
1823                 }
1824                 goto exit;
1825 emit_bswap_uxt:
1826                 switch (imm) {
1827                 case 16:
1828                         /* zero-extend 16 bits into 64 bits */
1829 #if __LINUX_ARM_ARCH__ < 6
1830                         emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1831                         emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1832 #else /* ARMv6+ */
1833                         emit(ARM_UXTH(rd[1], rd[1]), ctx);
1834 #endif
1835                         if (!ctx->prog->aux->verifier_zext)
1836                                 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1837                         break;
1838                 case 32:
1839                         /* zero-extend 32 bits into 64 bits */
1840                         if (!ctx->prog->aux->verifier_zext)
1841                                 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1842                         break;
1843                 case 64:
1844                         /* nop */
1845                         break;
1846                 }
1847 exit:
1848                 arm_bpf_put_reg64(dst, rd, ctx);
1849                 break;
1850         /* dst = imm64 */
1851         case BPF_LD | BPF_IMM | BPF_DW:
1852         {
1853                 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1854 
1855                 emit_a32_mov_i64(dst, val, ctx);
1856 
1857                 return 1;
1858         }
1859         /* LDX: dst = *(size *)(src + off) */
1860         case BPF_LDX | BPF_MEM | BPF_W:
1861         case BPF_LDX | BPF_MEM | BPF_H:
1862         case BPF_LDX | BPF_MEM | BPF_B:
1863         case BPF_LDX | BPF_MEM | BPF_DW:
1864         /* LDSX: dst = *(signed size *)(src + off) */
1865         case BPF_LDX | BPF_MEMSX | BPF_B:
1866         case BPF_LDX | BPF_MEMSX | BPF_H:
1867         case BPF_LDX | BPF_MEMSX | BPF_W:
1868                 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1869                 if (BPF_MODE(insn->code) == BPF_MEMSX)
1870                         emit_ldsx_r(dst, rn, off, ctx, BPF_SIZE(code));
1871                 else
1872                         emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1873                 break;
1874         /* speculation barrier */
1875         case BPF_ST | BPF_NOSPEC:
1876                 break;
1877         /* ST: *(size *)(dst + off) = imm */
1878         case BPF_ST | BPF_MEM | BPF_W:
1879         case BPF_ST | BPF_MEM | BPF_H:
1880         case BPF_ST | BPF_MEM | BPF_B:
1881         case BPF_ST | BPF_MEM | BPF_DW:
1882                 switch (BPF_SIZE(code)) {
1883                 case BPF_DW:
1884                         /* Sign-extend immediate value into temp reg */
1885                         emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1886                         break;
1887                 case BPF_W:
1888                 case BPF_H:
1889                 case BPF_B:
1890                         emit_a32_mov_i(tmp2[1], imm, ctx);
1891                         break;
1892                 }
1893                 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1894                 break;
1895         /* Atomic ops */
1896         case BPF_STX | BPF_ATOMIC | BPF_W:
1897         case BPF_STX | BPF_ATOMIC | BPF_DW:
1898                 goto notyet;
1899         /* STX: *(size *)(dst + off) = src */
1900         case BPF_STX | BPF_MEM | BPF_W:
1901         case BPF_STX | BPF_MEM | BPF_H:
1902         case BPF_STX | BPF_MEM | BPF_B:
1903         case BPF_STX | BPF_MEM | BPF_DW:
1904                 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1905                 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1906                 break;
1907         /* PC += off if dst == src */
1908         /* PC += off if dst > src */
1909         /* PC += off if dst >= src */
1910         /* PC += off if dst < src */
1911         /* PC += off if dst <= src */
1912         /* PC += off if dst != src */
1913         /* PC += off if dst > src (signed) */
1914         /* PC += off if dst >= src (signed) */
1915         /* PC += off if dst < src (signed) */
1916         /* PC += off if dst <= src (signed) */
1917         /* PC += off if dst & src */
1918         case BPF_JMP | BPF_JEQ | BPF_X:
1919         case BPF_JMP | BPF_JGT | BPF_X:
1920         case BPF_JMP | BPF_JGE | BPF_X:
1921         case BPF_JMP | BPF_JNE | BPF_X:
1922         case BPF_JMP | BPF_JSGT | BPF_X:
1923         case BPF_JMP | BPF_JSGE | BPF_X:
1924         case BPF_JMP | BPF_JSET | BPF_X:
1925         case BPF_JMP | BPF_JLE | BPF_X:
1926         case BPF_JMP | BPF_JLT | BPF_X:
1927         case BPF_JMP | BPF_JSLT | BPF_X:
1928         case BPF_JMP | BPF_JSLE | BPF_X:
1929         case BPF_JMP32 | BPF_JEQ | BPF_X:
1930         case BPF_JMP32 | BPF_JGT | BPF_X:
1931         case BPF_JMP32 | BPF_JGE | BPF_X:
1932         case BPF_JMP32 | BPF_JNE | BPF_X:
1933         case BPF_JMP32 | BPF_JSGT | BPF_X:
1934         case BPF_JMP32 | BPF_JSGE | BPF_X:
1935         case BPF_JMP32 | BPF_JSET | BPF_X:
1936         case BPF_JMP32 | BPF_JLE | BPF_X:
1937         case BPF_JMP32 | BPF_JLT | BPF_X:
1938         case BPF_JMP32 | BPF_JSLT | BPF_X:
1939         case BPF_JMP32 | BPF_JSLE | BPF_X:
1940                 /* Setup source registers */
1941                 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1942                 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1943                 goto go_jmp;
1944         /* PC += off if dst == imm */
1945         /* PC += off if dst > imm */
1946         /* PC += off if dst >= imm */
1947         /* PC += off if dst < imm */
1948         /* PC += off if dst <= imm */
1949         /* PC += off if dst != imm */
1950         /* PC += off if dst > imm (signed) */
1951         /* PC += off if dst >= imm (signed) */
1952         /* PC += off if dst < imm (signed) */
1953         /* PC += off if dst <= imm (signed) */
1954         /* PC += off if dst & imm */
1955         case BPF_JMP | BPF_JEQ | BPF_K:
1956         case BPF_JMP | BPF_JGT | BPF_K:
1957         case BPF_JMP | BPF_JGE | BPF_K:
1958         case BPF_JMP | BPF_JNE | BPF_K:
1959         case BPF_JMP | BPF_JSGT | BPF_K:
1960         case BPF_JMP | BPF_JSGE | BPF_K:
1961         case BPF_JMP | BPF_JSET | BPF_K:
1962         case BPF_JMP | BPF_JLT | BPF_K:
1963         case BPF_JMP | BPF_JLE | BPF_K:
1964         case BPF_JMP | BPF_JSLT | BPF_K:
1965         case BPF_JMP | BPF_JSLE | BPF_K:
1966         case BPF_JMP32 | BPF_JEQ | BPF_K:
1967         case BPF_JMP32 | BPF_JGT | BPF_K:
1968         case BPF_JMP32 | BPF_JGE | BPF_K:
1969         case BPF_JMP32 | BPF_JNE | BPF_K:
1970         case BPF_JMP32 | BPF_JSGT | BPF_K:
1971         case BPF_JMP32 | BPF_JSGE | BPF_K:
1972         case BPF_JMP32 | BPF_JSET | BPF_K:
1973         case BPF_JMP32 | BPF_JLT | BPF_K:
1974         case BPF_JMP32 | BPF_JLE | BPF_K:
1975         case BPF_JMP32 | BPF_JSLT | BPF_K:
1976         case BPF_JMP32 | BPF_JSLE | BPF_K:
1977                 if (off == 0)
1978                         break;
1979                 rm = tmp2[0];
1980                 rn = tmp2[1];
1981                 /* Sign-extend immediate value */
1982                 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1983 go_jmp:
1984                 /* Setup destination register */
1985                 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1986 
1987                 /* Check for the condition */
1988                 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1989                           BPF_CLASS(code) == BPF_JMP);
1990 
1991                 /* Setup JUMP instruction */
1992                 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1993                 switch (BPF_OP(code)) {
1994                 case BPF_JNE:
1995                 case BPF_JSET:
1996                         _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1997                         break;
1998                 case BPF_JEQ:
1999                         _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
2000                         break;
2001                 case BPF_JGT:
2002                         _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
2003                         break;
2004                 case BPF_JGE:
2005                         _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
2006                         break;
2007                 case BPF_JSGT:
2008                         _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
2009                         break;
2010                 case BPF_JSGE:
2011                         _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
2012                         break;
2013                 case BPF_JLE:
2014                         _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
2015                         break;
2016                 case BPF_JLT:
2017                         _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
2018                         break;
2019                 case BPF_JSLT:
2020                         _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
2021                         break;
2022                 case BPF_JSLE:
2023                         _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
2024                         break;
2025                 }
2026                 break;
2027         /* JMP OFF */
2028         case BPF_JMP | BPF_JA:
2029         case BPF_JMP32 | BPF_JA:
2030         {
2031                 if (BPF_CLASS(code) == BPF_JMP32 && imm != 0)
2032                         jmp_offset = bpf2a32_offset(i + imm, i, ctx);
2033                 else if (BPF_CLASS(code) == BPF_JMP && off != 0)
2034                         jmp_offset = bpf2a32_offset(i + off, i, ctx);
2035                 else
2036                         break;
2037 
2038                 check_imm24(jmp_offset);
2039                 emit(ARM_B(jmp_offset), ctx);
2040                 break;
2041         }
2042         /* tail call */
2043         case BPF_JMP | BPF_TAIL_CALL:
2044                 if (emit_bpf_tail_call(ctx))
2045                         return -EFAULT;
2046                 break;
2047         /* function call */
2048         case BPF_JMP | BPF_CALL:
2049         {
2050                 const s8 *r0 = bpf2a32[BPF_REG_0];
2051                 const s8 *r1 = bpf2a32[BPF_REG_1];
2052                 const s8 *r2 = bpf2a32[BPF_REG_2];
2053                 const s8 *r3 = bpf2a32[BPF_REG_3];
2054                 const s8 *r4 = bpf2a32[BPF_REG_4];
2055                 const s8 *r5 = bpf2a32[BPF_REG_5];
2056                 const u32 func = (u32)__bpf_call_base + (u32)imm;
2057 
2058                 emit_a32_mov_r64(true, r0, r1, ctx);
2059                 emit_a32_mov_r64(true, r1, r2, ctx);
2060                 emit_push_r64(r5, ctx);
2061                 emit_push_r64(r4, ctx);
2062                 emit_push_r64(r3, ctx);
2063 
2064                 emit_a32_mov_i(tmp[1], func, ctx);
2065                 emit_blx_r(tmp[1], ctx);
2066 
2067                 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
2068                 break;
2069         }
2070         /* function return */
2071         case BPF_JMP | BPF_EXIT:
2072                 /* Optimization: when last instruction is EXIT
2073                  * simply fallthrough to epilogue.
2074                  */
2075                 if (i == ctx->prog->len - 1)
2076                         break;
2077                 jmp_offset = epilogue_offset(ctx);
2078                 check_imm24(jmp_offset);
2079                 emit(ARM_B(jmp_offset), ctx);
2080                 break;
2081 notyet:
2082                 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2083                 return -EFAULT;
2084         default:
2085                 pr_err_once("unknown opcode %02x\n", code);
2086                 return -EINVAL;
2087         }
2088 
2089         if (ctx->flags & FLAG_IMM_OVERFLOW)
2090                 /*
2091                  * this instruction generated an overflow when
2092                  * trying to access the literal pool, so
2093                  * delegate this filter to the kernel interpreter.
2094                  */
2095                 return -1;
2096         return 0;
2097 }
2098 
2099 static int build_body(struct jit_ctx *ctx)
2100 {
2101         const struct bpf_prog *prog = ctx->prog;
2102         unsigned int i;
2103 
2104         for (i = 0; i < prog->len; i++) {
2105                 const struct bpf_insn *insn = &(prog->insnsi[i]);
2106                 int ret;
2107 
2108                 ret = build_insn(insn, ctx);
2109 
2110                 /* It's used with loading the 64 bit immediate value. */
2111                 if (ret > 0) {
2112                         i++;
2113                         if (ctx->target == NULL)
2114                                 ctx->offsets[i] = ctx->idx;
2115                         continue;
2116                 }
2117 
2118                 if (ctx->target == NULL)
2119                         ctx->offsets[i] = ctx->idx;
2120 
2121                 /* If unsuccesful, return with error code */
2122                 if (ret)
2123                         return ret;
2124         }
2125         return 0;
2126 }
2127 
2128 static int validate_code(struct jit_ctx *ctx)
2129 {
2130         int i;
2131 
2132         for (i = 0; i < ctx->idx; i++) {
2133                 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
2134                         return -1;
2135         }
2136 
2137         return 0;
2138 }
2139 
2140 bool bpf_jit_needs_zext(void)
2141 {
2142         return true;
2143 }
2144 
2145 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2146 {
2147         struct bpf_prog *tmp, *orig_prog = prog;
2148         struct bpf_binary_header *header;
2149         bool tmp_blinded = false;
2150         struct jit_ctx ctx;
2151         unsigned int tmp_idx;
2152         unsigned int image_size;
2153         u8 *image_ptr;
2154 
2155         /* If BPF JIT was not enabled then we must fall back to
2156          * the interpreter.
2157          */
2158         if (!prog->jit_requested)
2159                 return orig_prog;
2160 
2161         /* If constant blinding was enabled and we failed during blinding
2162          * then we must fall back to the interpreter. Otherwise, we save
2163          * the new JITed code.
2164          */
2165         tmp = bpf_jit_blind_constants(prog);
2166 
2167         if (IS_ERR(tmp))
2168                 return orig_prog;
2169         if (tmp != prog) {
2170                 tmp_blinded = true;
2171                 prog = tmp;
2172         }
2173 
2174         memset(&ctx, 0, sizeof(ctx));
2175         ctx.prog = prog;
2176         ctx.cpu_architecture = cpu_architecture();
2177 
2178         /* Not able to allocate memory for offsets[] , then
2179          * we must fall back to the interpreter
2180          */
2181         ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
2182         if (ctx.offsets == NULL) {
2183                 prog = orig_prog;
2184                 goto out;
2185         }
2186 
2187         /* 1) fake pass to find in the length of the JITed code,
2188          * to compute ctx->offsets and other context variables
2189          * needed to compute final JITed code.
2190          * Also, calculate random starting pointer/start of JITed code
2191          * which is prefixed by random number of fault instructions.
2192          *
2193          * If the first pass fails then there is no chance of it
2194          * being successful in the second pass, so just fall back
2195          * to the interpreter.
2196          */
2197         if (build_body(&ctx)) {
2198                 prog = orig_prog;
2199                 goto out_off;
2200         }
2201 
2202         tmp_idx = ctx.idx;
2203         build_prologue(&ctx);
2204         ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
2205 
2206         ctx.epilogue_offset = ctx.idx;
2207 
2208 #if __LINUX_ARM_ARCH__ < 7
2209         tmp_idx = ctx.idx;
2210         build_epilogue(&ctx);
2211         ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
2212 
2213         ctx.idx += ctx.imm_count;
2214         if (ctx.imm_count) {
2215                 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
2216                 if (ctx.imms == NULL) {
2217                         prog = orig_prog;
2218                         goto out_off;
2219                 }
2220         }
2221 #else
2222         /* there's nothing about the epilogue on ARMv7 */
2223         build_epilogue(&ctx);
2224 #endif
2225         /* Now we can get the actual image size of the JITed arm code.
2226          * Currently, we are not considering the THUMB-2 instructions
2227          * for jit, although it can decrease the size of the image.
2228          *
2229          * As each arm instruction is of length 32bit, we are translating
2230          * number of JITed instructions into the size required to store these
2231          * JITed code.
2232          */
2233         image_size = sizeof(u32) * ctx.idx;
2234 
2235         /* Now we know the size of the structure to make */
2236         header = bpf_jit_binary_alloc(image_size, &image_ptr,
2237                                       sizeof(u32), jit_fill_hole);
2238         /* Not able to allocate memory for the structure then
2239          * we must fall back to the interpretation
2240          */
2241         if (header == NULL) {
2242                 prog = orig_prog;
2243                 goto out_imms;
2244         }
2245 
2246         /* 2.) Actual pass to generate final JIT code */
2247         ctx.target = (u32 *) image_ptr;
2248         ctx.idx = 0;
2249 
2250         build_prologue(&ctx);
2251 
2252         /* If building the body of the JITed code fails somehow,
2253          * we fall back to the interpretation.
2254          */
2255         if (build_body(&ctx) < 0)
2256                 goto out_free;
2257         build_epilogue(&ctx);
2258 
2259         /* 3.) Extra pass to validate JITed Code */
2260         if (validate_code(&ctx))
2261                 goto out_free;
2262         flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2263 
2264         if (bpf_jit_enable > 1)
2265                 /* there are 2 passes here */
2266                 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2267 
2268         if (bpf_jit_binary_lock_ro(header))
2269                 goto out_free;
2270         prog->bpf_func = (void *)ctx.target;
2271         prog->jited = 1;
2272         prog->jited_len = image_size;
2273 
2274 out_imms:
2275 #if __LINUX_ARM_ARCH__ < 7
2276         if (ctx.imm_count)
2277                 kfree(ctx.imms);
2278 #endif
2279 out_off:
2280         kfree(ctx.offsets);
2281 out:
2282         if (tmp_blinded)
2283                 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2284                                            tmp : orig_prog);
2285         return prog;
2286 
2287 out_free:
2288         image_ptr = NULL;
2289         bpf_jit_binary_free(header);
2290         prog = orig_prog;
2291         goto out_imms;
2292 }
2293 
2294 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php