1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Just-In-Time compiler for eBPF filters on 32bit ARM 4 * 5 * Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com> 6 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> 7 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> 8 */ 9 10 #include <linux/bpf.h> 11 #include <linux/bitops.h> 12 #include <linux/compiler.h> 13 #include <linux/errno.h> 14 #include <linux/filter.h> 15 #include <linux/netdevice.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/if_vlan.h> 19 #include <linux/math64.h> 20 21 #include <asm/cacheflush.h> 22 #include <asm/hwcap.h> 23 #include <asm/opcodes.h> 24 #include <asm/system_info.h> 25 26 #include "bpf_jit_32.h" 27 28 /* 29 * eBPF prog stack layout: 30 * 31 * high 32 * original ARM_SP => +-----+ 33 * | | callee saved registers 34 * +-----+ <= (BPF_FP + SCRATCH_SIZE) 35 * | ... | eBPF JIT scratch space 36 * eBPF fp register => +-----+ 37 * (BPF_FP) | ... | eBPF prog stack 38 * +-----+ 39 * |RSVD | JIT scratchpad 40 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE) 41 * | ... | caller-saved registers 42 * +-----+ 43 * | ... | arguments passed on stack 44 * ARM_SP during call => +-----| 45 * | | 46 * | ... | Function call stack 47 * | | 48 * +-----+ 49 * low 50 * 51 * The callee saved registers depends on whether frame pointers are enabled. 52 * With frame pointers (to be compliant with the ABI): 53 * 54 * high 55 * original ARM_SP => +--------------+ \ 56 * | pc | | 57 * current ARM_FP => +--------------+ } callee saved registers 58 * |r4-r9,fp,ip,lr| | 59 * +--------------+ / 60 * low 61 * 62 * Without frame pointers: 63 * 64 * high 65 * original ARM_SP => +--------------+ 66 * | r4-r9,fp,lr | callee saved registers 67 * current ARM_FP => +--------------+ 68 * low 69 * 70 * When popping registers off the stack at the end of a BPF function, we 71 * reference them via the current ARM_FP register. 72 * 73 * Some eBPF operations are implemented via a call to a helper function. 74 * Such calls are "invisible" in the eBPF code, so it is up to the calling 75 * program to preserve any caller-saved ARM registers during the call. The 76 * JIT emits code to push and pop those registers onto the stack, immediately 77 * above the callee stack frame. 78 */ 79 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \ 80 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \ 81 1 << ARM_FP) 82 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR) 83 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC) 84 85 #define CALLER_MASK (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3) 86 87 enum { 88 /* Stack layout - these are offsets from (top of stack - 4) */ 89 BPF_R2_HI, 90 BPF_R2_LO, 91 BPF_R3_HI, 92 BPF_R3_LO, 93 BPF_R4_HI, 94 BPF_R4_LO, 95 BPF_R5_HI, 96 BPF_R5_LO, 97 BPF_R7_HI, 98 BPF_R7_LO, 99 BPF_R8_HI, 100 BPF_R8_LO, 101 BPF_R9_HI, 102 BPF_R9_LO, 103 BPF_FP_HI, 104 BPF_FP_LO, 105 BPF_TC_HI, 106 BPF_TC_LO, 107 BPF_AX_HI, 108 BPF_AX_LO, 109 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4, 110 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9, 111 * BPF_REG_FP and Tail call counts. 112 */ 113 BPF_JIT_SCRATCH_REGS, 114 }; 115 116 /* 117 * Negative "register" values indicate the register is stored on the stack 118 * and are the offset from the top of the eBPF JIT scratch space. 119 */ 120 #define STACK_OFFSET(k) (-4 - (k) * 4) 121 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4) 122 123 #ifdef CONFIG_FRAME_POINTER 124 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4) 125 #else 126 #define EBPF_SCRATCH_TO_ARM_FP(x) (x) 127 #endif 128 129 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */ 130 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */ 131 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */ 132 133 #define FLAG_IMM_OVERFLOW (1 << 0) 134 135 /* 136 * Map eBPF registers to ARM 32bit registers or stack scratch space. 137 * 138 * 1. First argument is passed using the arm 32bit registers and rest of the 139 * arguments are passed on stack scratch space. 140 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest 141 * arguments are mapped to scratch space on stack. 142 * 3. We need two 64 bit temp registers to do complex operations on eBPF 143 * registers. 144 * 145 * As the eBPF registers are all 64 bit registers and arm has only 32 bit 146 * registers, we have to map each eBPF registers with two arm 32 bit regs or 147 * scratch memory space and we have to build eBPF 64 bit register from those. 148 * 149 */ 150 static const s8 bpf2a32[][2] = { 151 /* return value from in-kernel function, and exit value from eBPF */ 152 [BPF_REG_0] = {ARM_R1, ARM_R0}, 153 /* arguments from eBPF program to in-kernel function */ 154 [BPF_REG_1] = {ARM_R3, ARM_R2}, 155 /* Stored on stack scratch space */ 156 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)}, 157 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)}, 158 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)}, 159 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)}, 160 /* callee saved registers that in-kernel function will preserve */ 161 [BPF_REG_6] = {ARM_R5, ARM_R4}, 162 /* Stored on stack scratch space */ 163 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)}, 164 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, 165 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, 166 /* Read only Frame Pointer to access Stack */ 167 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)}, 168 /* Temporary Register for BPF JIT, can be used 169 * for constant blindings and others. 170 */ 171 [TMP_REG_1] = {ARM_R7, ARM_R6}, 172 [TMP_REG_2] = {ARM_R9, ARM_R8}, 173 /* Tail call count. Stored on stack scratch space. */ 174 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)}, 175 /* temporary register for blinding constants. 176 * Stored on stack scratch space. 177 */ 178 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, 179 }; 180 181 #define dst_lo dst[1] 182 #define dst_hi dst[0] 183 #define src_lo src[1] 184 #define src_hi src[0] 185 186 /* 187 * JIT Context: 188 * 189 * prog : bpf_prog 190 * idx : index of current last JITed instruction. 191 * prologue_bytes : bytes used in prologue. 192 * epilogue_offset : offset of epilogue starting. 193 * offsets : array of eBPF instruction offsets in 194 * JITed code. 195 * target : final JITed code. 196 * epilogue_bytes : no of bytes used in epilogue. 197 * imm_count : no of immediate counts used for global 198 * variables. 199 * imms : array of global variable addresses. 200 */ 201 202 struct jit_ctx { 203 const struct bpf_prog *prog; 204 unsigned int idx; 205 unsigned int prologue_bytes; 206 unsigned int epilogue_offset; 207 unsigned int cpu_architecture; 208 u32 flags; 209 u32 *offsets; 210 u32 *target; 211 u32 stack_size; 212 #if __LINUX_ARM_ARCH__ < 7 213 u16 epilogue_bytes; 214 u16 imm_count; 215 u32 *imms; 216 #endif 217 }; 218 219 /* 220 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking 221 * (where the assembly routines like __aeabi_uidiv could cause problems). 222 */ 223 static u32 jit_udiv32(u32 dividend, u32 divisor) 224 { 225 return dividend / divisor; 226 } 227 228 static u32 jit_mod32(u32 dividend, u32 divisor) 229 { 230 return dividend % divisor; 231 } 232 233 static s32 jit_sdiv32(s32 dividend, s32 divisor) 234 { 235 return dividend / divisor; 236 } 237 238 static s32 jit_smod32(s32 dividend, s32 divisor) 239 { 240 return dividend % divisor; 241 } 242 243 /* Wrappers for 64-bit div/mod */ 244 static u64 jit_udiv64(u64 dividend, u64 divisor) 245 { 246 return div64_u64(dividend, divisor); 247 } 248 249 static u64 jit_mod64(u64 dividend, u64 divisor) 250 { 251 u64 rem; 252 253 div64_u64_rem(dividend, divisor, &rem); 254 return rem; 255 } 256 257 static s64 jit_sdiv64(s64 dividend, s64 divisor) 258 { 259 return div64_s64(dividend, divisor); 260 } 261 262 static s64 jit_smod64(s64 dividend, s64 divisor) 263 { 264 u64 q; 265 266 q = div64_s64(dividend, divisor); 267 268 return dividend - q * divisor; 269 } 270 271 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) 272 { 273 inst |= (cond << 28); 274 inst = __opcode_to_mem_arm(inst); 275 276 if (ctx->target != NULL) 277 ctx->target[ctx->idx] = inst; 278 279 ctx->idx++; 280 } 281 282 /* 283 * Emit an instruction that will be executed unconditionally. 284 */ 285 static inline void emit(u32 inst, struct jit_ctx *ctx) 286 { 287 _emit(ARM_COND_AL, inst, ctx); 288 } 289 290 /* 291 * This is rather horrid, but necessary to convert an integer constant 292 * to an immediate operand for the opcodes, and be able to detect at 293 * build time whether the constant can't be converted (iow, usable in 294 * BUILD_BUG_ON()). 295 */ 296 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7) 297 #define const_imm8m(x) \ 298 ({ int r; \ 299 u32 v = (x); \ 300 if (!(v & ~0x000000ff)) \ 301 r = imm12val(v, 0); \ 302 else if (!(v & ~0xc000003f)) \ 303 r = imm12val(v, 2); \ 304 else if (!(v & ~0xf000000f)) \ 305 r = imm12val(v, 4); \ 306 else if (!(v & ~0xfc000003)) \ 307 r = imm12val(v, 6); \ 308 else if (!(v & ~0xff000000)) \ 309 r = imm12val(v, 8); \ 310 else if (!(v & ~0x3fc00000)) \ 311 r = imm12val(v, 10); \ 312 else if (!(v & ~0x0ff00000)) \ 313 r = imm12val(v, 12); \ 314 else if (!(v & ~0x03fc0000)) \ 315 r = imm12val(v, 14); \ 316 else if (!(v & ~0x00ff0000)) \ 317 r = imm12val(v, 16); \ 318 else if (!(v & ~0x003fc000)) \ 319 r = imm12val(v, 18); \ 320 else if (!(v & ~0x000ff000)) \ 321 r = imm12val(v, 20); \ 322 else if (!(v & ~0x0003fc00)) \ 323 r = imm12val(v, 22); \ 324 else if (!(v & ~0x0000ff00)) \ 325 r = imm12val(v, 24); \ 326 else if (!(v & ~0x00003fc0)) \ 327 r = imm12val(v, 26); \ 328 else if (!(v & ~0x00000ff0)) \ 329 r = imm12val(v, 28); \ 330 else if (!(v & ~0x000003fc)) \ 331 r = imm12val(v, 30); \ 332 else \ 333 r = -1; \ 334 r; }) 335 336 /* 337 * Checks if immediate value can be converted to imm12(12 bits) value. 338 */ 339 static int imm8m(u32 x) 340 { 341 u32 rot; 342 343 for (rot = 0; rot < 16; rot++) 344 if ((x & ~ror32(0xff, 2 * rot)) == 0) 345 return rol32(x, 2 * rot) | (rot << 8); 346 return -1; 347 } 348 349 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x)) 350 351 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12) 352 { 353 op |= rt << 12 | rn << 16; 354 if (imm12 >= 0) 355 op |= ARM_INST_LDST__U; 356 else 357 imm12 = -imm12; 358 return op | (imm12 & ARM_INST_LDST__IMM12); 359 } 360 361 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8) 362 { 363 op |= rt << 12 | rn << 16; 364 if (imm8 >= 0) 365 op |= ARM_INST_LDST__U; 366 else 367 imm8 = -imm8; 368 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f); 369 } 370 371 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off) 372 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off) 373 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off) 374 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off) 375 376 #define ARM_LDRSH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSH_I, rt, rn, off) 377 #define ARM_LDRSB_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSB_I, rt, rn, off) 378 379 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off) 380 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off) 381 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off) 382 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off) 383 384 /* 385 * Initializes the JIT space with undefined instructions. 386 */ 387 static void jit_fill_hole(void *area, unsigned int size) 388 { 389 u32 *ptr; 390 /* We are guaranteed to have aligned memory. */ 391 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 392 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF); 393 } 394 395 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) 396 /* EABI requires the stack to be aligned to 64-bit boundaries */ 397 #define STACK_ALIGNMENT 8 398 #else 399 /* Stack must be aligned to 32-bit boundaries */ 400 #define STACK_ALIGNMENT 4 401 #endif 402 403 /* total stack size used in JITed code */ 404 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE) 405 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT) 406 407 #if __LINUX_ARM_ARCH__ < 7 408 409 static u16 imm_offset(u32 k, struct jit_ctx *ctx) 410 { 411 unsigned int i = 0, offset; 412 u16 imm; 413 414 /* on the "fake" run we just count them (duplicates included) */ 415 if (ctx->target == NULL) { 416 ctx->imm_count++; 417 return 0; 418 } 419 420 while ((i < ctx->imm_count) && ctx->imms[i]) { 421 if (ctx->imms[i] == k) 422 break; 423 i++; 424 } 425 426 if (ctx->imms[i] == 0) 427 ctx->imms[i] = k; 428 429 /* constants go just after the epilogue */ 430 offset = ctx->offsets[ctx->prog->len - 1] * 4; 431 offset += ctx->prologue_bytes; 432 offset += ctx->epilogue_bytes; 433 offset += i * 4; 434 435 ctx->target[offset / 4] = k; 436 437 /* PC in ARM mode == address of the instruction + 8 */ 438 imm = offset - (8 + ctx->idx * 4); 439 440 if (imm & ~0xfff) { 441 /* 442 * literal pool is too far, signal it into flags. we 443 * can only detect it on the second pass unfortunately. 444 */ 445 ctx->flags |= FLAG_IMM_OVERFLOW; 446 return 0; 447 } 448 449 return imm; 450 } 451 452 #endif /* __LINUX_ARM_ARCH__ */ 453 454 static inline int bpf2a32_offset(int bpf_to, int bpf_from, 455 const struct jit_ctx *ctx) { 456 int to, from; 457 458 if (ctx->target == NULL) 459 return 0; 460 to = ctx->offsets[bpf_to]; 461 from = ctx->offsets[bpf_from]; 462 463 return to - from - 1; 464 } 465 466 /* 467 * Move an immediate that's not an imm8m to a core register. 468 */ 469 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx) 470 { 471 #if __LINUX_ARM_ARCH__ < 7 472 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx); 473 #else 474 emit(ARM_MOVW(rd, val & 0xffff), ctx); 475 if (val > 0xffff) 476 emit(ARM_MOVT(rd, val >> 16), ctx); 477 #endif 478 } 479 480 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx) 481 { 482 int imm12 = imm8m(val); 483 484 if (imm12 >= 0) 485 emit(ARM_MOV_I(rd, imm12), ctx); 486 else 487 emit_mov_i_no8m(rd, val, ctx); 488 } 489 490 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx) 491 { 492 if (elf_hwcap & HWCAP_THUMB) 493 emit(ARM_BX(tgt_reg), ctx); 494 else 495 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx); 496 } 497 498 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx) 499 { 500 #if __LINUX_ARM_ARCH__ < 5 501 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx); 502 emit_bx_r(tgt_reg, ctx); 503 #else 504 emit(ARM_BLX_R(tgt_reg), ctx); 505 #endif 506 } 507 508 static inline int epilogue_offset(const struct jit_ctx *ctx) 509 { 510 int to, from; 511 /* No need for 1st dummy run */ 512 if (ctx->target == NULL) 513 return 0; 514 to = ctx->epilogue_offset; 515 from = ctx->idx; 516 517 return to - from - 2; 518 } 519 520 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op, u8 sign) 521 { 522 const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1); 523 const s8 *tmp = bpf2a32[TMP_REG_1]; 524 u32 dst; 525 526 #if __LINUX_ARM_ARCH__ == 7 527 if (elf_hwcap & HWCAP_IDIVA) { 528 if (op == BPF_DIV) { 529 emit(sign ? ARM_SDIV(rd, rm, rn) : ARM_UDIV(rd, rm, rn), ctx); 530 } else { 531 emit(sign ? ARM_SDIV(ARM_IP, rm, rn) : ARM_UDIV(ARM_IP, rm, rn), ctx); 532 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx); 533 } 534 return; 535 } 536 #endif 537 538 /* 539 * For BPF_ALU | BPF_DIV | BPF_K instructions 540 * As ARM_R1 and ARM_R0 contains 1st argument of bpf 541 * function, we need to save it on caller side to save 542 * it from getting destroyed within callee. 543 * After the return from the callee, we restore ARM_R0 544 * ARM_R1. 545 */ 546 if (rn != ARM_R1) { 547 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx); 548 emit(ARM_MOV_R(ARM_R1, rn), ctx); 549 } 550 if (rm != ARM_R0) { 551 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx); 552 emit(ARM_MOV_R(ARM_R0, rm), ctx); 553 } 554 555 /* Push caller-saved registers on stack */ 556 emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx); 557 558 /* Call appropriate function */ 559 if (sign) { 560 if (op == BPF_DIV) 561 dst = (u32)jit_sdiv32; 562 else 563 dst = (u32)jit_smod32; 564 } else { 565 if (op == BPF_DIV) 566 dst = (u32)jit_udiv32; 567 else 568 dst = (u32)jit_mod32; 569 } 570 571 emit_mov_i(ARM_IP, dst, ctx); 572 emit_blx_r(ARM_IP, ctx); 573 574 /* Restore caller-saved registers from stack */ 575 emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx); 576 577 /* Save return value */ 578 if (rd != ARM_R0) 579 emit(ARM_MOV_R(rd, ARM_R0), ctx); 580 581 /* Restore ARM_R0 and ARM_R1 */ 582 if (rn != ARM_R1) 583 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx); 584 if (rm != ARM_R0) 585 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx); 586 } 587 588 static inline void emit_udivmod64(const s8 *rd, const s8 *rm, const s8 *rn, struct jit_ctx *ctx, 589 u8 op, u8 sign) 590 { 591 u32 dst; 592 593 /* Push caller-saved registers on stack */ 594 emit(ARM_PUSH(CALLER_MASK), ctx); 595 596 /* 597 * As we are implementing 64-bit div/mod as function calls, We need to put the dividend in 598 * R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack, 599 * we can recover them later after returning from the function call. 600 */ 601 if (rm[1] != ARM_R0 || rn[1] != ARM_R2) { 602 /* 603 * Move Rm to {R1, R0} if it is not already there. 604 */ 605 if (rm[1] != ARM_R0) { 606 if (rn[1] == ARM_R0) 607 emit(ARM_PUSH(BIT(ARM_R0) | BIT(ARM_R1)), ctx); 608 emit(ARM_MOV_R(ARM_R1, rm[0]), ctx); 609 emit(ARM_MOV_R(ARM_R0, rm[1]), ctx); 610 if (rn[1] == ARM_R0) { 611 emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx); 612 goto cont; 613 } 614 } 615 /* 616 * Move Rn to {R3, R2} if it is not already there. 617 */ 618 if (rn[1] != ARM_R2) { 619 emit(ARM_MOV_R(ARM_R3, rn[0]), ctx); 620 emit(ARM_MOV_R(ARM_R2, rn[1]), ctx); 621 } 622 } 623 624 cont: 625 626 /* Call appropriate function */ 627 if (sign) { 628 if (op == BPF_DIV) 629 dst = (u32)jit_sdiv64; 630 else 631 dst = (u32)jit_smod64; 632 } else { 633 if (op == BPF_DIV) 634 dst = (u32)jit_udiv64; 635 else 636 dst = (u32)jit_mod64; 637 } 638 639 emit_mov_i(ARM_IP, dst, ctx); 640 emit_blx_r(ARM_IP, ctx); 641 642 /* Save return value */ 643 if (rd[1] != ARM_R0) { 644 emit(ARM_MOV_R(rd[0], ARM_R1), ctx); 645 emit(ARM_MOV_R(rd[1], ARM_R0), ctx); 646 } 647 648 /* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */ 649 if (rd[1] != ARM_R0 && rd[1] != ARM_R2) { 650 emit(ARM_POP(CALLER_MASK), ctx); 651 } else if (rd[1] != ARM_R0) { 652 emit(ARM_POP(BIT(ARM_R0) | BIT(ARM_R1)), ctx); 653 emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx); 654 } else { 655 emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx); 656 emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx); 657 } 658 } 659 660 /* Is the translated BPF register on stack? */ 661 static bool is_stacked(s8 reg) 662 { 663 return reg < 0; 664 } 665 666 /* If a BPF register is on the stack (stk is true), load it to the 667 * supplied temporary register and return the temporary register 668 * for subsequent operations, otherwise just use the CPU register. 669 */ 670 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx) 671 { 672 if (is_stacked(reg)) { 673 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); 674 reg = tmp; 675 } 676 return reg; 677 } 678 679 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp, 680 struct jit_ctx *ctx) 681 { 682 if (is_stacked(reg[1])) { 683 if (__LINUX_ARM_ARCH__ >= 6 || 684 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { 685 emit(ARM_LDRD_I(tmp[1], ARM_FP, 686 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 687 } else { 688 emit(ARM_LDR_I(tmp[1], ARM_FP, 689 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 690 emit(ARM_LDR_I(tmp[0], ARM_FP, 691 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); 692 } 693 reg = tmp; 694 } 695 return reg; 696 } 697 698 /* If a BPF register is on the stack (stk is true), save the register 699 * back to the stack. If the source register is not the same, then 700 * move it into the correct register. 701 */ 702 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx) 703 { 704 if (is_stacked(reg)) 705 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); 706 else if (reg != src) 707 emit(ARM_MOV_R(reg, src), ctx); 708 } 709 710 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src, 711 struct jit_ctx *ctx) 712 { 713 if (is_stacked(reg[1])) { 714 if (__LINUX_ARM_ARCH__ >= 6 || 715 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { 716 emit(ARM_STRD_I(src[1], ARM_FP, 717 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 718 } else { 719 emit(ARM_STR_I(src[1], ARM_FP, 720 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); 721 emit(ARM_STR_I(src[0], ARM_FP, 722 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); 723 } 724 } else { 725 if (reg[1] != src[1]) 726 emit(ARM_MOV_R(reg[1], src[1]), ctx); 727 if (reg[0] != src[0]) 728 emit(ARM_MOV_R(reg[0], src[0]), ctx); 729 } 730 } 731 732 static inline void emit_a32_mov_i(const s8 dst, const u32 val, 733 struct jit_ctx *ctx) 734 { 735 const s8 *tmp = bpf2a32[TMP_REG_1]; 736 737 if (is_stacked(dst)) { 738 emit_mov_i(tmp[1], val, ctx); 739 arm_bpf_put_reg32(dst, tmp[1], ctx); 740 } else { 741 emit_mov_i(dst, val, ctx); 742 } 743 } 744 745 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx) 746 { 747 const s8 *tmp = bpf2a32[TMP_REG_1]; 748 const s8 *rd = is_stacked(dst_lo) ? tmp : dst; 749 750 emit_mov_i(rd[1], (u32)val, ctx); 751 emit_mov_i(rd[0], val >> 32, ctx); 752 753 arm_bpf_put_reg64(dst, rd, ctx); 754 } 755 756 /* Sign extended move */ 757 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[], 758 const u32 val, struct jit_ctx *ctx) { 759 u64 val64 = val; 760 761 if (is64 && (val & (1<<31))) 762 val64 |= 0xffffffff00000000ULL; 763 emit_a32_mov_i64(dst, val64, ctx); 764 } 765 766 static inline void emit_a32_add_r(const u8 dst, const u8 src, 767 const bool is64, const bool hi, 768 struct jit_ctx *ctx) { 769 /* 64 bit : 770 * adds dst_lo, dst_lo, src_lo 771 * adc dst_hi, dst_hi, src_hi 772 * 32 bit : 773 * add dst_lo, dst_lo, src_lo 774 */ 775 if (!hi && is64) 776 emit(ARM_ADDS_R(dst, dst, src), ctx); 777 else if (hi && is64) 778 emit(ARM_ADC_R(dst, dst, src), ctx); 779 else 780 emit(ARM_ADD_R(dst, dst, src), ctx); 781 } 782 783 static inline void emit_a32_sub_r(const u8 dst, const u8 src, 784 const bool is64, const bool hi, 785 struct jit_ctx *ctx) { 786 /* 64 bit : 787 * subs dst_lo, dst_lo, src_lo 788 * sbc dst_hi, dst_hi, src_hi 789 * 32 bit : 790 * sub dst_lo, dst_lo, src_lo 791 */ 792 if (!hi && is64) 793 emit(ARM_SUBS_R(dst, dst, src), ctx); 794 else if (hi && is64) 795 emit(ARM_SBC_R(dst, dst, src), ctx); 796 else 797 emit(ARM_SUB_R(dst, dst, src), ctx); 798 } 799 800 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64, 801 const bool hi, const u8 op, struct jit_ctx *ctx){ 802 switch (BPF_OP(op)) { 803 /* dst = dst + src */ 804 case BPF_ADD: 805 emit_a32_add_r(dst, src, is64, hi, ctx); 806 break; 807 /* dst = dst - src */ 808 case BPF_SUB: 809 emit_a32_sub_r(dst, src, is64, hi, ctx); 810 break; 811 /* dst = dst | src */ 812 case BPF_OR: 813 emit(ARM_ORR_R(dst, dst, src), ctx); 814 break; 815 /* dst = dst & src */ 816 case BPF_AND: 817 emit(ARM_AND_R(dst, dst, src), ctx); 818 break; 819 /* dst = dst ^ src */ 820 case BPF_XOR: 821 emit(ARM_EOR_R(dst, dst, src), ctx); 822 break; 823 /* dst = dst * src */ 824 case BPF_MUL: 825 emit(ARM_MUL(dst, dst, src), ctx); 826 break; 827 /* dst = dst << src */ 828 case BPF_LSH: 829 emit(ARM_LSL_R(dst, dst, src), ctx); 830 break; 831 /* dst = dst >> src */ 832 case BPF_RSH: 833 emit(ARM_LSR_R(dst, dst, src), ctx); 834 break; 835 /* dst = dst >> src (signed)*/ 836 case BPF_ARSH: 837 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx); 838 break; 839 } 840 } 841 842 /* ALU operation (64 bit) */ 843 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[], 844 const s8 src[], struct jit_ctx *ctx, 845 const u8 op) { 846 const s8 *tmp = bpf2a32[TMP_REG_1]; 847 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 848 const s8 *rd; 849 850 rd = arm_bpf_get_reg64(dst, tmp, ctx); 851 if (is64) { 852 const s8 *rs; 853 854 rs = arm_bpf_get_reg64(src, tmp2, ctx); 855 856 /* ALU operation */ 857 emit_alu_r(rd[1], rs[1], true, false, op, ctx); 858 emit_alu_r(rd[0], rs[0], true, true, op, ctx); 859 } else { 860 s8 rs; 861 862 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 863 864 /* ALU operation */ 865 emit_alu_r(rd[1], rs, true, false, op, ctx); 866 if (!ctx->prog->aux->verifier_zext) 867 emit_a32_mov_i(rd[0], 0, ctx); 868 } 869 870 arm_bpf_put_reg64(dst, rd, ctx); 871 } 872 873 /* dst = src (4 bytes)*/ 874 static inline void emit_a32_mov_r(const s8 dst, const s8 src, struct jit_ctx *ctx) { 875 const s8 *tmp = bpf2a32[TMP_REG_1]; 876 s8 rt; 877 878 rt = arm_bpf_get_reg32(src, tmp[0], ctx); 879 arm_bpf_put_reg32(dst, rt, ctx); 880 } 881 882 /* dst = src */ 883 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[], 884 const s8 src[], 885 struct jit_ctx *ctx) { 886 if (!is64) { 887 emit_a32_mov_r(dst_lo, src_lo, ctx); 888 if (!ctx->prog->aux->verifier_zext) 889 /* Zero out high 4 bytes */ 890 emit_a32_mov_i(dst_hi, 0, ctx); 891 } else if (__LINUX_ARM_ARCH__ < 6 && 892 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) { 893 /* complete 8 byte move */ 894 emit_a32_mov_r(dst_lo, src_lo, ctx); 895 emit_a32_mov_r(dst_hi, src_hi, ctx); 896 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) { 897 const u8 *tmp = bpf2a32[TMP_REG_1]; 898 899 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); 900 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); 901 } else if (is_stacked(src_lo)) { 902 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); 903 } else if (is_stacked(dst_lo)) { 904 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); 905 } else { 906 emit(ARM_MOV_R(dst[0], src[0]), ctx); 907 emit(ARM_MOV_R(dst[1], src[1]), ctx); 908 } 909 } 910 911 /* dst = (signed)src */ 912 static inline void emit_a32_movsx_r64(const bool is64, const u8 off, const s8 dst[], const s8 src[], 913 struct jit_ctx *ctx) { 914 const s8 *tmp = bpf2a32[TMP_REG_1]; 915 s8 rs; 916 s8 rd; 917 918 if (is_stacked(dst_lo)) 919 rd = tmp[1]; 920 else 921 rd = dst_lo; 922 rs = arm_bpf_get_reg32(src_lo, rd, ctx); 923 /* rs may be one of src[1], dst[1], or tmp[1] */ 924 925 /* Sign extend rs if needed. If off == 32, lower 32-bits of src are moved to dst and sign 926 * extension only happens in the upper 64 bits. 927 */ 928 if (off != 32) { 929 /* Sign extend rs into rd */ 930 emit(ARM_LSL_I(rd, rs, 32 - off), ctx); 931 emit(ARM_ASR_I(rd, rd, 32 - off), ctx); 932 } else { 933 rd = rs; 934 } 935 936 /* Write rd to dst_lo 937 * 938 * Optimization: 939 * Assume: 940 * 1. dst == src and stacked. 941 * 2. off == 32 942 * 943 * In this case src_lo was loaded into rd(tmp[1]) but rd was not sign extended as off==32. 944 * So, we don't need to write rd back to dst_lo as they have the same value. 945 * This saves us one str instruction. 946 */ 947 if (dst_lo != src_lo || off != 32) 948 arm_bpf_put_reg32(dst_lo, rd, ctx); 949 950 if (!is64) { 951 if (!ctx->prog->aux->verifier_zext) 952 /* Zero out high 4 bytes */ 953 emit_a32_mov_i(dst_hi, 0, ctx); 954 } else { 955 if (is_stacked(dst_hi)) { 956 emit(ARM_ASR_I(tmp[0], rd, 31), ctx); 957 arm_bpf_put_reg32(dst_hi, tmp[0], ctx); 958 } else { 959 emit(ARM_ASR_I(dst_hi, rd, 31), ctx); 960 } 961 } 962 } 963 964 /* Shift operations */ 965 static inline void emit_a32_alu_i(const s8 dst, const u32 val, 966 struct jit_ctx *ctx, const u8 op) { 967 const s8 *tmp = bpf2a32[TMP_REG_1]; 968 s8 rd; 969 970 rd = arm_bpf_get_reg32(dst, tmp[0], ctx); 971 972 /* Do shift operation */ 973 switch (op) { 974 case BPF_LSH: 975 emit(ARM_LSL_I(rd, rd, val), ctx); 976 break; 977 case BPF_RSH: 978 emit(ARM_LSR_I(rd, rd, val), ctx); 979 break; 980 case BPF_ARSH: 981 emit(ARM_ASR_I(rd, rd, val), ctx); 982 break; 983 case BPF_NEG: 984 emit(ARM_RSB_I(rd, rd, val), ctx); 985 break; 986 } 987 988 arm_bpf_put_reg32(dst, rd, ctx); 989 } 990 991 /* dst = ~dst (64 bit) */ 992 static inline void emit_a32_neg64(const s8 dst[], 993 struct jit_ctx *ctx){ 994 const s8 *tmp = bpf2a32[TMP_REG_1]; 995 const s8 *rd; 996 997 /* Setup Operand */ 998 rd = arm_bpf_get_reg64(dst, tmp, ctx); 999 1000 /* Do Negate Operation */ 1001 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx); 1002 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx); 1003 1004 arm_bpf_put_reg64(dst, rd, ctx); 1005 } 1006 1007 /* dst = dst << src */ 1008 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[], 1009 struct jit_ctx *ctx) { 1010 const s8 *tmp = bpf2a32[TMP_REG_1]; 1011 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1012 const s8 *rd; 1013 s8 rt; 1014 1015 /* Setup Operands */ 1016 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 1017 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1018 1019 /* Do LSH operation */ 1020 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx); 1021 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx); 1022 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx); 1023 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx); 1024 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx); 1025 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx); 1026 1027 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); 1028 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); 1029 } 1030 1031 /* dst = dst >> src (signed)*/ 1032 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[], 1033 struct jit_ctx *ctx) { 1034 const s8 *tmp = bpf2a32[TMP_REG_1]; 1035 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1036 const s8 *rd; 1037 s8 rt; 1038 1039 /* Setup Operands */ 1040 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 1041 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1042 1043 /* Do the ARSH operation */ 1044 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); 1045 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); 1046 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); 1047 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); 1048 _emit(ARM_COND_PL, 1049 ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx); 1050 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx); 1051 1052 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); 1053 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); 1054 } 1055 1056 /* dst = dst >> src */ 1057 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[], 1058 struct jit_ctx *ctx) { 1059 const s8 *tmp = bpf2a32[TMP_REG_1]; 1060 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1061 const s8 *rd; 1062 s8 rt; 1063 1064 /* Setup Operands */ 1065 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 1066 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1067 1068 /* Do RSH operation */ 1069 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); 1070 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); 1071 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); 1072 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); 1073 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx); 1074 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx); 1075 1076 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); 1077 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); 1078 } 1079 1080 /* dst = dst << val */ 1081 static inline void emit_a32_lsh_i64(const s8 dst[], 1082 const u32 val, struct jit_ctx *ctx){ 1083 const s8 *tmp = bpf2a32[TMP_REG_1]; 1084 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1085 const s8 *rd; 1086 1087 /* Setup operands */ 1088 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1089 1090 /* Do LSH operation */ 1091 if (val < 32) { 1092 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx); 1093 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx); 1094 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx); 1095 } else { 1096 if (val == 32) 1097 emit(ARM_MOV_R(rd[0], rd[1]), ctx); 1098 else 1099 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx); 1100 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx); 1101 } 1102 1103 arm_bpf_put_reg64(dst, rd, ctx); 1104 } 1105 1106 /* dst = dst >> val */ 1107 static inline void emit_a32_rsh_i64(const s8 dst[], 1108 const u32 val, struct jit_ctx *ctx) { 1109 const s8 *tmp = bpf2a32[TMP_REG_1]; 1110 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1111 const s8 *rd; 1112 1113 /* Setup operands */ 1114 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1115 1116 /* Do LSR operation */ 1117 if (val == 0) { 1118 /* An immediate value of 0 encodes a shift amount of 32 1119 * for LSR. To shift by 0, don't do anything. 1120 */ 1121 } else if (val < 32) { 1122 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); 1123 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); 1124 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx); 1125 } else if (val == 32) { 1126 emit(ARM_MOV_R(rd[1], rd[0]), ctx); 1127 emit(ARM_MOV_I(rd[0], 0), ctx); 1128 } else { 1129 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx); 1130 emit(ARM_MOV_I(rd[0], 0), ctx); 1131 } 1132 1133 arm_bpf_put_reg64(dst, rd, ctx); 1134 } 1135 1136 /* dst = dst >> val (signed) */ 1137 static inline void emit_a32_arsh_i64(const s8 dst[], 1138 const u32 val, struct jit_ctx *ctx){ 1139 const s8 *tmp = bpf2a32[TMP_REG_1]; 1140 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1141 const s8 *rd; 1142 1143 /* Setup operands */ 1144 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1145 1146 /* Do ARSH operation */ 1147 if (val == 0) { 1148 /* An immediate value of 0 encodes a shift amount of 32 1149 * for ASR. To shift by 0, don't do anything. 1150 */ 1151 } else if (val < 32) { 1152 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); 1153 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); 1154 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx); 1155 } else if (val == 32) { 1156 emit(ARM_MOV_R(rd[1], rd[0]), ctx); 1157 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); 1158 } else { 1159 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx); 1160 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); 1161 } 1162 1163 arm_bpf_put_reg64(dst, rd, ctx); 1164 } 1165 1166 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[], 1167 struct jit_ctx *ctx) { 1168 const s8 *tmp = bpf2a32[TMP_REG_1]; 1169 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1170 const s8 *rd, *rt; 1171 1172 /* Setup operands for multiplication */ 1173 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1174 rt = arm_bpf_get_reg64(src, tmp2, ctx); 1175 1176 /* Do Multiplication */ 1177 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx); 1178 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx); 1179 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx); 1180 1181 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx); 1182 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx); 1183 1184 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx); 1185 arm_bpf_put_reg32(dst_hi, rd[0], ctx); 1186 } 1187 1188 static bool is_ldst_imm(s16 off, const u8 size) 1189 { 1190 s16 off_max = 0; 1191 1192 switch (size) { 1193 case BPF_B: 1194 case BPF_W: 1195 off_max = 0xfff; 1196 break; 1197 case BPF_H: 1198 off_max = 0xff; 1199 break; 1200 case BPF_DW: 1201 /* Need to make sure off+4 does not overflow. */ 1202 off_max = 0xfff - 4; 1203 break; 1204 } 1205 return -off_max <= off && off <= off_max; 1206 } 1207 1208 static bool is_ldst_imm8(s16 off, const u8 size) 1209 { 1210 s16 off_max = 0; 1211 1212 switch (size) { 1213 case BPF_B: 1214 off_max = 0xff; 1215 break; 1216 case BPF_W: 1217 off_max = 0xfff; 1218 break; 1219 case BPF_H: 1220 off_max = 0xff; 1221 break; 1222 } 1223 return -off_max <= off && off <= off_max; 1224 } 1225 1226 /* *(size *)(dst + off) = src */ 1227 static inline void emit_str_r(const s8 dst, const s8 src[], 1228 s16 off, struct jit_ctx *ctx, const u8 sz){ 1229 const s8 *tmp = bpf2a32[TMP_REG_1]; 1230 s8 rd; 1231 1232 rd = arm_bpf_get_reg32(dst, tmp[1], ctx); 1233 1234 if (!is_ldst_imm(off, sz)) { 1235 emit_a32_mov_i(tmp[0], off, ctx); 1236 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx); 1237 rd = tmp[0]; 1238 off = 0; 1239 } 1240 switch (sz) { 1241 case BPF_B: 1242 /* Store a Byte */ 1243 emit(ARM_STRB_I(src_lo, rd, off), ctx); 1244 break; 1245 case BPF_H: 1246 /* Store a HalfWord */ 1247 emit(ARM_STRH_I(src_lo, rd, off), ctx); 1248 break; 1249 case BPF_W: 1250 /* Store a Word */ 1251 emit(ARM_STR_I(src_lo, rd, off), ctx); 1252 break; 1253 case BPF_DW: 1254 /* Store a Double Word */ 1255 emit(ARM_STR_I(src_lo, rd, off), ctx); 1256 emit(ARM_STR_I(src_hi, rd, off + 4), ctx); 1257 break; 1258 } 1259 } 1260 1261 /* dst = *(size*)(src + off) */ 1262 static inline void emit_ldx_r(const s8 dst[], const s8 src, 1263 s16 off, struct jit_ctx *ctx, const u8 sz){ 1264 const s8 *tmp = bpf2a32[TMP_REG_1]; 1265 const s8 *rd = is_stacked(dst_lo) ? tmp : dst; 1266 s8 rm = src; 1267 1268 if (!is_ldst_imm(off, sz)) { 1269 emit_a32_mov_i(tmp[0], off, ctx); 1270 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx); 1271 rm = tmp[0]; 1272 off = 0; 1273 } else if (rd[1] == rm) { 1274 emit(ARM_MOV_R(tmp[0], rm), ctx); 1275 rm = tmp[0]; 1276 } 1277 switch (sz) { 1278 case BPF_B: 1279 /* Load a Byte */ 1280 emit(ARM_LDRB_I(rd[1], rm, off), ctx); 1281 if (!ctx->prog->aux->verifier_zext) 1282 emit_a32_mov_i(rd[0], 0, ctx); 1283 break; 1284 case BPF_H: 1285 /* Load a HalfWord */ 1286 emit(ARM_LDRH_I(rd[1], rm, off), ctx); 1287 if (!ctx->prog->aux->verifier_zext) 1288 emit_a32_mov_i(rd[0], 0, ctx); 1289 break; 1290 case BPF_W: 1291 /* Load a Word */ 1292 emit(ARM_LDR_I(rd[1], rm, off), ctx); 1293 if (!ctx->prog->aux->verifier_zext) 1294 emit_a32_mov_i(rd[0], 0, ctx); 1295 break; 1296 case BPF_DW: 1297 /* Load a Double Word */ 1298 emit(ARM_LDR_I(rd[1], rm, off), ctx); 1299 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx); 1300 break; 1301 } 1302 arm_bpf_put_reg64(dst, rd, ctx); 1303 } 1304 1305 /* dst = *(signed size*)(src + off) */ 1306 static inline void emit_ldsx_r(const s8 dst[], const s8 src, 1307 s16 off, struct jit_ctx *ctx, const u8 sz){ 1308 const s8 *tmp = bpf2a32[TMP_REG_1]; 1309 const s8 *rd = is_stacked(dst_lo) ? tmp : dst; 1310 s8 rm = src; 1311 int add_off; 1312 1313 if (!is_ldst_imm8(off, sz)) { 1314 /* 1315 * offset does not fit in the load/store immediate, 1316 * construct an ADD instruction to apply the offset. 1317 */ 1318 add_off = imm8m(off); 1319 if (add_off > 0) { 1320 emit(ARM_ADD_I(tmp[0], src, add_off), ctx); 1321 rm = tmp[0]; 1322 } else { 1323 emit_a32_mov_i(tmp[0], off, ctx); 1324 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx); 1325 rm = tmp[0]; 1326 } 1327 off = 0; 1328 } 1329 1330 switch (sz) { 1331 case BPF_B: 1332 /* Load a Byte with sign extension*/ 1333 emit(ARM_LDRSB_I(rd[1], rm, off), ctx); 1334 break; 1335 case BPF_H: 1336 /* Load a HalfWord with sign extension*/ 1337 emit(ARM_LDRSH_I(rd[1], rm, off), ctx); 1338 break; 1339 case BPF_W: 1340 /* Load a Word*/ 1341 emit(ARM_LDR_I(rd[1], rm, off), ctx); 1342 break; 1343 } 1344 /* Carry the sign extension to upper 32 bits */ 1345 emit(ARM_ASR_I(rd[0], rd[1], 31), ctx); 1346 arm_bpf_put_reg64(dst, rd, ctx); 1347 } 1348 1349 /* Arithmatic Operation */ 1350 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm, 1351 const u8 rn, struct jit_ctx *ctx, u8 op, 1352 bool is_jmp64) { 1353 switch (op) { 1354 case BPF_JSET: 1355 if (is_jmp64) { 1356 emit(ARM_AND_R(ARM_IP, rt, rn), ctx); 1357 emit(ARM_AND_R(ARM_LR, rd, rm), ctx); 1358 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx); 1359 } else { 1360 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx); 1361 } 1362 break; 1363 case BPF_JEQ: 1364 case BPF_JNE: 1365 case BPF_JGT: 1366 case BPF_JGE: 1367 case BPF_JLE: 1368 case BPF_JLT: 1369 if (is_jmp64) { 1370 emit(ARM_CMP_R(rd, rm), ctx); 1371 /* Only compare low halve if high halve are equal. */ 1372 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx); 1373 } else { 1374 emit(ARM_CMP_R(rt, rn), ctx); 1375 } 1376 break; 1377 case BPF_JSLE: 1378 case BPF_JSGT: 1379 emit(ARM_CMP_R(rn, rt), ctx); 1380 if (is_jmp64) 1381 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx); 1382 break; 1383 case BPF_JSLT: 1384 case BPF_JSGE: 1385 emit(ARM_CMP_R(rt, rn), ctx); 1386 if (is_jmp64) 1387 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx); 1388 break; 1389 } 1390 } 1391 1392 static int out_offset = -1; /* initialized on the first pass of build_body() */ 1393 static int emit_bpf_tail_call(struct jit_ctx *ctx) 1394 { 1395 1396 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ 1397 const s8 *r2 = bpf2a32[BPF_REG_2]; 1398 const s8 *r3 = bpf2a32[BPF_REG_3]; 1399 const s8 *tmp = bpf2a32[TMP_REG_1]; 1400 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1401 const s8 *tcc = bpf2a32[TCALL_CNT]; 1402 const s8 *tc; 1403 const int idx0 = ctx->idx; 1404 #define cur_offset (ctx->idx - idx0) 1405 #define jmp_offset (out_offset - (cur_offset) - 2) 1406 u32 lo, hi; 1407 s8 r_array, r_index; 1408 int off; 1409 1410 /* if (index >= array->map.max_entries) 1411 * goto out; 1412 */ 1413 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) > 1414 ARM_INST_LDST__IMM12); 1415 off = offsetof(struct bpf_array, map.max_entries); 1416 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx); 1417 /* index is 32-bit for arrays */ 1418 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx); 1419 /* array->map.max_entries */ 1420 emit(ARM_LDR_I(tmp[1], r_array, off), ctx); 1421 /* index >= array->map.max_entries */ 1422 emit(ARM_CMP_R(r_index, tmp[1]), ctx); 1423 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); 1424 1425 /* tmp2[0] = array, tmp2[1] = index */ 1426 1427 /* 1428 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT) 1429 * goto out; 1430 * tail_call_cnt++; 1431 */ 1432 lo = (u32)MAX_TAIL_CALL_CNT; 1433 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32); 1434 tc = arm_bpf_get_reg64(tcc, tmp, ctx); 1435 emit(ARM_CMP_I(tc[0], hi), ctx); 1436 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx); 1437 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); 1438 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx); 1439 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx); 1440 arm_bpf_put_reg64(tcc, tmp, ctx); 1441 1442 /* prog = array->ptrs[index] 1443 * if (prog == NULL) 1444 * goto out; 1445 */ 1446 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0); 1447 off = imm8m(offsetof(struct bpf_array, ptrs)); 1448 emit(ARM_ADD_I(tmp[1], r_array, off), ctx); 1449 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx); 1450 emit(ARM_CMP_I(tmp[1], 0), ctx); 1451 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); 1452 1453 /* goto *(prog->bpf_func + prologue_size); */ 1454 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) > 1455 ARM_INST_LDST__IMM12); 1456 off = offsetof(struct bpf_prog, bpf_func); 1457 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx); 1458 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx); 1459 emit_bx_r(tmp[1], ctx); 1460 1461 /* out: */ 1462 if (out_offset == -1) 1463 out_offset = cur_offset; 1464 if (cur_offset != out_offset) { 1465 pr_err_once("tail_call out_offset = %d, expected %d!\n", 1466 cur_offset, out_offset); 1467 return -1; 1468 } 1469 return 0; 1470 #undef cur_offset 1471 #undef jmp_offset 1472 } 1473 1474 /* 0xabcd => 0xcdab */ 1475 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx) 1476 { 1477 #if __LINUX_ARM_ARCH__ < 6 1478 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1479 1480 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); 1481 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx); 1482 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); 1483 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx); 1484 #else /* ARMv6+ */ 1485 emit(ARM_REV16(rd, rn), ctx); 1486 #endif 1487 } 1488 1489 /* 0xabcdefgh => 0xghefcdab */ 1490 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx) 1491 { 1492 #if __LINUX_ARM_ARCH__ < 6 1493 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1494 1495 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); 1496 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx); 1497 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx); 1498 1499 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx); 1500 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx); 1501 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx); 1502 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); 1503 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx); 1504 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx); 1505 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx); 1506 1507 #else /* ARMv6+ */ 1508 emit(ARM_REV(rd, rn), ctx); 1509 #endif 1510 } 1511 1512 // push the scratch stack register on top of the stack 1513 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx) 1514 { 1515 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1516 const s8 *rt; 1517 u16 reg_set = 0; 1518 1519 rt = arm_bpf_get_reg64(src, tmp2, ctx); 1520 1521 reg_set = (1 << rt[1]) | (1 << rt[0]); 1522 emit(ARM_PUSH(reg_set), ctx); 1523 } 1524 1525 static void build_prologue(struct jit_ctx *ctx) 1526 { 1527 const s8 arm_r0 = bpf2a32[BPF_REG_0][1]; 1528 const s8 *bpf_r1 = bpf2a32[BPF_REG_1]; 1529 const s8 *bpf_fp = bpf2a32[BPF_REG_FP]; 1530 const s8 *tcc = bpf2a32[TCALL_CNT]; 1531 1532 /* Save callee saved registers. */ 1533 #ifdef CONFIG_FRAME_POINTER 1534 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC; 1535 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx); 1536 emit(ARM_PUSH(reg_set), ctx); 1537 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx); 1538 #else 1539 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx); 1540 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx); 1541 #endif 1542 /* mov r3, #0 */ 1543 /* sub r2, sp, #SCRATCH_SIZE */ 1544 emit(ARM_MOV_I(bpf_r1[0], 0), ctx); 1545 emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx); 1546 1547 ctx->stack_size = imm8m(STACK_SIZE); 1548 1549 /* Set up function call stack */ 1550 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx); 1551 1552 /* Set up BPF prog stack base register */ 1553 emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx); 1554 1555 /* Initialize Tail Count */ 1556 emit(ARM_MOV_I(bpf_r1[1], 0), ctx); 1557 emit_a32_mov_r64(true, tcc, bpf_r1, ctx); 1558 1559 /* Move BPF_CTX to BPF_R1 */ 1560 emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx); 1561 1562 /* end of prologue */ 1563 } 1564 1565 /* restore callee saved registers. */ 1566 static void build_epilogue(struct jit_ctx *ctx) 1567 { 1568 #ifdef CONFIG_FRAME_POINTER 1569 /* When using frame pointers, some additional registers need to 1570 * be loaded. */ 1571 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP; 1572 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx); 1573 emit(ARM_LDM(ARM_SP, reg_set), ctx); 1574 #else 1575 /* Restore callee saved registers. */ 1576 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx); 1577 emit(ARM_POP(CALLEE_POP_MASK), ctx); 1578 #endif 1579 } 1580 1581 /* 1582 * Convert an eBPF instruction to native instruction, i.e 1583 * JITs an eBPF instruction. 1584 * Returns : 1585 * 0 - Successfully JITed an 8-byte eBPF instruction 1586 * >0 - Successfully JITed a 16-byte eBPF instruction 1587 * <0 - Failed to JIT. 1588 */ 1589 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) 1590 { 1591 const u8 code = insn->code; 1592 const s8 *dst = bpf2a32[insn->dst_reg]; 1593 const s8 *src = bpf2a32[insn->src_reg]; 1594 const s8 *tmp = bpf2a32[TMP_REG_1]; 1595 const s8 *tmp2 = bpf2a32[TMP_REG_2]; 1596 const s16 off = insn->off; 1597 const s32 imm = insn->imm; 1598 const int i = insn - ctx->prog->insnsi; 1599 const bool is64 = BPF_CLASS(code) == BPF_ALU64; 1600 const s8 *rd, *rs; 1601 s8 rd_lo, rt, rm, rn; 1602 s32 jmp_offset; 1603 1604 #define check_imm(bits, imm) do { \ 1605 if ((imm) >= (1 << ((bits) - 1)) || \ 1606 (imm) < -(1 << ((bits) - 1))) { \ 1607 pr_info("[%2d] imm=%d(0x%x) out of range\n", \ 1608 i, imm, imm); \ 1609 return -EINVAL; \ 1610 } \ 1611 } while (0) 1612 #define check_imm24(imm) check_imm(24, imm) 1613 1614 switch (code) { 1615 /* ALU operations */ 1616 1617 /* dst = src */ 1618 case BPF_ALU | BPF_MOV | BPF_K: 1619 case BPF_ALU | BPF_MOV | BPF_X: 1620 case BPF_ALU64 | BPF_MOV | BPF_K: 1621 case BPF_ALU64 | BPF_MOV | BPF_X: 1622 switch (BPF_SRC(code)) { 1623 case BPF_X: 1624 if (imm == 1) { 1625 /* Special mov32 for zext */ 1626 emit_a32_mov_i(dst_hi, 0, ctx); 1627 break; 1628 } 1629 if (insn->off) 1630 emit_a32_movsx_r64(is64, insn->off, dst, src, ctx); 1631 else 1632 emit_a32_mov_r64(is64, dst, src, ctx); 1633 break; 1634 case BPF_K: 1635 /* Sign-extend immediate value to destination reg */ 1636 emit_a32_mov_se_i64(is64, dst, imm, ctx); 1637 break; 1638 } 1639 break; 1640 /* dst = dst + src/imm */ 1641 /* dst = dst - src/imm */ 1642 /* dst = dst | src/imm */ 1643 /* dst = dst & src/imm */ 1644 /* dst = dst ^ src/imm */ 1645 /* dst = dst * src/imm */ 1646 /* dst = dst << src */ 1647 /* dst = dst >> src */ 1648 case BPF_ALU | BPF_ADD | BPF_K: 1649 case BPF_ALU | BPF_ADD | BPF_X: 1650 case BPF_ALU | BPF_SUB | BPF_K: 1651 case BPF_ALU | BPF_SUB | BPF_X: 1652 case BPF_ALU | BPF_OR | BPF_K: 1653 case BPF_ALU | BPF_OR | BPF_X: 1654 case BPF_ALU | BPF_AND | BPF_K: 1655 case BPF_ALU | BPF_AND | BPF_X: 1656 case BPF_ALU | BPF_XOR | BPF_K: 1657 case BPF_ALU | BPF_XOR | BPF_X: 1658 case BPF_ALU | BPF_MUL | BPF_K: 1659 case BPF_ALU | BPF_MUL | BPF_X: 1660 case BPF_ALU | BPF_LSH | BPF_X: 1661 case BPF_ALU | BPF_RSH | BPF_X: 1662 case BPF_ALU | BPF_ARSH | BPF_X: 1663 case BPF_ALU64 | BPF_ADD | BPF_K: 1664 case BPF_ALU64 | BPF_ADD | BPF_X: 1665 case BPF_ALU64 | BPF_SUB | BPF_K: 1666 case BPF_ALU64 | BPF_SUB | BPF_X: 1667 case BPF_ALU64 | BPF_OR | BPF_K: 1668 case BPF_ALU64 | BPF_OR | BPF_X: 1669 case BPF_ALU64 | BPF_AND | BPF_K: 1670 case BPF_ALU64 | BPF_AND | BPF_X: 1671 case BPF_ALU64 | BPF_XOR | BPF_K: 1672 case BPF_ALU64 | BPF_XOR | BPF_X: 1673 switch (BPF_SRC(code)) { 1674 case BPF_X: 1675 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code)); 1676 break; 1677 case BPF_K: 1678 /* Move immediate value to the temporary register 1679 * and then do the ALU operation on the temporary 1680 * register as this will sign-extend the immediate 1681 * value into temporary reg and then it would be 1682 * safe to do the operation on it. 1683 */ 1684 emit_a32_mov_se_i64(is64, tmp2, imm, ctx); 1685 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code)); 1686 break; 1687 } 1688 break; 1689 /* dst = dst / src(imm) */ 1690 /* dst = dst % src(imm) */ 1691 case BPF_ALU | BPF_DIV | BPF_K: 1692 case BPF_ALU | BPF_DIV | BPF_X: 1693 case BPF_ALU | BPF_MOD | BPF_K: 1694 case BPF_ALU | BPF_MOD | BPF_X: 1695 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx); 1696 switch (BPF_SRC(code)) { 1697 case BPF_X: 1698 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx); 1699 break; 1700 case BPF_K: 1701 rt = tmp2[0]; 1702 emit_a32_mov_i(rt, imm, ctx); 1703 break; 1704 default: 1705 rt = src_lo; 1706 break; 1707 } 1708 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code), off); 1709 arm_bpf_put_reg32(dst_lo, rd_lo, ctx); 1710 if (!ctx->prog->aux->verifier_zext) 1711 emit_a32_mov_i(dst_hi, 0, ctx); 1712 break; 1713 case BPF_ALU64 | BPF_DIV | BPF_K: 1714 case BPF_ALU64 | BPF_DIV | BPF_X: 1715 case BPF_ALU64 | BPF_MOD | BPF_K: 1716 case BPF_ALU64 | BPF_MOD | BPF_X: 1717 rd = arm_bpf_get_reg64(dst, tmp2, ctx); 1718 switch (BPF_SRC(code)) { 1719 case BPF_X: 1720 rs = arm_bpf_get_reg64(src, tmp, ctx); 1721 break; 1722 case BPF_K: 1723 rs = tmp; 1724 emit_a32_mov_se_i64(is64, rs, imm, ctx); 1725 break; 1726 } 1727 emit_udivmod64(rd, rd, rs, ctx, BPF_OP(code), off); 1728 arm_bpf_put_reg64(dst, rd, ctx); 1729 break; 1730 /* dst = dst << imm */ 1731 /* dst = dst >> imm */ 1732 /* dst = dst >> imm (signed) */ 1733 case BPF_ALU | BPF_LSH | BPF_K: 1734 case BPF_ALU | BPF_RSH | BPF_K: 1735 case BPF_ALU | BPF_ARSH | BPF_K: 1736 if (unlikely(imm > 31)) 1737 return -EINVAL; 1738 if (imm) 1739 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code)); 1740 if (!ctx->prog->aux->verifier_zext) 1741 emit_a32_mov_i(dst_hi, 0, ctx); 1742 break; 1743 /* dst = dst << imm */ 1744 case BPF_ALU64 | BPF_LSH | BPF_K: 1745 if (unlikely(imm > 63)) 1746 return -EINVAL; 1747 emit_a32_lsh_i64(dst, imm, ctx); 1748 break; 1749 /* dst = dst >> imm */ 1750 case BPF_ALU64 | BPF_RSH | BPF_K: 1751 if (unlikely(imm > 63)) 1752 return -EINVAL; 1753 emit_a32_rsh_i64(dst, imm, ctx); 1754 break; 1755 /* dst = dst << src */ 1756 case BPF_ALU64 | BPF_LSH | BPF_X: 1757 emit_a32_lsh_r64(dst, src, ctx); 1758 break; 1759 /* dst = dst >> src */ 1760 case BPF_ALU64 | BPF_RSH | BPF_X: 1761 emit_a32_rsh_r64(dst, src, ctx); 1762 break; 1763 /* dst = dst >> src (signed) */ 1764 case BPF_ALU64 | BPF_ARSH | BPF_X: 1765 emit_a32_arsh_r64(dst, src, ctx); 1766 break; 1767 /* dst = dst >> imm (signed) */ 1768 case BPF_ALU64 | BPF_ARSH | BPF_K: 1769 if (unlikely(imm > 63)) 1770 return -EINVAL; 1771 emit_a32_arsh_i64(dst, imm, ctx); 1772 break; 1773 /* dst = ~dst */ 1774 case BPF_ALU | BPF_NEG: 1775 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code)); 1776 if (!ctx->prog->aux->verifier_zext) 1777 emit_a32_mov_i(dst_hi, 0, ctx); 1778 break; 1779 /* dst = ~dst (64 bit) */ 1780 case BPF_ALU64 | BPF_NEG: 1781 emit_a32_neg64(dst, ctx); 1782 break; 1783 /* dst = dst * src/imm */ 1784 case BPF_ALU64 | BPF_MUL | BPF_X: 1785 case BPF_ALU64 | BPF_MUL | BPF_K: 1786 switch (BPF_SRC(code)) { 1787 case BPF_X: 1788 emit_a32_mul_r64(dst, src, ctx); 1789 break; 1790 case BPF_K: 1791 /* Move immediate value to the temporary register 1792 * and then do the multiplication on it as this 1793 * will sign-extend the immediate value into temp 1794 * reg then it would be safe to do the operation 1795 * on it. 1796 */ 1797 emit_a32_mov_se_i64(is64, tmp2, imm, ctx); 1798 emit_a32_mul_r64(dst, tmp2, ctx); 1799 break; 1800 } 1801 break; 1802 /* dst = htole(dst) */ 1803 /* dst = htobe(dst) */ 1804 case BPF_ALU | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */ 1805 case BPF_ALU | BPF_END | BPF_FROM_BE: /* also BPF_TO_BE */ 1806 /* dst = bswap(dst) */ 1807 case BPF_ALU64 | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */ 1808 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1809 if (BPF_SRC(code) == BPF_FROM_LE && BPF_CLASS(code) != BPF_ALU64) 1810 goto emit_bswap_uxt; 1811 switch (imm) { 1812 case 16: 1813 emit_rev16(rd[1], rd[1], ctx); 1814 goto emit_bswap_uxt; 1815 case 32: 1816 emit_rev32(rd[1], rd[1], ctx); 1817 goto emit_bswap_uxt; 1818 case 64: 1819 emit_rev32(ARM_LR, rd[1], ctx); 1820 emit_rev32(rd[1], rd[0], ctx); 1821 emit(ARM_MOV_R(rd[0], ARM_LR), ctx); 1822 break; 1823 } 1824 goto exit; 1825 emit_bswap_uxt: 1826 switch (imm) { 1827 case 16: 1828 /* zero-extend 16 bits into 64 bits */ 1829 #if __LINUX_ARM_ARCH__ < 6 1830 emit_a32_mov_i(tmp2[1], 0xffff, ctx); 1831 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx); 1832 #else /* ARMv6+ */ 1833 emit(ARM_UXTH(rd[1], rd[1]), ctx); 1834 #endif 1835 if (!ctx->prog->aux->verifier_zext) 1836 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); 1837 break; 1838 case 32: 1839 /* zero-extend 32 bits into 64 bits */ 1840 if (!ctx->prog->aux->verifier_zext) 1841 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); 1842 break; 1843 case 64: 1844 /* nop */ 1845 break; 1846 } 1847 exit: 1848 arm_bpf_put_reg64(dst, rd, ctx); 1849 break; 1850 /* dst = imm64 */ 1851 case BPF_LD | BPF_IMM | BPF_DW: 1852 { 1853 u64 val = (u32)imm | (u64)insn[1].imm << 32; 1854 1855 emit_a32_mov_i64(dst, val, ctx); 1856 1857 return 1; 1858 } 1859 /* LDX: dst = *(size *)(src + off) */ 1860 case BPF_LDX | BPF_MEM | BPF_W: 1861 case BPF_LDX | BPF_MEM | BPF_H: 1862 case BPF_LDX | BPF_MEM | BPF_B: 1863 case BPF_LDX | BPF_MEM | BPF_DW: 1864 /* LDSX: dst = *(signed size *)(src + off) */ 1865 case BPF_LDX | BPF_MEMSX | BPF_B: 1866 case BPF_LDX | BPF_MEMSX | BPF_H: 1867 case BPF_LDX | BPF_MEMSX | BPF_W: 1868 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 1869 if (BPF_MODE(insn->code) == BPF_MEMSX) 1870 emit_ldsx_r(dst, rn, off, ctx, BPF_SIZE(code)); 1871 else 1872 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code)); 1873 break; 1874 /* speculation barrier */ 1875 case BPF_ST | BPF_NOSPEC: 1876 break; 1877 /* ST: *(size *)(dst + off) = imm */ 1878 case BPF_ST | BPF_MEM | BPF_W: 1879 case BPF_ST | BPF_MEM | BPF_H: 1880 case BPF_ST | BPF_MEM | BPF_B: 1881 case BPF_ST | BPF_MEM | BPF_DW: 1882 switch (BPF_SIZE(code)) { 1883 case BPF_DW: 1884 /* Sign-extend immediate value into temp reg */ 1885 emit_a32_mov_se_i64(true, tmp2, imm, ctx); 1886 break; 1887 case BPF_W: 1888 case BPF_H: 1889 case BPF_B: 1890 emit_a32_mov_i(tmp2[1], imm, ctx); 1891 break; 1892 } 1893 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code)); 1894 break; 1895 /* Atomic ops */ 1896 case BPF_STX | BPF_ATOMIC | BPF_W: 1897 case BPF_STX | BPF_ATOMIC | BPF_DW: 1898 goto notyet; 1899 /* STX: *(size *)(dst + off) = src */ 1900 case BPF_STX | BPF_MEM | BPF_W: 1901 case BPF_STX | BPF_MEM | BPF_H: 1902 case BPF_STX | BPF_MEM | BPF_B: 1903 case BPF_STX | BPF_MEM | BPF_DW: 1904 rs = arm_bpf_get_reg64(src, tmp2, ctx); 1905 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code)); 1906 break; 1907 /* PC += off if dst == src */ 1908 /* PC += off if dst > src */ 1909 /* PC += off if dst >= src */ 1910 /* PC += off if dst < src */ 1911 /* PC += off if dst <= src */ 1912 /* PC += off if dst != src */ 1913 /* PC += off if dst > src (signed) */ 1914 /* PC += off if dst >= src (signed) */ 1915 /* PC += off if dst < src (signed) */ 1916 /* PC += off if dst <= src (signed) */ 1917 /* PC += off if dst & src */ 1918 case BPF_JMP | BPF_JEQ | BPF_X: 1919 case BPF_JMP | BPF_JGT | BPF_X: 1920 case BPF_JMP | BPF_JGE | BPF_X: 1921 case BPF_JMP | BPF_JNE | BPF_X: 1922 case BPF_JMP | BPF_JSGT | BPF_X: 1923 case BPF_JMP | BPF_JSGE | BPF_X: 1924 case BPF_JMP | BPF_JSET | BPF_X: 1925 case BPF_JMP | BPF_JLE | BPF_X: 1926 case BPF_JMP | BPF_JLT | BPF_X: 1927 case BPF_JMP | BPF_JSLT | BPF_X: 1928 case BPF_JMP | BPF_JSLE | BPF_X: 1929 case BPF_JMP32 | BPF_JEQ | BPF_X: 1930 case BPF_JMP32 | BPF_JGT | BPF_X: 1931 case BPF_JMP32 | BPF_JGE | BPF_X: 1932 case BPF_JMP32 | BPF_JNE | BPF_X: 1933 case BPF_JMP32 | BPF_JSGT | BPF_X: 1934 case BPF_JMP32 | BPF_JSGE | BPF_X: 1935 case BPF_JMP32 | BPF_JSET | BPF_X: 1936 case BPF_JMP32 | BPF_JLE | BPF_X: 1937 case BPF_JMP32 | BPF_JLT | BPF_X: 1938 case BPF_JMP32 | BPF_JSLT | BPF_X: 1939 case BPF_JMP32 | BPF_JSLE | BPF_X: 1940 /* Setup source registers */ 1941 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx); 1942 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); 1943 goto go_jmp; 1944 /* PC += off if dst == imm */ 1945 /* PC += off if dst > imm */ 1946 /* PC += off if dst >= imm */ 1947 /* PC += off if dst < imm */ 1948 /* PC += off if dst <= imm */ 1949 /* PC += off if dst != imm */ 1950 /* PC += off if dst > imm (signed) */ 1951 /* PC += off if dst >= imm (signed) */ 1952 /* PC += off if dst < imm (signed) */ 1953 /* PC += off if dst <= imm (signed) */ 1954 /* PC += off if dst & imm */ 1955 case BPF_JMP | BPF_JEQ | BPF_K: 1956 case BPF_JMP | BPF_JGT | BPF_K: 1957 case BPF_JMP | BPF_JGE | BPF_K: 1958 case BPF_JMP | BPF_JNE | BPF_K: 1959 case BPF_JMP | BPF_JSGT | BPF_K: 1960 case BPF_JMP | BPF_JSGE | BPF_K: 1961 case BPF_JMP | BPF_JSET | BPF_K: 1962 case BPF_JMP | BPF_JLT | BPF_K: 1963 case BPF_JMP | BPF_JLE | BPF_K: 1964 case BPF_JMP | BPF_JSLT | BPF_K: 1965 case BPF_JMP | BPF_JSLE | BPF_K: 1966 case BPF_JMP32 | BPF_JEQ | BPF_K: 1967 case BPF_JMP32 | BPF_JGT | BPF_K: 1968 case BPF_JMP32 | BPF_JGE | BPF_K: 1969 case BPF_JMP32 | BPF_JNE | BPF_K: 1970 case BPF_JMP32 | BPF_JSGT | BPF_K: 1971 case BPF_JMP32 | BPF_JSGE | BPF_K: 1972 case BPF_JMP32 | BPF_JSET | BPF_K: 1973 case BPF_JMP32 | BPF_JLT | BPF_K: 1974 case BPF_JMP32 | BPF_JLE | BPF_K: 1975 case BPF_JMP32 | BPF_JSLT | BPF_K: 1976 case BPF_JMP32 | BPF_JSLE | BPF_K: 1977 if (off == 0) 1978 break; 1979 rm = tmp2[0]; 1980 rn = tmp2[1]; 1981 /* Sign-extend immediate value */ 1982 emit_a32_mov_se_i64(true, tmp2, imm, ctx); 1983 go_jmp: 1984 /* Setup destination register */ 1985 rd = arm_bpf_get_reg64(dst, tmp, ctx); 1986 1987 /* Check for the condition */ 1988 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code), 1989 BPF_CLASS(code) == BPF_JMP); 1990 1991 /* Setup JUMP instruction */ 1992 jmp_offset = bpf2a32_offset(i+off, i, ctx); 1993 switch (BPF_OP(code)) { 1994 case BPF_JNE: 1995 case BPF_JSET: 1996 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx); 1997 break; 1998 case BPF_JEQ: 1999 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); 2000 break; 2001 case BPF_JGT: 2002 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); 2003 break; 2004 case BPF_JGE: 2005 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); 2006 break; 2007 case BPF_JSGT: 2008 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); 2009 break; 2010 case BPF_JSGE: 2011 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); 2012 break; 2013 case BPF_JLE: 2014 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx); 2015 break; 2016 case BPF_JLT: 2017 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx); 2018 break; 2019 case BPF_JSLT: 2020 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); 2021 break; 2022 case BPF_JSLE: 2023 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); 2024 break; 2025 } 2026 break; 2027 /* JMP OFF */ 2028 case BPF_JMP | BPF_JA: 2029 case BPF_JMP32 | BPF_JA: 2030 { 2031 if (BPF_CLASS(code) == BPF_JMP32 && imm != 0) 2032 jmp_offset = bpf2a32_offset(i + imm, i, ctx); 2033 else if (BPF_CLASS(code) == BPF_JMP && off != 0) 2034 jmp_offset = bpf2a32_offset(i + off, i, ctx); 2035 else 2036 break; 2037 2038 check_imm24(jmp_offset); 2039 emit(ARM_B(jmp_offset), ctx); 2040 break; 2041 } 2042 /* tail call */ 2043 case BPF_JMP | BPF_TAIL_CALL: 2044 if (emit_bpf_tail_call(ctx)) 2045 return -EFAULT; 2046 break; 2047 /* function call */ 2048 case BPF_JMP | BPF_CALL: 2049 { 2050 const s8 *r0 = bpf2a32[BPF_REG_0]; 2051 const s8 *r1 = bpf2a32[BPF_REG_1]; 2052 const s8 *r2 = bpf2a32[BPF_REG_2]; 2053 const s8 *r3 = bpf2a32[BPF_REG_3]; 2054 const s8 *r4 = bpf2a32[BPF_REG_4]; 2055 const s8 *r5 = bpf2a32[BPF_REG_5]; 2056 const u32 func = (u32)__bpf_call_base + (u32)imm; 2057 2058 emit_a32_mov_r64(true, r0, r1, ctx); 2059 emit_a32_mov_r64(true, r1, r2, ctx); 2060 emit_push_r64(r5, ctx); 2061 emit_push_r64(r4, ctx); 2062 emit_push_r64(r3, ctx); 2063 2064 emit_a32_mov_i(tmp[1], func, ctx); 2065 emit_blx_r(tmp[1], ctx); 2066 2067 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean 2068 break; 2069 } 2070 /* function return */ 2071 case BPF_JMP | BPF_EXIT: 2072 /* Optimization: when last instruction is EXIT 2073 * simply fallthrough to epilogue. 2074 */ 2075 if (i == ctx->prog->len - 1) 2076 break; 2077 jmp_offset = epilogue_offset(ctx); 2078 check_imm24(jmp_offset); 2079 emit(ARM_B(jmp_offset), ctx); 2080 break; 2081 notyet: 2082 pr_info_once("*** NOT YET: opcode %02x ***\n", code); 2083 return -EFAULT; 2084 default: 2085 pr_err_once("unknown opcode %02x\n", code); 2086 return -EINVAL; 2087 } 2088 2089 if (ctx->flags & FLAG_IMM_OVERFLOW) 2090 /* 2091 * this instruction generated an overflow when 2092 * trying to access the literal pool, so 2093 * delegate this filter to the kernel interpreter. 2094 */ 2095 return -1; 2096 return 0; 2097 } 2098 2099 static int build_body(struct jit_ctx *ctx) 2100 { 2101 const struct bpf_prog *prog = ctx->prog; 2102 unsigned int i; 2103 2104 for (i = 0; i < prog->len; i++) { 2105 const struct bpf_insn *insn = &(prog->insnsi[i]); 2106 int ret; 2107 2108 ret = build_insn(insn, ctx); 2109 2110 /* It's used with loading the 64 bit immediate value. */ 2111 if (ret > 0) { 2112 i++; 2113 if (ctx->target == NULL) 2114 ctx->offsets[i] = ctx->idx; 2115 continue; 2116 } 2117 2118 if (ctx->target == NULL) 2119 ctx->offsets[i] = ctx->idx; 2120 2121 /* If unsuccesful, return with error code */ 2122 if (ret) 2123 return ret; 2124 } 2125 return 0; 2126 } 2127 2128 static int validate_code(struct jit_ctx *ctx) 2129 { 2130 int i; 2131 2132 for (i = 0; i < ctx->idx; i++) { 2133 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF)) 2134 return -1; 2135 } 2136 2137 return 0; 2138 } 2139 2140 bool bpf_jit_needs_zext(void) 2141 { 2142 return true; 2143 } 2144 2145 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 2146 { 2147 struct bpf_prog *tmp, *orig_prog = prog; 2148 struct bpf_binary_header *header; 2149 bool tmp_blinded = false; 2150 struct jit_ctx ctx; 2151 unsigned int tmp_idx; 2152 unsigned int image_size; 2153 u8 *image_ptr; 2154 2155 /* If BPF JIT was not enabled then we must fall back to 2156 * the interpreter. 2157 */ 2158 if (!prog->jit_requested) 2159 return orig_prog; 2160 2161 /* If constant blinding was enabled and we failed during blinding 2162 * then we must fall back to the interpreter. Otherwise, we save 2163 * the new JITed code. 2164 */ 2165 tmp = bpf_jit_blind_constants(prog); 2166 2167 if (IS_ERR(tmp)) 2168 return orig_prog; 2169 if (tmp != prog) { 2170 tmp_blinded = true; 2171 prog = tmp; 2172 } 2173 2174 memset(&ctx, 0, sizeof(ctx)); 2175 ctx.prog = prog; 2176 ctx.cpu_architecture = cpu_architecture(); 2177 2178 /* Not able to allocate memory for offsets[] , then 2179 * we must fall back to the interpreter 2180 */ 2181 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL); 2182 if (ctx.offsets == NULL) { 2183 prog = orig_prog; 2184 goto out; 2185 } 2186 2187 /* 1) fake pass to find in the length of the JITed code, 2188 * to compute ctx->offsets and other context variables 2189 * needed to compute final JITed code. 2190 * Also, calculate random starting pointer/start of JITed code 2191 * which is prefixed by random number of fault instructions. 2192 * 2193 * If the first pass fails then there is no chance of it 2194 * being successful in the second pass, so just fall back 2195 * to the interpreter. 2196 */ 2197 if (build_body(&ctx)) { 2198 prog = orig_prog; 2199 goto out_off; 2200 } 2201 2202 tmp_idx = ctx.idx; 2203 build_prologue(&ctx); 2204 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; 2205 2206 ctx.epilogue_offset = ctx.idx; 2207 2208 #if __LINUX_ARM_ARCH__ < 7 2209 tmp_idx = ctx.idx; 2210 build_epilogue(&ctx); 2211 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4; 2212 2213 ctx.idx += ctx.imm_count; 2214 if (ctx.imm_count) { 2215 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL); 2216 if (ctx.imms == NULL) { 2217 prog = orig_prog; 2218 goto out_off; 2219 } 2220 } 2221 #else 2222 /* there's nothing about the epilogue on ARMv7 */ 2223 build_epilogue(&ctx); 2224 #endif 2225 /* Now we can get the actual image size of the JITed arm code. 2226 * Currently, we are not considering the THUMB-2 instructions 2227 * for jit, although it can decrease the size of the image. 2228 * 2229 * As each arm instruction is of length 32bit, we are translating 2230 * number of JITed instructions into the size required to store these 2231 * JITed code. 2232 */ 2233 image_size = sizeof(u32) * ctx.idx; 2234 2235 /* Now we know the size of the structure to make */ 2236 header = bpf_jit_binary_alloc(image_size, &image_ptr, 2237 sizeof(u32), jit_fill_hole); 2238 /* Not able to allocate memory for the structure then 2239 * we must fall back to the interpretation 2240 */ 2241 if (header == NULL) { 2242 prog = orig_prog; 2243 goto out_imms; 2244 } 2245 2246 /* 2.) Actual pass to generate final JIT code */ 2247 ctx.target = (u32 *) image_ptr; 2248 ctx.idx = 0; 2249 2250 build_prologue(&ctx); 2251 2252 /* If building the body of the JITed code fails somehow, 2253 * we fall back to the interpretation. 2254 */ 2255 if (build_body(&ctx) < 0) 2256 goto out_free; 2257 build_epilogue(&ctx); 2258 2259 /* 3.) Extra pass to validate JITed Code */ 2260 if (validate_code(&ctx)) 2261 goto out_free; 2262 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx)); 2263 2264 if (bpf_jit_enable > 1) 2265 /* there are 2 passes here */ 2266 bpf_jit_dump(prog->len, image_size, 2, ctx.target); 2267 2268 if (bpf_jit_binary_lock_ro(header)) 2269 goto out_free; 2270 prog->bpf_func = (void *)ctx.target; 2271 prog->jited = 1; 2272 prog->jited_len = image_size; 2273 2274 out_imms: 2275 #if __LINUX_ARM_ARCH__ < 7 2276 if (ctx.imm_count) 2277 kfree(ctx.imms); 2278 #endif 2279 out_off: 2280 kfree(ctx.offsets); 2281 out: 2282 if (tmp_blinded) 2283 bpf_jit_prog_release_other(prog, prog == orig_prog ? 2284 tmp : orig_prog); 2285 return prog; 2286 2287 out_free: 2288 image_ptr = NULL; 2289 bpf_jit_binary_free(header); 2290 prog = orig_prog; 2291 goto out_imms; 2292 } 2293 2294
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.