~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm/vfp/vfp.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-only */
  2 /*
  3  *  linux/arch/arm/vfp/vfp.h
  4  *
  5  *  Copyright (C) 2004 ARM Limited.
  6  *  Written by Deep Blue Solutions Limited.
  7  */
  8 
  9 static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
 10 {
 11         if (shift) {
 12                 if (shift < 32)
 13                         val = val >> shift | ((val << (32 - shift)) != 0);
 14                 else
 15                         val = val != 0;
 16         }
 17         return val;
 18 }
 19 
 20 static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
 21 {
 22         if (shift) {
 23                 if (shift < 64)
 24                         val = val >> shift | ((val << (64 - shift)) != 0);
 25                 else
 26                         val = val != 0;
 27         }
 28         return val;
 29 }
 30 
 31 static inline u32 vfp_hi64to32jamming(u64 val)
 32 {
 33         u32 v;
 34 
 35         asm(
 36         "cmp    %Q1, #1         @ vfp_hi64to32jamming\n\t"
 37         "movcc  %0, %R1\n\t"
 38         "orrcs  %0, %R1, #1"
 39         : "=r" (v) : "r" (val) : "cc");
 40 
 41         return v;
 42 }
 43 
 44 static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 45 {
 46         asm(    "adds   %Q0, %Q2, %Q4\n\t"
 47                 "adcs   %R0, %R2, %R4\n\t"
 48                 "adcs   %Q1, %Q3, %Q5\n\t"
 49                 "adc    %R1, %R3, %R5"
 50             : "=r" (nl), "=r" (nh)
 51             : "" (nl), "1" (nh), "r" (ml), "r" (mh)
 52             : "cc");
 53         *resh = nh;
 54         *resl = nl;
 55 }
 56 
 57 static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 58 {
 59         asm(    "subs   %Q0, %Q2, %Q4\n\t"
 60                 "sbcs   %R0, %R2, %R4\n\t"
 61                 "sbcs   %Q1, %Q3, %Q5\n\t"
 62                 "sbc    %R1, %R3, %R5\n\t"
 63             : "=r" (nl), "=r" (nh)
 64             : "" (nl), "1" (nh), "r" (ml), "r" (mh)
 65             : "cc");
 66         *resh = nh;
 67         *resl = nl;
 68 }
 69 
 70 static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
 71 {
 72         u32 nh, nl, mh, ml;
 73         u64 rh, rma, rmb, rl;
 74 
 75         nl = n;
 76         ml = m;
 77         rl = (u64)nl * ml;
 78 
 79         nh = n >> 32;
 80         rma = (u64)nh * ml;
 81 
 82         mh = m >> 32;
 83         rmb = (u64)nl * mh;
 84         rma += rmb;
 85 
 86         rh = (u64)nh * mh;
 87         rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
 88 
 89         rma <<= 32;
 90         rl += rma;
 91         rh += (rl < rma);
 92 
 93         *resl = rl;
 94         *resh = rh;
 95 }
 96 
 97 static inline void shift64left(u64 *resh, u64 *resl, u64 n)
 98 {
 99         *resh = n >> 63;
100         *resl = n << 1;
101 }
102 
103 static inline u64 vfp_hi64multiply64(u64 n, u64 m)
104 {
105         u64 rh, rl;
106         mul64to128(&rh, &rl, n, m);
107         return rh | (rl != 0);
108 }
109 
110 static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
111 {
112         u64 mh, ml, remh, reml, termh, terml, z;
113 
114         if (nh >= m)
115                 return ~0ULL;
116         mh = m >> 32;
117         if (mh << 32 <= nh) {
118                 z = 0xffffffff00000000ULL;
119         } else {
120                 z = nh;
121                 do_div(z, mh);
122                 z <<= 32;
123         }
124         mul64to128(&termh, &terml, m, z);
125         sub128(&remh, &reml, nh, nl, termh, terml);
126         ml = m << 32;
127         while ((s64)remh < 0) {
128                 z -= 0x100000000ULL;
129                 add128(&remh, &reml, remh, reml, mh, ml);
130         }
131         remh = (remh << 32) | (reml >> 32);
132         if (mh << 32 <= remh) {
133                 z |= 0xffffffff;
134         } else {
135                 do_div(remh, mh);
136                 z |= remh;
137         }
138         return z;
139 }
140 
141 /*
142  * Operations on unpacked elements
143  */
144 #define vfp_sign_negate(sign)   (sign ^ 0x8000)
145 
146 /*
147  * Single-precision
148  */
149 struct vfp_single {
150         s16     exponent;
151         u16     sign;
152         u32     significand;
153 };
154 
155 asmlinkage s32 vfp_get_float(unsigned int reg);
156 asmlinkage void vfp_put_float(s32 val, unsigned int reg);
157 
158 /*
159  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
160  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
161  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
162  *  which are not propagated to the float upon packing.
163  */
164 #define VFP_SINGLE_MANTISSA_BITS        (23)
165 #define VFP_SINGLE_EXPONENT_BITS        (8)
166 #define VFP_SINGLE_LOW_BITS             (32 - VFP_SINGLE_MANTISSA_BITS - 2)
167 #define VFP_SINGLE_LOW_BITS_MASK        ((1 << VFP_SINGLE_LOW_BITS) - 1)
168 
169 /*
170  * The bit in an unpacked float which indicates that it is a quiet NaN
171  */
172 #define VFP_SINGLE_SIGNIFICAND_QNAN     (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
173 
174 /*
175  * Operations on packed single-precision numbers
176  */
177 #define vfp_single_packed_sign(v)       ((v) & 0x80000000)
178 #define vfp_single_packed_negate(v)     ((v) ^ 0x80000000)
179 #define vfp_single_packed_abs(v)        ((v) & ~0x80000000)
180 #define vfp_single_packed_exponent(v)   (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
181 #define vfp_single_packed_mantissa(v)   ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
182 
183 /*
184  * Unpack a single-precision float.  Note that this returns the magnitude
185  * of the single-precision float mantissa with the 1. if necessary,
186  * aligned to bit 30.
187  */
188 static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
189 {
190         u32 significand;
191 
192         s->sign = vfp_single_packed_sign(val) >> 16,
193         s->exponent = vfp_single_packed_exponent(val);
194 
195         significand = (u32) val;
196         significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
197         if (s->exponent && s->exponent != 255)
198                 significand |= 0x40000000;
199         s->significand = significand;
200 }
201 
202 /*
203  * Re-pack a single-precision float.  This assumes that the float is
204  * already normalised such that the MSB is bit 30, _not_ bit 31.
205  */
206 static inline s32 vfp_single_pack(struct vfp_single *s)
207 {
208         u32 val;
209         val = (s->sign << 16) +
210               (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
211               (s->significand >> VFP_SINGLE_LOW_BITS);
212         return (s32)val;
213 }
214 
215 #define VFP_NUMBER              (1<<0)
216 #define VFP_ZERO                (1<<1)
217 #define VFP_DENORMAL            (1<<2)
218 #define VFP_INFINITY            (1<<3)
219 #define VFP_NAN                 (1<<4)
220 #define VFP_NAN_SIGNAL          (1<<5)
221 
222 #define VFP_QNAN                (VFP_NAN)
223 #define VFP_SNAN                (VFP_NAN|VFP_NAN_SIGNAL)
224 
225 static inline int vfp_single_type(struct vfp_single *s)
226 {
227         int type = VFP_NUMBER;
228         if (s->exponent == 255) {
229                 if (s->significand == 0)
230                         type = VFP_INFINITY;
231                 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
232                         type = VFP_QNAN;
233                 else
234                         type = VFP_SNAN;
235         } else if (s->exponent == 0) {
236                 if (s->significand == 0)
237                         type |= VFP_ZERO;
238                 else
239                         type |= VFP_DENORMAL;
240         }
241         return type;
242 }
243 
244 #ifndef DEBUG
245 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
246 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
247 #else
248 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
249 #endif
250 
251 /*
252  * Double-precision
253  */
254 struct vfp_double {
255         s16     exponent;
256         u16     sign;
257         u64     significand;
258 };
259 
260 /*
261  * VFP_REG_ZERO is a special register number for vfp_get_double
262  * which returns (double)0.0.  This is useful for the compare with
263  * zero instructions.
264  */
265 #ifdef CONFIG_VFPv3
266 #define VFP_REG_ZERO    32
267 #else
268 #define VFP_REG_ZERO    16
269 #endif
270 asmlinkage u64 vfp_get_double(unsigned int reg);
271 asmlinkage void vfp_put_double(u64 val, unsigned int reg);
272 
273 #define VFP_DOUBLE_MANTISSA_BITS        (52)
274 #define VFP_DOUBLE_EXPONENT_BITS        (11)
275 #define VFP_DOUBLE_LOW_BITS             (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
276 #define VFP_DOUBLE_LOW_BITS_MASK        ((1 << VFP_DOUBLE_LOW_BITS) - 1)
277 
278 /*
279  * The bit in an unpacked double which indicates that it is a quiet NaN
280  */
281 #define VFP_DOUBLE_SIGNIFICAND_QNAN     (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
282 
283 /*
284  * Operations on packed single-precision numbers
285  */
286 #define vfp_double_packed_sign(v)       ((v) & (1ULL << 63))
287 #define vfp_double_packed_negate(v)     ((v) ^ (1ULL << 63))
288 #define vfp_double_packed_abs(v)        ((v) & ~(1ULL << 63))
289 #define vfp_double_packed_exponent(v)   (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
290 #define vfp_double_packed_mantissa(v)   ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
291 
292 /*
293  * Unpack a double-precision float.  Note that this returns the magnitude
294  * of the double-precision float mantissa with the 1. if necessary,
295  * aligned to bit 62.
296  */
297 static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
298 {
299         u64 significand;
300 
301         s->sign = vfp_double_packed_sign(val) >> 48;
302         s->exponent = vfp_double_packed_exponent(val);
303 
304         significand = (u64) val;
305         significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
306         if (s->exponent && s->exponent != 2047)
307                 significand |= (1ULL << 62);
308         s->significand = significand;
309 }
310 
311 /*
312  * Re-pack a double-precision float.  This assumes that the float is
313  * already normalised such that the MSB is bit 30, _not_ bit 31.
314  */
315 static inline s64 vfp_double_pack(struct vfp_double *s)
316 {
317         u64 val;
318         val = ((u64)s->sign << 48) +
319               ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
320               (s->significand >> VFP_DOUBLE_LOW_BITS);
321         return (s64)val;
322 }
323 
324 static inline int vfp_double_type(struct vfp_double *s)
325 {
326         int type = VFP_NUMBER;
327         if (s->exponent == 2047) {
328                 if (s->significand == 0)
329                         type = VFP_INFINITY;
330                 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
331                         type = VFP_QNAN;
332                 else
333                         type = VFP_SNAN;
334         } else if (s->exponent == 0) {
335                 if (s->significand == 0)
336                         type |= VFP_ZERO;
337                 else
338                         type |= VFP_DENORMAL;
339         }
340         return type;
341 }
342 
343 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
344 
345 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
346 
347 /*
348  * A special flag to tell the normalisation code not to normalise.
349  */
350 #define VFP_NAN_FLAG    0x100
351 
352 /*
353  * A bit pattern used to indicate the initial (unset) value of the
354  * exception mask, in case nothing handles an instruction.  This
355  * doesn't include the NAN flag, which get masked out before
356  * we check for an error.
357  */
358 #define VFP_EXCEPTION_ERROR     ((u32)-1 & ~VFP_NAN_FLAG)
359 
360 /*
361  * A flag to tell vfp instruction type.
362  *  OP_SCALAR - this operation always operates in scalar mode
363  *  OP_SD - the instruction exceptionally writes to a single precision result.
364  *  OP_DD - the instruction exceptionally writes to a double precision result.
365  *  OP_SM - the instruction exceptionally reads from a single precision operand.
366  */
367 #define OP_SCALAR       (1 << 0)
368 #define OP_SD           (1 << 1)
369 #define OP_DD           (1 << 1)
370 #define OP_SM           (1 << 2)
371 
372 struct op {
373         u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
374         u32 flags;
375 };
376 
377 asmlinkage void vfp_save_state(void *location, u32 fpexc);
378 asmlinkage u32 vfp_load_state(const void *location);
379 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php