~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/crypto/polyval-ce-core.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * Implementation of POLYVAL using ARMv8 Crypto Extensions.
  4  *
  5  * Copyright 2021 Google LLC
  6  */
  7 /*
  8  * This is an efficient implementation of POLYVAL using ARMv8 Crypto Extensions
  9  * It works on 8 blocks at a time, by precomputing the first 8 keys powers h^8,
 10  * ..., h^1 in the POLYVAL finite field. This precomputation allows us to split
 11  * finite field multiplication into two steps.
 12  *
 13  * In the first step, we consider h^i, m_i as normal polynomials of degree less
 14  * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
 15  * is simply polynomial multiplication.
 16  *
 17  * In the second step, we compute the reduction of p(x) modulo the finite field
 18  * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
 19  *
 20  * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
 21  * multiplication is finite field multiplication. The advantage is that the
 22  * two-step process  only requires 1 finite field reduction for every 8
 23  * polynomial multiplications. Further parallelism is gained by interleaving the
 24  * multiplications and polynomial reductions.
 25  */
 26 
 27 #include <linux/linkage.h>
 28 #define STRIDE_BLOCKS 8
 29 
 30 KEY_POWERS      .req    x0
 31 MSG             .req    x1
 32 BLOCKS_LEFT     .req    x2
 33 ACCUMULATOR     .req    x3
 34 KEY_START       .req    x10
 35 EXTRA_BYTES     .req    x11
 36 TMP     .req    x13
 37 
 38 M0      .req    v0
 39 M1      .req    v1
 40 M2      .req    v2
 41 M3      .req    v3
 42 M4      .req    v4
 43 M5      .req    v5
 44 M6      .req    v6
 45 M7      .req    v7
 46 KEY8    .req    v8
 47 KEY7    .req    v9
 48 KEY6    .req    v10
 49 KEY5    .req    v11
 50 KEY4    .req    v12
 51 KEY3    .req    v13
 52 KEY2    .req    v14
 53 KEY1    .req    v15
 54 PL      .req    v16
 55 PH      .req    v17
 56 TMP_V   .req    v18
 57 LO      .req    v20
 58 MI      .req    v21
 59 HI      .req    v22
 60 SUM     .req    v23
 61 GSTAR   .req    v24
 62 
 63         .text
 64 
 65         .arch   armv8-a+crypto
 66         .align  4
 67 
 68 .Lgstar:
 69         .quad   0xc200000000000000, 0xc200000000000000
 70 
 71 /*
 72  * Computes the product of two 128-bit polynomials in X and Y and XORs the
 73  * components of the 256-bit product into LO, MI, HI.
 74  *
 75  * Given:
 76  *  X = [X_1 : X_0]
 77  *  Y = [Y_1 : Y_0]
 78  *
 79  * We compute:
 80  *  LO += X_0 * Y_0
 81  *  MI += (X_0 + X_1) * (Y_0 + Y_1)
 82  *  HI += X_1 * Y_1
 83  *
 84  * Later, the 256-bit result can be extracted as:
 85  *   [HI_1 : HI_0 + HI_1 + MI_1 + LO_1 : LO_1 + HI_0 + MI_0 + LO_0 : LO_0]
 86  * This step is done when computing the polynomial reduction for efficiency
 87  * reasons.
 88  *
 89  * Karatsuba multiplication is used instead of Schoolbook multiplication because
 90  * it was found to be slightly faster on ARM64 CPUs.
 91  *
 92  */
 93 .macro karatsuba1 X Y
 94         X .req \X
 95         Y .req \Y
 96         ext     v25.16b, X.16b, X.16b, #8
 97         ext     v26.16b, Y.16b, Y.16b, #8
 98         eor     v25.16b, v25.16b, X.16b
 99         eor     v26.16b, v26.16b, Y.16b
100         pmull2  v28.1q, X.2d, Y.2d
101         pmull   v29.1q, X.1d, Y.1d
102         pmull   v27.1q, v25.1d, v26.1d
103         eor     HI.16b, HI.16b, v28.16b
104         eor     LO.16b, LO.16b, v29.16b
105         eor     MI.16b, MI.16b, v27.16b
106         .unreq X
107         .unreq Y
108 .endm
109 
110 /*
111  * Same as karatsuba1, except overwrites HI, LO, MI rather than XORing into
112  * them.
113  */
114 .macro karatsuba1_store X Y
115         X .req \X
116         Y .req \Y
117         ext     v25.16b, X.16b, X.16b, #8
118         ext     v26.16b, Y.16b, Y.16b, #8
119         eor     v25.16b, v25.16b, X.16b
120         eor     v26.16b, v26.16b, Y.16b
121         pmull2  HI.1q, X.2d, Y.2d
122         pmull   LO.1q, X.1d, Y.1d
123         pmull   MI.1q, v25.1d, v26.1d
124         .unreq X
125         .unreq Y
126 .endm
127 
128 /*
129  * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
130  * the result in PL, PH.
131  * [PH : PL] =
132  *   [HI_1 : HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
133  */
134 .macro karatsuba2
135         // v4 = [HI_1 + MI_1 : HI_0 + MI_0]
136         eor     v4.16b, HI.16b, MI.16b
137         // v4 = [HI_1 + MI_1 + LO_1 : HI_0 + MI_0 + LO_0]
138         eor     v4.16b, v4.16b, LO.16b
139         // v5 = [HI_0 : LO_1]
140         ext     v5.16b, LO.16b, HI.16b, #8
141         // v4 = [HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0]
142         eor     v4.16b, v4.16b, v5.16b
143         // HI = [HI_0 : HI_1]
144         ext     HI.16b, HI.16b, HI.16b, #8
145         // LO = [LO_0 : LO_1]
146         ext     LO.16b, LO.16b, LO.16b, #8
147         // PH = [HI_1 : HI_1 + HI_0 + MI_1 + LO_1]
148         ext     PH.16b, v4.16b, HI.16b, #8
149         // PL = [HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
150         ext     PL.16b, LO.16b, v4.16b, #8
151 .endm
152 
153 /*
154  * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
155  *
156  * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
157  * x^128 + x^127 + x^126 + x^121 + 1.
158  *
159  * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
160  * product of two 128-bit polynomials in Montgomery form.  We need to reduce it
161  * mod g(x).  Also, since polynomials in Montgomery form have an "extra" factor
162  * of x^128, this product has two extra factors of x^128.  To get it back into
163  * Montgomery form, we need to remove one of these factors by dividing by x^128.
164  *
165  * To accomplish both of these goals, we add multiples of g(x) that cancel out
166  * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
167  * bits are zero, the polynomial division by x^128 can be done by right
168  * shifting.
169  *
170  * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
171  * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x).  The CPU can
172  * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
173  * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x).  Adding this to
174  * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
175  * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63 got "folded" into bits 64-191.
176  *
177  * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
178  * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
179  * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
180  * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
181  * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
182  *
183  * So our final computation is:
184  *   T = T_1 : T_0 = g*(x) * P_0
185  *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)
186  *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
187  *
188  * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
189  * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
190  * T_1 into dest.  This allows us to reuse P_1 + T_0 when computing V.
191  */
192 .macro montgomery_reduction dest
193         DEST .req \dest
194         // TMP_V = T_1 : T_0 = P_0 * g*(x)
195         pmull   TMP_V.1q, PL.1d, GSTAR.1d
196         // TMP_V = T_0 : T_1
197         ext     TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
198         // TMP_V = P_1 + T_0 : P_0 + T_1
199         eor     TMP_V.16b, PL.16b, TMP_V.16b
200         // PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
201         eor     PH.16b, PH.16b, TMP_V.16b
202         // TMP_V = V_1 : V_0 = (P_1 + T_0) * g*(x)
203         pmull2  TMP_V.1q, TMP_V.2d, GSTAR.2d
204         eor     DEST.16b, PH.16b, TMP_V.16b
205         .unreq DEST
206 .endm
207 
208 /*
209  * Compute Polyval on 8 blocks.
210  *
211  * If reduce is set, also computes the montgomery reduction of the
212  * previous full_stride call and XORs with the first message block.
213  * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
214  * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
215  *
216  * Sets PL, PH.
217  */
218 .macro full_stride reduce
219         eor             LO.16b, LO.16b, LO.16b
220         eor             MI.16b, MI.16b, MI.16b
221         eor             HI.16b, HI.16b, HI.16b
222 
223         ld1             {M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64
224         ld1             {M4.16b, M5.16b, M6.16b, M7.16b}, [MSG], #64
225 
226         karatsuba1 M7 KEY1
227         .if \reduce
228         pmull   TMP_V.1q, PL.1d, GSTAR.1d
229         .endif
230 
231         karatsuba1 M6 KEY2
232         .if \reduce
233         ext     TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
234         .endif
235 
236         karatsuba1 M5 KEY3
237         .if \reduce
238         eor     TMP_V.16b, PL.16b, TMP_V.16b
239         .endif
240 
241         karatsuba1 M4 KEY4
242         .if \reduce
243         eor     PH.16b, PH.16b, TMP_V.16b
244         .endif
245 
246         karatsuba1 M3 KEY5
247         .if \reduce
248         pmull2  TMP_V.1q, TMP_V.2d, GSTAR.2d
249         .endif
250 
251         karatsuba1 M2 KEY6
252         .if \reduce
253         eor     SUM.16b, PH.16b, TMP_V.16b
254         .endif
255 
256         karatsuba1 M1 KEY7
257         eor     M0.16b, M0.16b, SUM.16b
258 
259         karatsuba1 M0 KEY8
260         karatsuba2
261 .endm
262 
263 /*
264  * Handle any extra blocks after full_stride loop.
265  */
266 .macro partial_stride
267         add     KEY_POWERS, KEY_START, #(STRIDE_BLOCKS << 4)
268         sub     KEY_POWERS, KEY_POWERS, BLOCKS_LEFT, lsl #4
269         ld1     {KEY1.16b}, [KEY_POWERS], #16
270 
271         ld1     {TMP_V.16b}, [MSG], #16
272         eor     SUM.16b, SUM.16b, TMP_V.16b
273         karatsuba1_store KEY1 SUM
274         sub     BLOCKS_LEFT, BLOCKS_LEFT, #1
275 
276         tst     BLOCKS_LEFT, #4
277         beq     .Lpartial4BlocksDone
278         ld1     {M0.16b, M1.16b,  M2.16b, M3.16b}, [MSG], #64
279         ld1     {KEY8.16b, KEY7.16b, KEY6.16b,  KEY5.16b}, [KEY_POWERS], #64
280         karatsuba1 M0 KEY8
281         karatsuba1 M1 KEY7
282         karatsuba1 M2 KEY6
283         karatsuba1 M3 KEY5
284 .Lpartial4BlocksDone:
285         tst     BLOCKS_LEFT, #2
286         beq     .Lpartial2BlocksDone
287         ld1     {M0.16b, M1.16b}, [MSG], #32
288         ld1     {KEY8.16b, KEY7.16b}, [KEY_POWERS], #32
289         karatsuba1 M0 KEY8
290         karatsuba1 M1 KEY7
291 .Lpartial2BlocksDone:
292         tst     BLOCKS_LEFT, #1
293         beq     .LpartialDone
294         ld1     {M0.16b}, [MSG], #16
295         ld1     {KEY8.16b}, [KEY_POWERS], #16
296         karatsuba1 M0 KEY8
297 .LpartialDone:
298         karatsuba2
299         montgomery_reduction SUM
300 .endm
301 
302 /*
303  * Perform montgomery multiplication in GF(2^128) and store result in op1.
304  *
305  * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
306  * If op1, op2 are in montgomery form, this computes the montgomery
307  * form of op1*op2.
308  *
309  * void pmull_polyval_mul(u8 *op1, const u8 *op2);
310  */
311 SYM_FUNC_START(pmull_polyval_mul)
312         adr     TMP, .Lgstar
313         ld1     {GSTAR.2d}, [TMP]
314         ld1     {v0.16b}, [x0]
315         ld1     {v1.16b}, [x1]
316         karatsuba1_store v0 v1
317         karatsuba2
318         montgomery_reduction SUM
319         st1     {SUM.16b}, [x0]
320         ret
321 SYM_FUNC_END(pmull_polyval_mul)
322 
323 /*
324  * Perform polynomial evaluation as specified by POLYVAL.  This computes:
325  *      h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
326  * where n=nblocks, h is the hash key, and m_i are the message blocks.
327  *
328  * x0 - pointer to precomputed key powers h^8 ... h^1
329  * x1 - pointer to message blocks
330  * x2 - number of blocks to hash
331  * x3 - pointer to accumulator
332  *
333  * void pmull_polyval_update(const struct polyval_ctx *ctx, const u8 *in,
334  *                           size_t nblocks, u8 *accumulator);
335  */
336 SYM_FUNC_START(pmull_polyval_update)
337         adr     TMP, .Lgstar
338         mov     KEY_START, KEY_POWERS
339         ld1     {GSTAR.2d}, [TMP]
340         ld1     {SUM.16b}, [ACCUMULATOR]
341         subs    BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
342         blt .LstrideLoopExit
343         ld1     {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64
344         ld1     {KEY4.16b, KEY3.16b, KEY2.16b, KEY1.16b}, [KEY_POWERS], #64
345         full_stride 0
346         subs    BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
347         blt .LstrideLoopExitReduce
348 .LstrideLoop:
349         full_stride 1
350         subs    BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
351         bge     .LstrideLoop
352 .LstrideLoopExitReduce:
353         montgomery_reduction SUM
354 .LstrideLoopExit:
355         adds    BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
356         beq     .LskipPartial
357         partial_stride
358 .LskipPartial:
359         st1     {SUM.16b}, [ACCUMULATOR]
360         ret
361 SYM_FUNC_END(pmull_polyval_update)

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php