1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_FP_H 6 #define __ASM_FP_H 7 8 #include <asm/errno.h> 9 #include <asm/ptrace.h> 10 #include <asm/processor.h> 11 #include <asm/sigcontext.h> 12 #include <asm/sysreg.h> 13 14 #ifndef __ASSEMBLY__ 15 16 #include <linux/bitmap.h> 17 #include <linux/build_bug.h> 18 #include <linux/bug.h> 19 #include <linux/cache.h> 20 #include <linux/init.h> 21 #include <linux/stddef.h> 22 #include <linux/types.h> 23 24 /* Masks for extracting the FPSR and FPCR from the FPSCR */ 25 #define VFP_FPSCR_STAT_MASK 0xf800009f 26 #define VFP_FPSCR_CTRL_MASK 0x07f79f00 27 /* 28 * The VFP state has 32x64-bit registers and a single 32-bit 29 * control/status register. 30 */ 31 #define VFP_STATE_SIZE ((32 * 8) + 4) 32 33 static inline unsigned long cpacr_save_enable_kernel_sve(void) 34 { 35 unsigned long old = read_sysreg(cpacr_el1); 36 unsigned long set = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_ZEN_EL1EN; 37 38 write_sysreg(old | set, cpacr_el1); 39 isb(); 40 return old; 41 } 42 43 static inline unsigned long cpacr_save_enable_kernel_sme(void) 44 { 45 unsigned long old = read_sysreg(cpacr_el1); 46 unsigned long set = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_SMEN_EL1EN; 47 48 write_sysreg(old | set, cpacr_el1); 49 isb(); 50 return old; 51 } 52 53 static inline void cpacr_restore(unsigned long cpacr) 54 { 55 write_sysreg(cpacr, cpacr_el1); 56 isb(); 57 } 58 59 /* 60 * When we defined the maximum SVE vector length we defined the ABI so 61 * that the maximum vector length included all the reserved for future 62 * expansion bits in ZCR rather than those just currently defined by 63 * the architecture. Using this length to allocate worst size buffers 64 * results in excessively large allocations, and this effect is even 65 * more pronounced for SME due to ZA. Define more suitable VLs for 66 * these situations. 67 */ 68 #define ARCH_SVE_VQ_MAX ((ZCR_ELx_LEN_MASK >> ZCR_ELx_LEN_SHIFT) + 1) 69 #define SME_VQ_MAX ((SMCR_ELx_LEN_MASK >> SMCR_ELx_LEN_SHIFT) + 1) 70 71 struct task_struct; 72 73 extern void fpsimd_save_state(struct user_fpsimd_state *state); 74 extern void fpsimd_load_state(struct user_fpsimd_state *state); 75 76 extern void fpsimd_thread_switch(struct task_struct *next); 77 extern void fpsimd_flush_thread(void); 78 79 extern void fpsimd_signal_preserve_current_state(void); 80 extern void fpsimd_preserve_current_state(void); 81 extern void fpsimd_restore_current_state(void); 82 extern void fpsimd_update_current_state(struct user_fpsimd_state const *state); 83 extern void fpsimd_kvm_prepare(void); 84 85 struct cpu_fp_state { 86 struct user_fpsimd_state *st; 87 void *sve_state; 88 void *sme_state; 89 u64 *svcr; 90 u64 *fpmr; 91 unsigned int sve_vl; 92 unsigned int sme_vl; 93 enum fp_type *fp_type; 94 enum fp_type to_save; 95 }; 96 97 extern void fpsimd_bind_state_to_cpu(struct cpu_fp_state *fp_state); 98 99 extern void fpsimd_flush_task_state(struct task_struct *target); 100 extern void fpsimd_save_and_flush_cpu_state(void); 101 102 static inline bool thread_sm_enabled(struct thread_struct *thread) 103 { 104 return system_supports_sme() && (thread->svcr & SVCR_SM_MASK); 105 } 106 107 static inline bool thread_za_enabled(struct thread_struct *thread) 108 { 109 return system_supports_sme() && (thread->svcr & SVCR_ZA_MASK); 110 } 111 112 /* Maximum VL that SVE/SME VL-agnostic software can transparently support */ 113 #define VL_ARCH_MAX 0x100 114 115 /* Offset of FFR in the SVE register dump */ 116 static inline size_t sve_ffr_offset(int vl) 117 { 118 return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET; 119 } 120 121 static inline void *sve_pffr(struct thread_struct *thread) 122 { 123 unsigned int vl; 124 125 if (system_supports_sme() && thread_sm_enabled(thread)) 126 vl = thread_get_sme_vl(thread); 127 else 128 vl = thread_get_sve_vl(thread); 129 130 return (char *)thread->sve_state + sve_ffr_offset(vl); 131 } 132 133 static inline void *thread_zt_state(struct thread_struct *thread) 134 { 135 /* The ZT register state is stored immediately after the ZA state */ 136 unsigned int sme_vq = sve_vq_from_vl(thread_get_sme_vl(thread)); 137 return thread->sme_state + ZA_SIG_REGS_SIZE(sme_vq); 138 } 139 140 extern void sve_save_state(void *state, u32 *pfpsr, int save_ffr); 141 extern void sve_load_state(void const *state, u32 const *pfpsr, 142 int restore_ffr); 143 extern void sve_flush_live(bool flush_ffr, unsigned long vq_minus_1); 144 extern unsigned int sve_get_vl(void); 145 extern void sve_set_vq(unsigned long vq_minus_1); 146 extern void sme_set_vq(unsigned long vq_minus_1); 147 extern void sme_save_state(void *state, int zt); 148 extern void sme_load_state(void const *state, int zt); 149 150 struct arm64_cpu_capabilities; 151 extern void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__unused); 152 extern void cpu_enable_sve(const struct arm64_cpu_capabilities *__unused); 153 extern void cpu_enable_sme(const struct arm64_cpu_capabilities *__unused); 154 extern void cpu_enable_sme2(const struct arm64_cpu_capabilities *__unused); 155 extern void cpu_enable_fa64(const struct arm64_cpu_capabilities *__unused); 156 extern void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__unused); 157 158 extern u64 read_smcr_features(void); 159 160 /* 161 * Helpers to translate bit indices in sve_vq_map to VQ values (and 162 * vice versa). This allows find_next_bit() to be used to find the 163 * _maximum_ VQ not exceeding a certain value. 164 */ 165 static inline unsigned int __vq_to_bit(unsigned int vq) 166 { 167 return SVE_VQ_MAX - vq; 168 } 169 170 static inline unsigned int __bit_to_vq(unsigned int bit) 171 { 172 return SVE_VQ_MAX - bit; 173 } 174 175 176 struct vl_info { 177 enum vec_type type; 178 const char *name; /* For display purposes */ 179 180 /* Minimum supported vector length across all CPUs */ 181 int min_vl; 182 183 /* Maximum supported vector length across all CPUs */ 184 int max_vl; 185 int max_virtualisable_vl; 186 187 /* 188 * Set of available vector lengths, 189 * where length vq encoded as bit __vq_to_bit(vq): 190 */ 191 DECLARE_BITMAP(vq_map, SVE_VQ_MAX); 192 193 /* Set of vector lengths present on at least one cpu: */ 194 DECLARE_BITMAP(vq_partial_map, SVE_VQ_MAX); 195 }; 196 197 #ifdef CONFIG_ARM64_SVE 198 199 extern void sve_alloc(struct task_struct *task, bool flush); 200 extern void fpsimd_release_task(struct task_struct *task); 201 extern void fpsimd_sync_to_sve(struct task_struct *task); 202 extern void fpsimd_force_sync_to_sve(struct task_struct *task); 203 extern void sve_sync_to_fpsimd(struct task_struct *task); 204 extern void sve_sync_from_fpsimd_zeropad(struct task_struct *task); 205 206 extern int vec_set_vector_length(struct task_struct *task, enum vec_type type, 207 unsigned long vl, unsigned long flags); 208 209 extern int sve_set_current_vl(unsigned long arg); 210 extern int sve_get_current_vl(void); 211 212 static inline void sve_user_disable(void) 213 { 214 sysreg_clear_set(cpacr_el1, CPACR_EL1_ZEN_EL0EN, 0); 215 } 216 217 static inline void sve_user_enable(void) 218 { 219 sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_ZEN_EL0EN); 220 } 221 222 #define sve_cond_update_zcr_vq(val, reg) \ 223 do { \ 224 u64 __zcr = read_sysreg_s((reg)); \ 225 u64 __new = __zcr & ~ZCR_ELx_LEN_MASK; \ 226 __new |= (val) & ZCR_ELx_LEN_MASK; \ 227 if (__zcr != __new) \ 228 write_sysreg_s(__new, (reg)); \ 229 } while (0) 230 231 /* 232 * Probing and setup functions. 233 * Calls to these functions must be serialised with one another. 234 */ 235 enum vec_type; 236 237 extern void __init vec_init_vq_map(enum vec_type type); 238 extern void vec_update_vq_map(enum vec_type type); 239 extern int vec_verify_vq_map(enum vec_type type); 240 extern void __init sve_setup(void); 241 242 extern __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX]; 243 244 static inline void write_vl(enum vec_type type, u64 val) 245 { 246 u64 tmp; 247 248 switch (type) { 249 #ifdef CONFIG_ARM64_SVE 250 case ARM64_VEC_SVE: 251 tmp = read_sysreg_s(SYS_ZCR_EL1) & ~ZCR_ELx_LEN_MASK; 252 write_sysreg_s(tmp | val, SYS_ZCR_EL1); 253 break; 254 #endif 255 #ifdef CONFIG_ARM64_SME 256 case ARM64_VEC_SME: 257 tmp = read_sysreg_s(SYS_SMCR_EL1) & ~SMCR_ELx_LEN_MASK; 258 write_sysreg_s(tmp | val, SYS_SMCR_EL1); 259 break; 260 #endif 261 default: 262 WARN_ON_ONCE(1); 263 break; 264 } 265 } 266 267 static inline int vec_max_vl(enum vec_type type) 268 { 269 return vl_info[type].max_vl; 270 } 271 272 static inline int vec_max_virtualisable_vl(enum vec_type type) 273 { 274 return vl_info[type].max_virtualisable_vl; 275 } 276 277 static inline int sve_max_vl(void) 278 { 279 return vec_max_vl(ARM64_VEC_SVE); 280 } 281 282 static inline int sve_max_virtualisable_vl(void) 283 { 284 return vec_max_virtualisable_vl(ARM64_VEC_SVE); 285 } 286 287 /* Ensure vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX before calling this function */ 288 static inline bool vq_available(enum vec_type type, unsigned int vq) 289 { 290 return test_bit(__vq_to_bit(vq), vl_info[type].vq_map); 291 } 292 293 static inline bool sve_vq_available(unsigned int vq) 294 { 295 return vq_available(ARM64_VEC_SVE, vq); 296 } 297 298 size_t sve_state_size(struct task_struct const *task); 299 300 #else /* ! CONFIG_ARM64_SVE */ 301 302 static inline void sve_alloc(struct task_struct *task, bool flush) { } 303 static inline void fpsimd_release_task(struct task_struct *task) { } 304 static inline void sve_sync_to_fpsimd(struct task_struct *task) { } 305 static inline void sve_sync_from_fpsimd_zeropad(struct task_struct *task) { } 306 307 static inline int sve_max_virtualisable_vl(void) 308 { 309 return 0; 310 } 311 312 static inline int sve_set_current_vl(unsigned long arg) 313 { 314 return -EINVAL; 315 } 316 317 static inline int sve_get_current_vl(void) 318 { 319 return -EINVAL; 320 } 321 322 static inline int sve_max_vl(void) 323 { 324 return -EINVAL; 325 } 326 327 static inline bool sve_vq_available(unsigned int vq) { return false; } 328 329 static inline void sve_user_disable(void) { BUILD_BUG(); } 330 static inline void sve_user_enable(void) { BUILD_BUG(); } 331 332 #define sve_cond_update_zcr_vq(val, reg) do { } while (0) 333 334 static inline void vec_init_vq_map(enum vec_type t) { } 335 static inline void vec_update_vq_map(enum vec_type t) { } 336 static inline int vec_verify_vq_map(enum vec_type t) { return 0; } 337 static inline void sve_setup(void) { } 338 339 static inline size_t sve_state_size(struct task_struct const *task) 340 { 341 return 0; 342 } 343 344 #endif /* ! CONFIG_ARM64_SVE */ 345 346 #ifdef CONFIG_ARM64_SME 347 348 static inline void sme_user_disable(void) 349 { 350 sysreg_clear_set(cpacr_el1, CPACR_EL1_SMEN_EL0EN, 0); 351 } 352 353 static inline void sme_user_enable(void) 354 { 355 sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_SMEN_EL0EN); 356 } 357 358 static inline void sme_smstart_sm(void) 359 { 360 asm volatile(__msr_s(SYS_SVCR_SMSTART_SM_EL0, "xzr")); 361 } 362 363 static inline void sme_smstop_sm(void) 364 { 365 asm volatile(__msr_s(SYS_SVCR_SMSTOP_SM_EL0, "xzr")); 366 } 367 368 static inline void sme_smstop(void) 369 { 370 asm volatile(__msr_s(SYS_SVCR_SMSTOP_SMZA_EL0, "xzr")); 371 } 372 373 extern void __init sme_setup(void); 374 375 static inline int sme_max_vl(void) 376 { 377 return vec_max_vl(ARM64_VEC_SME); 378 } 379 380 static inline int sme_max_virtualisable_vl(void) 381 { 382 return vec_max_virtualisable_vl(ARM64_VEC_SME); 383 } 384 385 extern void sme_alloc(struct task_struct *task, bool flush); 386 extern unsigned int sme_get_vl(void); 387 extern int sme_set_current_vl(unsigned long arg); 388 extern int sme_get_current_vl(void); 389 extern void sme_suspend_exit(void); 390 391 /* 392 * Return how many bytes of memory are required to store the full SME 393 * specific state for task, given task's currently configured vector 394 * length. 395 */ 396 static inline size_t sme_state_size(struct task_struct const *task) 397 { 398 unsigned int vl = task_get_sme_vl(task); 399 size_t size; 400 401 size = ZA_SIG_REGS_SIZE(sve_vq_from_vl(vl)); 402 403 if (system_supports_sme2()) 404 size += ZT_SIG_REG_SIZE; 405 406 return size; 407 } 408 409 #else 410 411 static inline void sme_user_disable(void) { BUILD_BUG(); } 412 static inline void sme_user_enable(void) { BUILD_BUG(); } 413 414 static inline void sme_smstart_sm(void) { } 415 static inline void sme_smstop_sm(void) { } 416 static inline void sme_smstop(void) { } 417 418 static inline void sme_alloc(struct task_struct *task, bool flush) { } 419 static inline void sme_setup(void) { } 420 static inline unsigned int sme_get_vl(void) { return 0; } 421 static inline int sme_max_vl(void) { return 0; } 422 static inline int sme_max_virtualisable_vl(void) { return 0; } 423 static inline int sme_set_current_vl(unsigned long arg) { return -EINVAL; } 424 static inline int sme_get_current_vl(void) { return -EINVAL; } 425 static inline void sme_suspend_exit(void) { } 426 427 static inline size_t sme_state_size(struct task_struct const *task) 428 { 429 return 0; 430 } 431 432 #endif /* ! CONFIG_ARM64_SME */ 433 434 /* For use by EFI runtime services calls only */ 435 extern void __efi_fpsimd_begin(void); 436 extern void __efi_fpsimd_end(void); 437 438 #endif 439 440 #endif 441
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.