1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_PGTABLE_H 6 #define __ASM_PGTABLE_H 7 8 #include <asm/bug.h> 9 #include <asm/proc-fns.h> 10 11 #include <asm/memory.h> 12 #include <asm/mte.h> 13 #include <asm/pgtable-hwdef.h> 14 #include <asm/pgtable-prot.h> 15 #include <asm/tlbflush.h> 16 17 /* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap 22 */ 23 #define VMALLOC_START (MODULES_END) 24 #if VA_BITS == VA_BITS_MIN 25 #define VMALLOC_END (VMEMMAP_START - SZ_8M) 26 #else 27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT) 28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M) 29 #endif 30 31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 32 33 #ifndef __ASSEMBLY__ 34 35 #include <asm/cmpxchg.h> 36 #include <asm/fixmap.h> 37 #include <linux/mmdebug.h> 38 #include <linux/mm_types.h> 39 #include <linux/sched.h> 40 #include <linux/page_table_check.h> 41 42 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 43 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 44 45 /* Set stride and tlb_level in flush_*_tlb_range */ 46 #define flush_pmd_tlb_range(vma, addr, end) \ 47 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 48 #define flush_pud_tlb_range(vma, addr, end) \ 49 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 50 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 51 52 /* 53 * Outside of a few very special situations (e.g. hibernation), we always 54 * use broadcast TLB invalidation instructions, therefore a spurious page 55 * fault on one CPU which has been handled concurrently by another CPU 56 * does not need to perform additional invalidation. 57 */ 58 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) 59 60 /* 61 * ZERO_PAGE is a global shared page that is always zero: used 62 * for zero-mapped memory areas etc.. 63 */ 64 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 65 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 66 67 #define pte_ERROR(e) \ 68 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 69 70 /* 71 * Macros to convert between a physical address and its placement in a 72 * page table entry, taking care of 52-bit addresses. 73 */ 74 #ifdef CONFIG_ARM64_PA_BITS_52 75 static inline phys_addr_t __pte_to_phys(pte_t pte) 76 { 77 pte_val(pte) &= ~PTE_MAYBE_SHARED; 78 return (pte_val(pte) & PTE_ADDR_LOW) | 79 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT); 80 } 81 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 82 { 83 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK; 84 } 85 #else 86 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_LOW) 87 #define __phys_to_pte_val(phys) (phys) 88 #endif 89 90 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 91 #define pfn_pte(pfn,prot) \ 92 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 93 94 #define pte_none(pte) (!pte_val(pte)) 95 #define __pte_clear(mm, addr, ptep) \ 96 __set_pte(ptep, __pte(0)) 97 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 98 99 /* 100 * The following only work if pte_present(). Undefined behaviour otherwise. 101 */ 102 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte)) 103 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 104 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 105 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 106 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY)) 107 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER)) 108 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 109 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 110 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) 111 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 112 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 113 114 #define pte_cont_addr_end(addr, end) \ 115 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 116 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 117 }) 118 119 #define pmd_cont_addr_end(addr, end) \ 120 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 121 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 122 }) 123 124 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte)) 125 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 126 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 127 128 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 129 #define pte_present_invalid(pte) \ 130 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID) 131 /* 132 * Execute-only user mappings do not have the PTE_USER bit set. All valid 133 * kernel mappings have the PTE_UXN bit set. 134 */ 135 #define pte_valid_not_user(pte) \ 136 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 137 /* 138 * Returns true if the pte is valid and has the contiguous bit set. 139 */ 140 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte)) 141 /* 142 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 143 * so that we don't erroneously return false for pages that have been 144 * remapped as PROT_NONE but are yet to be flushed from the TLB. 145 * Note that we can't make any assumptions based on the state of the access 146 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the 147 * TLB. 148 */ 149 #define pte_accessible(mm, pte) \ 150 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 151 152 /* 153 * p??_access_permitted() is true for valid user mappings (PTE_USER 154 * bit set, subject to the write permission check). For execute-only 155 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 156 * not set) must return false. PROT_NONE mappings do not have the 157 * PTE_VALID bit set. 158 */ 159 #define pte_access_permitted(pte, write) \ 160 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 161 #define pmd_access_permitted(pmd, write) \ 162 (pte_access_permitted(pmd_pte(pmd), (write))) 163 #define pud_access_permitted(pud, write) \ 164 (pte_access_permitted(pud_pte(pud), (write))) 165 166 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 167 { 168 pte_val(pte) &= ~pgprot_val(prot); 169 return pte; 170 } 171 172 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 173 { 174 pte_val(pte) |= pgprot_val(prot); 175 return pte; 176 } 177 178 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 179 { 180 pmd_val(pmd) &= ~pgprot_val(prot); 181 return pmd; 182 } 183 184 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 185 { 186 pmd_val(pmd) |= pgprot_val(prot); 187 return pmd; 188 } 189 190 static inline pte_t pte_mkwrite_novma(pte_t pte) 191 { 192 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 193 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 194 return pte; 195 } 196 197 static inline pte_t pte_mkclean(pte_t pte) 198 { 199 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 200 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 201 202 return pte; 203 } 204 205 static inline pte_t pte_mkdirty(pte_t pte) 206 { 207 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 208 209 if (pte_write(pte)) 210 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 211 212 return pte; 213 } 214 215 static inline pte_t pte_wrprotect(pte_t pte) 216 { 217 /* 218 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 219 * clear), set the PTE_DIRTY bit. 220 */ 221 if (pte_hw_dirty(pte)) 222 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 223 224 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 225 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 226 return pte; 227 } 228 229 static inline pte_t pte_mkold(pte_t pte) 230 { 231 return clear_pte_bit(pte, __pgprot(PTE_AF)); 232 } 233 234 static inline pte_t pte_mkyoung(pte_t pte) 235 { 236 return set_pte_bit(pte, __pgprot(PTE_AF)); 237 } 238 239 static inline pte_t pte_mkspecial(pte_t pte) 240 { 241 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 242 } 243 244 static inline pte_t pte_mkcont(pte_t pte) 245 { 246 pte = set_pte_bit(pte, __pgprot(PTE_CONT)); 247 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); 248 } 249 250 static inline pte_t pte_mknoncont(pte_t pte) 251 { 252 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 253 } 254 255 static inline pte_t pte_mkpresent(pte_t pte) 256 { 257 return set_pte_bit(pte, __pgprot(PTE_VALID)); 258 } 259 260 static inline pte_t pte_mkinvalid(pte_t pte) 261 { 262 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID)); 263 pte = clear_pte_bit(pte, __pgprot(PTE_VALID)); 264 return pte; 265 } 266 267 static inline pmd_t pmd_mkcont(pmd_t pmd) 268 { 269 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 270 } 271 272 static inline pte_t pte_mkdevmap(pte_t pte) 273 { 274 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); 275 } 276 277 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 278 static inline int pte_uffd_wp(pte_t pte) 279 { 280 return !!(pte_val(pte) & PTE_UFFD_WP); 281 } 282 283 static inline pte_t pte_mkuffd_wp(pte_t pte) 284 { 285 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP))); 286 } 287 288 static inline pte_t pte_clear_uffd_wp(pte_t pte) 289 { 290 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP)); 291 } 292 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 293 294 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte) 295 { 296 WRITE_ONCE(*ptep, pte); 297 } 298 299 static inline void __set_pte(pte_t *ptep, pte_t pte) 300 { 301 __set_pte_nosync(ptep, pte); 302 303 /* 304 * Only if the new pte is valid and kernel, otherwise TLB maintenance 305 * or update_mmu_cache() have the necessary barriers. 306 */ 307 if (pte_valid_not_user(pte)) { 308 dsb(ishst); 309 isb(); 310 } 311 } 312 313 static inline pte_t __ptep_get(pte_t *ptep) 314 { 315 return READ_ONCE(*ptep); 316 } 317 318 extern void __sync_icache_dcache(pte_t pteval); 319 bool pgattr_change_is_safe(u64 old, u64 new); 320 321 /* 322 * PTE bits configuration in the presence of hardware Dirty Bit Management 323 * (PTE_WRITE == PTE_DBM): 324 * 325 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 326 * 0 0 | 1 0 0 327 * 0 1 | 1 1 0 328 * 1 0 | 1 0 1 329 * 1 1 | 0 1 x 330 * 331 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 332 * the page fault mechanism. Checking the dirty status of a pte becomes: 333 * 334 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 335 */ 336 337 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep, 338 pte_t pte) 339 { 340 pte_t old_pte; 341 342 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 343 return; 344 345 old_pte = __ptep_get(ptep); 346 347 if (!pte_valid(old_pte) || !pte_valid(pte)) 348 return; 349 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 350 return; 351 352 /* 353 * Check for potential race with hardware updates of the pte 354 * (__ptep_set_access_flags safely changes valid ptes without going 355 * through an invalid entry). 356 */ 357 VM_WARN_ONCE(!pte_young(pte), 358 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 359 __func__, pte_val(old_pte), pte_val(pte)); 360 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 361 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 362 __func__, pte_val(old_pte), pte_val(pte)); 363 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)), 364 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx", 365 __func__, pte_val(old_pte), pte_val(pte)); 366 } 367 368 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages) 369 { 370 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 371 __sync_icache_dcache(pte); 372 373 /* 374 * If the PTE would provide user space access to the tags associated 375 * with it then ensure that the MTE tags are synchronised. Although 376 * pte_access_permitted() returns false for exec only mappings, they 377 * don't expose tags (instruction fetches don't check tags). 378 */ 379 if (system_supports_mte() && pte_access_permitted(pte, false) && 380 !pte_special(pte) && pte_tagged(pte)) 381 mte_sync_tags(pte, nr_pages); 382 } 383 384 /* 385 * Select all bits except the pfn 386 */ 387 static inline pgprot_t pte_pgprot(pte_t pte) 388 { 389 unsigned long pfn = pte_pfn(pte); 390 391 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 392 } 393 394 #define pte_advance_pfn pte_advance_pfn 395 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 396 { 397 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte)); 398 } 399 400 static inline void __set_ptes(struct mm_struct *mm, 401 unsigned long __always_unused addr, 402 pte_t *ptep, pte_t pte, unsigned int nr) 403 { 404 page_table_check_ptes_set(mm, ptep, pte, nr); 405 __sync_cache_and_tags(pte, nr); 406 407 for (;;) { 408 __check_safe_pte_update(mm, ptep, pte); 409 __set_pte(ptep, pte); 410 if (--nr == 0) 411 break; 412 ptep++; 413 pte = pte_advance_pfn(pte, 1); 414 } 415 } 416 417 /* 418 * Huge pte definitions. 419 */ 420 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) 421 422 /* 423 * Hugetlb definitions. 424 */ 425 #define HUGE_MAX_HSTATE 4 426 #define HPAGE_SHIFT PMD_SHIFT 427 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 428 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 429 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 430 431 static inline pte_t pgd_pte(pgd_t pgd) 432 { 433 return __pte(pgd_val(pgd)); 434 } 435 436 static inline pte_t p4d_pte(p4d_t p4d) 437 { 438 return __pte(p4d_val(p4d)); 439 } 440 441 static inline pte_t pud_pte(pud_t pud) 442 { 443 return __pte(pud_val(pud)); 444 } 445 446 static inline pud_t pte_pud(pte_t pte) 447 { 448 return __pud(pte_val(pte)); 449 } 450 451 static inline pmd_t pud_pmd(pud_t pud) 452 { 453 return __pmd(pud_val(pud)); 454 } 455 456 static inline pte_t pmd_pte(pmd_t pmd) 457 { 458 return __pte(pmd_val(pmd)); 459 } 460 461 static inline pmd_t pte_pmd(pte_t pte) 462 { 463 return __pmd(pte_val(pte)); 464 } 465 466 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 467 { 468 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); 469 } 470 471 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 472 { 473 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); 474 } 475 476 static inline pte_t pte_swp_mkexclusive(pte_t pte) 477 { 478 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 479 } 480 481 static inline int pte_swp_exclusive(pte_t pte) 482 { 483 return pte_val(pte) & PTE_SWP_EXCLUSIVE; 484 } 485 486 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 487 { 488 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 489 } 490 491 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 492 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 493 { 494 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 495 } 496 497 static inline int pte_swp_uffd_wp(pte_t pte) 498 { 499 return !!(pte_val(pte) & PTE_SWP_UFFD_WP); 500 } 501 502 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 503 { 504 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 505 } 506 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 507 508 #ifdef CONFIG_NUMA_BALANCING 509 /* 510 * See the comment in include/linux/pgtable.h 511 */ 512 static inline int pte_protnone(pte_t pte) 513 { 514 /* 515 * pte_present_invalid() tells us that the pte is invalid from HW 516 * perspective but present from SW perspective, so the fields are to be 517 * interpretted as per the HW layout. The second 2 checks are the unique 518 * encoding that we use for PROT_NONE. It is insufficient to only use 519 * the first check because we share the same encoding scheme with pmds 520 * which support pmd_mkinvalid(), so can be present-invalid without 521 * being PROT_NONE. 522 */ 523 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte); 524 } 525 526 static inline int pmd_protnone(pmd_t pmd) 527 { 528 return pte_protnone(pmd_pte(pmd)); 529 } 530 #endif 531 532 #define pmd_present(pmd) pte_present(pmd_pte(pmd)) 533 534 /* 535 * THP definitions. 536 */ 537 538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 539 static inline int pmd_trans_huge(pmd_t pmd) 540 { 541 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 542 } 543 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 544 545 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 546 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 547 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 548 #define pmd_user(pmd) pte_user(pmd_pte(pmd)) 549 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd)) 550 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 551 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 552 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 553 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) 554 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 555 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 556 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 557 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd))) 558 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 559 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd)) 560 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd))) 561 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd))) 562 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd)) 563 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd))) 564 #define pmd_swp_clear_uffd_wp(pmd) \ 565 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd))) 566 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 567 568 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 569 570 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) 571 572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 573 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) 574 #endif 575 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 576 { 577 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); 578 } 579 580 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 581 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 582 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 583 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 584 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 585 586 #define pud_young(pud) pte_young(pud_pte(pud)) 587 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 588 #define pud_write(pud) pte_write(pud_pte(pud)) 589 590 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) 591 592 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 593 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 594 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 595 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 596 597 static inline void __set_pte_at(struct mm_struct *mm, 598 unsigned long __always_unused addr, 599 pte_t *ptep, pte_t pte, unsigned int nr) 600 { 601 __sync_cache_and_tags(pte, nr); 602 __check_safe_pte_update(mm, ptep, pte); 603 __set_pte(ptep, pte); 604 } 605 606 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 607 pmd_t *pmdp, pmd_t pmd) 608 { 609 page_table_check_pmd_set(mm, pmdp, pmd); 610 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd), 611 PMD_SIZE >> PAGE_SHIFT); 612 } 613 614 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 615 pud_t *pudp, pud_t pud) 616 { 617 page_table_check_pud_set(mm, pudp, pud); 618 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud), 619 PUD_SIZE >> PAGE_SHIFT); 620 } 621 622 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 623 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 624 625 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 626 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 627 628 #define __pgprot_modify(prot,mask,bits) \ 629 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 630 631 #define pgprot_nx(prot) \ 632 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 633 634 /* 635 * Mark the prot value as uncacheable and unbufferable. 636 */ 637 #define pgprot_noncached(prot) \ 638 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 639 #define pgprot_writecombine(prot) \ 640 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 641 #define pgprot_device(prot) \ 642 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 643 #define pgprot_tagged(prot) \ 644 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 645 #define pgprot_mhp pgprot_tagged 646 /* 647 * DMA allocations for non-coherent devices use what the Arm architecture calls 648 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 649 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 650 * is intended for MMIO and thus forbids speculation, preserves access size, 651 * requires strict alignment and can also force write responses to come from the 652 * endpoint. 653 */ 654 #define pgprot_dmacoherent(prot) \ 655 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 656 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 657 658 #define __HAVE_PHYS_MEM_ACCESS_PROT 659 struct file; 660 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 661 unsigned long size, pgprot_t vma_prot); 662 663 #define pmd_none(pmd) (!pmd_val(pmd)) 664 665 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 666 PMD_TYPE_TABLE) 667 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 668 PMD_TYPE_SECT) 669 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd)) 670 #define pmd_bad(pmd) (!pmd_table(pmd)) 671 672 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 673 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 674 675 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 676 static inline bool pud_sect(pud_t pud) { return false; } 677 static inline bool pud_table(pud_t pud) { return true; } 678 #else 679 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 680 PUD_TYPE_SECT) 681 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 682 PUD_TYPE_TABLE) 683 #endif 684 685 extern pgd_t init_pg_dir[]; 686 extern pgd_t init_pg_end[]; 687 extern pgd_t swapper_pg_dir[]; 688 extern pgd_t idmap_pg_dir[]; 689 extern pgd_t tramp_pg_dir[]; 690 extern pgd_t reserved_pg_dir[]; 691 692 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 693 694 static inline bool in_swapper_pgdir(void *addr) 695 { 696 return ((unsigned long)addr & PAGE_MASK) == 697 ((unsigned long)swapper_pg_dir & PAGE_MASK); 698 } 699 700 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 701 { 702 #ifdef __PAGETABLE_PMD_FOLDED 703 if (in_swapper_pgdir(pmdp)) { 704 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 705 return; 706 } 707 #endif /* __PAGETABLE_PMD_FOLDED */ 708 709 WRITE_ONCE(*pmdp, pmd); 710 711 if (pmd_valid(pmd)) { 712 dsb(ishst); 713 isb(); 714 } 715 } 716 717 static inline void pmd_clear(pmd_t *pmdp) 718 { 719 set_pmd(pmdp, __pmd(0)); 720 } 721 722 static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 723 { 724 return __pmd_to_phys(pmd); 725 } 726 727 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 728 { 729 return (unsigned long)__va(pmd_page_paddr(pmd)); 730 } 731 732 /* Find an entry in the third-level page table. */ 733 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 734 735 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 736 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 737 #define pte_clear_fixmap() clear_fixmap(FIX_PTE) 738 739 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 740 741 /* use ONLY for statically allocated translation tables */ 742 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 743 744 /* 745 * Conversion functions: convert a page and protection to a page entry, 746 * and a page entry and page directory to the page they refer to. 747 */ 748 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 749 750 #if CONFIG_PGTABLE_LEVELS > 2 751 752 #define pmd_ERROR(e) \ 753 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 754 755 #define pud_none(pud) (!pud_val(pud)) 756 #define pud_bad(pud) (!pud_table(pud)) 757 #define pud_present(pud) pte_present(pud_pte(pud)) 758 #ifndef __PAGETABLE_PMD_FOLDED 759 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud)) 760 #else 761 #define pud_leaf(pud) false 762 #endif 763 #define pud_valid(pud) pte_valid(pud_pte(pud)) 764 #define pud_user(pud) pte_user(pud_pte(pud)) 765 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud)) 766 767 static inline bool pgtable_l4_enabled(void); 768 769 static inline void set_pud(pud_t *pudp, pud_t pud) 770 { 771 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) { 772 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 773 return; 774 } 775 776 WRITE_ONCE(*pudp, pud); 777 778 if (pud_valid(pud)) { 779 dsb(ishst); 780 isb(); 781 } 782 } 783 784 static inline void pud_clear(pud_t *pudp) 785 { 786 set_pud(pudp, __pud(0)); 787 } 788 789 static inline phys_addr_t pud_page_paddr(pud_t pud) 790 { 791 return __pud_to_phys(pud); 792 } 793 794 static inline pmd_t *pud_pgtable(pud_t pud) 795 { 796 return (pmd_t *)__va(pud_page_paddr(pud)); 797 } 798 799 /* Find an entry in the second-level page table. */ 800 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 801 802 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 803 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 804 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 805 806 #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 807 808 /* use ONLY for statically allocated translation tables */ 809 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 810 811 #else 812 813 #define pud_valid(pud) false 814 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 815 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */ 816 817 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 818 #define pmd_set_fixmap(addr) NULL 819 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 820 #define pmd_clear_fixmap() 821 822 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 823 824 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 825 826 #if CONFIG_PGTABLE_LEVELS > 3 827 828 static __always_inline bool pgtable_l4_enabled(void) 829 { 830 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2)) 831 return true; 832 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 833 return vabits_actual == VA_BITS; 834 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 835 } 836 837 static inline bool mm_pud_folded(const struct mm_struct *mm) 838 { 839 return !pgtable_l4_enabled(); 840 } 841 #define mm_pud_folded mm_pud_folded 842 843 #define pud_ERROR(e) \ 844 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 845 846 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d)) 847 #define p4d_bad(p4d) (pgtable_l4_enabled() && !(p4d_val(p4d) & 2)) 848 #define p4d_present(p4d) (!p4d_none(p4d)) 849 850 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 851 { 852 if (in_swapper_pgdir(p4dp)) { 853 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 854 return; 855 } 856 857 WRITE_ONCE(*p4dp, p4d); 858 dsb(ishst); 859 isb(); 860 } 861 862 static inline void p4d_clear(p4d_t *p4dp) 863 { 864 if (pgtable_l4_enabled()) 865 set_p4d(p4dp, __p4d(0)); 866 } 867 868 static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 869 { 870 return __p4d_to_phys(p4d); 871 } 872 873 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 874 875 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr) 876 { 877 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr); 878 } 879 880 static inline pud_t *p4d_pgtable(p4d_t p4d) 881 { 882 return (pud_t *)__va(p4d_page_paddr(p4d)); 883 } 884 885 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr) 886 { 887 BUG_ON(!pgtable_l4_enabled()); 888 889 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t); 890 } 891 892 static inline 893 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr) 894 { 895 if (!pgtable_l4_enabled()) 896 return p4d_to_folded_pud(p4dp, addr); 897 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr); 898 } 899 #define pud_offset_lockless pud_offset_lockless 900 901 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr) 902 { 903 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr); 904 } 905 #define pud_offset pud_offset 906 907 static inline pud_t *pud_set_fixmap(unsigned long addr) 908 { 909 if (!pgtable_l4_enabled()) 910 return NULL; 911 return (pud_t *)set_fixmap_offset(FIX_PUD, addr); 912 } 913 914 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr) 915 { 916 if (!pgtable_l4_enabled()) 917 return p4d_to_folded_pud(p4dp, addr); 918 return pud_set_fixmap(pud_offset_phys(p4dp, addr)); 919 } 920 921 static inline void pud_clear_fixmap(void) 922 { 923 if (pgtable_l4_enabled()) 924 clear_fixmap(FIX_PUD); 925 } 926 927 /* use ONLY for statically allocated translation tables */ 928 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr) 929 { 930 if (!pgtable_l4_enabled()) 931 return p4d_to_folded_pud(p4dp, addr); 932 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr)); 933 } 934 935 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 936 937 #else 938 939 static inline bool pgtable_l4_enabled(void) { return false; } 940 941 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 942 943 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 944 #define pud_set_fixmap(addr) NULL 945 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 946 #define pud_clear_fixmap() 947 948 #define pud_offset_kimg(dir,addr) ((pud_t *)dir) 949 950 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 951 952 #if CONFIG_PGTABLE_LEVELS > 4 953 954 static __always_inline bool pgtable_l5_enabled(void) 955 { 956 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 957 return vabits_actual == VA_BITS; 958 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 959 } 960 961 static inline bool mm_p4d_folded(const struct mm_struct *mm) 962 { 963 return !pgtable_l5_enabled(); 964 } 965 #define mm_p4d_folded mm_p4d_folded 966 967 #define p4d_ERROR(e) \ 968 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e)) 969 970 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd)) 971 #define pgd_bad(pgd) (pgtable_l5_enabled() && !(pgd_val(pgd) & 2)) 972 #define pgd_present(pgd) (!pgd_none(pgd)) 973 974 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 975 { 976 if (in_swapper_pgdir(pgdp)) { 977 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd))); 978 return; 979 } 980 981 WRITE_ONCE(*pgdp, pgd); 982 dsb(ishst); 983 isb(); 984 } 985 986 static inline void pgd_clear(pgd_t *pgdp) 987 { 988 if (pgtable_l5_enabled()) 989 set_pgd(pgdp, __pgd(0)); 990 } 991 992 static inline phys_addr_t pgd_page_paddr(pgd_t pgd) 993 { 994 return __pgd_to_phys(pgd); 995 } 996 997 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 998 999 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr) 1000 { 1001 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr); 1002 } 1003 1004 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr) 1005 { 1006 BUG_ON(!pgtable_l5_enabled()); 1007 1008 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t); 1009 } 1010 1011 static inline 1012 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1013 { 1014 if (!pgtable_l5_enabled()) 1015 return pgd_to_folded_p4d(pgdp, addr); 1016 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr); 1017 } 1018 #define p4d_offset_lockless p4d_offset_lockless 1019 1020 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr) 1021 { 1022 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr); 1023 } 1024 1025 static inline p4d_t *p4d_set_fixmap(unsigned long addr) 1026 { 1027 if (!pgtable_l5_enabled()) 1028 return NULL; 1029 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr); 1030 } 1031 1032 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr) 1033 { 1034 if (!pgtable_l5_enabled()) 1035 return pgd_to_folded_p4d(pgdp, addr); 1036 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr)); 1037 } 1038 1039 static inline void p4d_clear_fixmap(void) 1040 { 1041 if (pgtable_l5_enabled()) 1042 clear_fixmap(FIX_P4D); 1043 } 1044 1045 /* use ONLY for statically allocated translation tables */ 1046 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr) 1047 { 1048 if (!pgtable_l5_enabled()) 1049 return pgd_to_folded_p4d(pgdp, addr); 1050 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr)); 1051 } 1052 1053 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd))) 1054 1055 #else 1056 1057 static inline bool pgtable_l5_enabled(void) { return false; } 1058 1059 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1060 1061 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */ 1062 #define p4d_set_fixmap(addr) NULL 1063 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp) 1064 #define p4d_clear_fixmap() 1065 1066 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir) 1067 1068 static inline 1069 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1070 { 1071 /* 1072 * With runtime folding of the pud, pud_offset_lockless() passes 1073 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which 1074 * will offset the pointer assuming that it points into 1075 * a page-table page. However, the fast GUP path passes us a 1076 * pgd_t allocated on the stack and so we must use the original 1077 * pointer in 'pgdp' to construct the p4d pointer instead of 1078 * using the generic p4d_offset_lockless() implementation. 1079 * 1080 * Note: reusing the original pointer means that we may 1081 * dereference the same (live) page-table entry multiple times. 1082 * This is safe because it is still only loaded once in the 1083 * context of each level and the CPU guarantees same-address 1084 * read-after-read ordering. 1085 */ 1086 return p4d_offset(pgdp, addr); 1087 } 1088 #define p4d_offset_lockless p4d_offset_lockless_folded 1089 1090 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1091 1092 #define pgd_ERROR(e) \ 1093 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 1094 1095 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 1096 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 1097 1098 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 1099 { 1100 /* 1101 * Normal and Normal-Tagged are two different memory types and indices 1102 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 1103 */ 1104 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 1105 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE | 1106 PTE_GP | PTE_ATTRINDX_MASK; 1107 /* preserve the hardware dirty information */ 1108 if (pte_hw_dirty(pte)) 1109 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 1110 1111 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 1112 /* 1113 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware 1114 * dirtiness again. 1115 */ 1116 if (pte_sw_dirty(pte)) 1117 pte = pte_mkdirty(pte); 1118 return pte; 1119 } 1120 1121 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1122 { 1123 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 1124 } 1125 1126 extern int __ptep_set_access_flags(struct vm_area_struct *vma, 1127 unsigned long address, pte_t *ptep, 1128 pte_t entry, int dirty); 1129 1130 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1131 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1132 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1133 unsigned long address, pmd_t *pmdp, 1134 pmd_t entry, int dirty) 1135 { 1136 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp, 1137 pmd_pte(entry), dirty); 1138 } 1139 1140 static inline int pud_devmap(pud_t pud) 1141 { 1142 return 0; 1143 } 1144 1145 static inline int pgd_devmap(pgd_t pgd) 1146 { 1147 return 0; 1148 } 1149 #endif 1150 1151 #ifdef CONFIG_PAGE_TABLE_CHECK 1152 static inline bool pte_user_accessible_page(pte_t pte) 1153 { 1154 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte)); 1155 } 1156 1157 static inline bool pmd_user_accessible_page(pmd_t pmd) 1158 { 1159 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd)); 1160 } 1161 1162 static inline bool pud_user_accessible_page(pud_t pud) 1163 { 1164 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud)); 1165 } 1166 #endif 1167 1168 /* 1169 * Atomic pte/pmd modifications. 1170 */ 1171 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma, 1172 unsigned long address, 1173 pte_t *ptep) 1174 { 1175 pte_t old_pte, pte; 1176 1177 pte = __ptep_get(ptep); 1178 do { 1179 old_pte = pte; 1180 pte = pte_mkold(pte); 1181 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1182 pte_val(old_pte), pte_val(pte)); 1183 } while (pte_val(pte) != pte_val(old_pte)); 1184 1185 return pte_young(pte); 1186 } 1187 1188 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma, 1189 unsigned long address, pte_t *ptep) 1190 { 1191 int young = __ptep_test_and_clear_young(vma, address, ptep); 1192 1193 if (young) { 1194 /* 1195 * We can elide the trailing DSB here since the worst that can 1196 * happen is that a CPU continues to use the young entry in its 1197 * TLB and we mistakenly reclaim the associated page. The 1198 * window for such an event is bounded by the next 1199 * context-switch, which provides a DSB to complete the TLB 1200 * invalidation. 1201 */ 1202 flush_tlb_page_nosync(vma, address); 1203 } 1204 1205 return young; 1206 } 1207 1208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1209 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1210 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1211 unsigned long address, 1212 pmd_t *pmdp) 1213 { 1214 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 1215 } 1216 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1217 1218 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm, 1219 unsigned long address, pte_t *ptep) 1220 { 1221 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0)); 1222 1223 page_table_check_pte_clear(mm, pte); 1224 1225 return pte; 1226 } 1227 1228 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1229 pte_t *ptep, unsigned int nr, int full) 1230 { 1231 for (;;) { 1232 __ptep_get_and_clear(mm, addr, ptep); 1233 if (--nr == 0) 1234 break; 1235 ptep++; 1236 addr += PAGE_SIZE; 1237 } 1238 } 1239 1240 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm, 1241 unsigned long addr, pte_t *ptep, 1242 unsigned int nr, int full) 1243 { 1244 pte_t pte, tmp_pte; 1245 1246 pte = __ptep_get_and_clear(mm, addr, ptep); 1247 while (--nr) { 1248 ptep++; 1249 addr += PAGE_SIZE; 1250 tmp_pte = __ptep_get_and_clear(mm, addr, ptep); 1251 if (pte_dirty(tmp_pte)) 1252 pte = pte_mkdirty(pte); 1253 if (pte_young(tmp_pte)) 1254 pte = pte_mkyoung(pte); 1255 } 1256 return pte; 1257 } 1258 1259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1260 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1261 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1262 unsigned long address, pmd_t *pmdp) 1263 { 1264 pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0)); 1265 1266 page_table_check_pmd_clear(mm, pmd); 1267 1268 return pmd; 1269 } 1270 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1271 1272 static inline void ___ptep_set_wrprotect(struct mm_struct *mm, 1273 unsigned long address, pte_t *ptep, 1274 pte_t pte) 1275 { 1276 pte_t old_pte; 1277 1278 do { 1279 old_pte = pte; 1280 pte = pte_wrprotect(pte); 1281 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1282 pte_val(old_pte), pte_val(pte)); 1283 } while (pte_val(pte) != pte_val(old_pte)); 1284 } 1285 1286 /* 1287 * __ptep_set_wrprotect - mark read-only while trasferring potential hardware 1288 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 1289 */ 1290 static inline void __ptep_set_wrprotect(struct mm_struct *mm, 1291 unsigned long address, pte_t *ptep) 1292 { 1293 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep)); 1294 } 1295 1296 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address, 1297 pte_t *ptep, unsigned int nr) 1298 { 1299 unsigned int i; 1300 1301 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++) 1302 __ptep_set_wrprotect(mm, address, ptep); 1303 } 1304 1305 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma, 1306 unsigned long addr, pte_t *ptep, 1307 pte_t pte, cydp_t flags) 1308 { 1309 pte_t old_pte; 1310 1311 do { 1312 old_pte = pte; 1313 1314 if (flags & CYDP_CLEAR_YOUNG) 1315 pte = pte_mkold(pte); 1316 if (flags & CYDP_CLEAR_DIRTY) 1317 pte = pte_mkclean(pte); 1318 1319 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1320 pte_val(old_pte), pte_val(pte)); 1321 } while (pte_val(pte) != pte_val(old_pte)); 1322 } 1323 1324 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma, 1325 unsigned long addr, pte_t *ptep, 1326 unsigned int nr, cydp_t flags) 1327 { 1328 pte_t pte; 1329 1330 for (;;) { 1331 pte = __ptep_get(ptep); 1332 1333 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY)) 1334 __set_pte(ptep, pte_mkclean(pte_mkold(pte))); 1335 else 1336 __clear_young_dirty_pte(vma, addr, ptep, pte, flags); 1337 1338 if (--nr == 0) 1339 break; 1340 ptep++; 1341 addr += PAGE_SIZE; 1342 } 1343 } 1344 1345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1346 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1347 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1348 unsigned long address, pmd_t *pmdp) 1349 { 1350 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 1351 } 1352 1353 #define pmdp_establish pmdp_establish 1354 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1355 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1356 { 1357 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 1358 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 1359 } 1360 #endif 1361 1362 /* 1363 * Encode and decode a swap entry: 1364 * bits 0-1: present (must be zero) 1365 * bits 2: remember PG_anon_exclusive 1366 * bit 3: remember uffd-wp state 1367 * bits 6-10: swap type 1368 * bit 11: PTE_PRESENT_INVALID (must be zero) 1369 * bits 12-61: swap offset 1370 */ 1371 #define __SWP_TYPE_SHIFT 6 1372 #define __SWP_TYPE_BITS 5 1373 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 1374 #define __SWP_OFFSET_SHIFT 12 1375 #define __SWP_OFFSET_BITS 50 1376 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 1377 1378 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 1379 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 1380 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 1381 1382 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1383 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 1384 1385 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1386 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 1387 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 1388 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 1389 1390 /* 1391 * Ensure that there are not more swap files than can be encoded in the kernel 1392 * PTEs. 1393 */ 1394 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 1395 1396 #ifdef CONFIG_ARM64_MTE 1397 1398 #define __HAVE_ARCH_PREPARE_TO_SWAP 1399 extern int arch_prepare_to_swap(struct folio *folio); 1400 1401 #define __HAVE_ARCH_SWAP_INVALIDATE 1402 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1403 { 1404 if (system_supports_mte()) 1405 mte_invalidate_tags(type, offset); 1406 } 1407 1408 static inline void arch_swap_invalidate_area(int type) 1409 { 1410 if (system_supports_mte()) 1411 mte_invalidate_tags_area(type); 1412 } 1413 1414 #define __HAVE_ARCH_SWAP_RESTORE 1415 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio); 1416 1417 #endif /* CONFIG_ARM64_MTE */ 1418 1419 /* 1420 * On AArch64, the cache coherency is handled via the __set_ptes() function. 1421 */ 1422 static inline void update_mmu_cache_range(struct vm_fault *vmf, 1423 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, 1424 unsigned int nr) 1425 { 1426 /* 1427 * We don't do anything here, so there's a very small chance of 1428 * us retaking a user fault which we just fixed up. The alternative 1429 * is doing a dsb(ishst), but that penalises the fastpath. 1430 */ 1431 } 1432 1433 #define update_mmu_cache(vma, addr, ptep) \ 1434 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 1435 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 1436 1437 #ifdef CONFIG_ARM64_PA_BITS_52 1438 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 1439 #else 1440 #define phys_to_ttbr(addr) (addr) 1441 #endif 1442 1443 /* 1444 * On arm64 without hardware Access Flag, copying from user will fail because 1445 * the pte is old and cannot be marked young. So we always end up with zeroed 1446 * page after fork() + CoW for pfn mappings. We don't always have a 1447 * hardware-managed access flag on arm64. 1448 */ 1449 #define arch_has_hw_pte_young cpu_has_hw_af 1450 1451 /* 1452 * Experimentally, it's cheap to set the access flag in hardware and we 1453 * benefit from prefaulting mappings as 'old' to start with. 1454 */ 1455 #define arch_wants_old_prefaulted_pte cpu_has_hw_af 1456 1457 static inline bool pud_sect_supported(void) 1458 { 1459 return PAGE_SIZE == SZ_4K; 1460 } 1461 1462 1463 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1464 #define ptep_modify_prot_start ptep_modify_prot_start 1465 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1466 unsigned long addr, pte_t *ptep); 1467 1468 #define ptep_modify_prot_commit ptep_modify_prot_commit 1469 extern void ptep_modify_prot_commit(struct vm_area_struct *vma, 1470 unsigned long addr, pte_t *ptep, 1471 pte_t old_pte, pte_t new_pte); 1472 1473 #ifdef CONFIG_ARM64_CONTPTE 1474 1475 /* 1476 * The contpte APIs are used to transparently manage the contiguous bit in ptes 1477 * where it is possible and makes sense to do so. The PTE_CONT bit is considered 1478 * a private implementation detail of the public ptep API (see below). 1479 */ 1480 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr, 1481 pte_t *ptep, pte_t pte); 1482 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr, 1483 pte_t *ptep, pte_t pte); 1484 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte); 1485 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep); 1486 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr, 1487 pte_t *ptep, pte_t pte, unsigned int nr); 1488 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1489 pte_t *ptep, unsigned int nr, int full); 1490 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm, 1491 unsigned long addr, pte_t *ptep, 1492 unsigned int nr, int full); 1493 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma, 1494 unsigned long addr, pte_t *ptep); 1495 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma, 1496 unsigned long addr, pte_t *ptep); 1497 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 1498 pte_t *ptep, unsigned int nr); 1499 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma, 1500 unsigned long addr, pte_t *ptep, 1501 pte_t entry, int dirty); 1502 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma, 1503 unsigned long addr, pte_t *ptep, 1504 unsigned int nr, cydp_t flags); 1505 1506 static __always_inline void contpte_try_fold(struct mm_struct *mm, 1507 unsigned long addr, pte_t *ptep, pte_t pte) 1508 { 1509 /* 1510 * Only bother trying if both the virtual and physical addresses are 1511 * aligned and correspond to the last entry in a contig range. The core 1512 * code mostly modifies ranges from low to high, so this is the likely 1513 * the last modification in the contig range, so a good time to fold. 1514 * We can't fold special mappings, because there is no associated folio. 1515 */ 1516 1517 const unsigned long contmask = CONT_PTES - 1; 1518 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask; 1519 1520 if (unlikely(valign)) { 1521 bool palign = (pte_pfn(pte) & contmask) == contmask; 1522 1523 if (unlikely(palign && 1524 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte))) 1525 __contpte_try_fold(mm, addr, ptep, pte); 1526 } 1527 } 1528 1529 static __always_inline void contpte_try_unfold(struct mm_struct *mm, 1530 unsigned long addr, pte_t *ptep, pte_t pte) 1531 { 1532 if (unlikely(pte_valid_cont(pte))) 1533 __contpte_try_unfold(mm, addr, ptep, pte); 1534 } 1535 1536 #define pte_batch_hint pte_batch_hint 1537 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 1538 { 1539 if (!pte_valid_cont(pte)) 1540 return 1; 1541 1542 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1)); 1543 } 1544 1545 /* 1546 * The below functions constitute the public API that arm64 presents to the 1547 * core-mm to manipulate PTE entries within their page tables (or at least this 1548 * is the subset of the API that arm64 needs to implement). These public 1549 * versions will automatically and transparently apply the contiguous bit where 1550 * it makes sense to do so. Therefore any users that are contig-aware (e.g. 1551 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the 1552 * private versions, which are prefixed with double underscore. All of these 1553 * APIs except for ptep_get_lockless() are expected to be called with the PTL 1554 * held. Although the contiguous bit is considered private to the 1555 * implementation, it is deliberately allowed to leak through the getters (e.g. 1556 * ptep_get()), back to core code. This is required so that pte_leaf_size() can 1557 * provide an accurate size for perf_get_pgtable_size(). But this leakage means 1558 * its possible a pte will be passed to a setter with the contiguous bit set, so 1559 * we explicitly clear the contiguous bit in those cases to prevent accidentally 1560 * setting it in the pgtable. 1561 */ 1562 1563 #define ptep_get ptep_get 1564 static inline pte_t ptep_get(pte_t *ptep) 1565 { 1566 pte_t pte = __ptep_get(ptep); 1567 1568 if (likely(!pte_valid_cont(pte))) 1569 return pte; 1570 1571 return contpte_ptep_get(ptep, pte); 1572 } 1573 1574 #define ptep_get_lockless ptep_get_lockless 1575 static inline pte_t ptep_get_lockless(pte_t *ptep) 1576 { 1577 pte_t pte = __ptep_get(ptep); 1578 1579 if (likely(!pte_valid_cont(pte))) 1580 return pte; 1581 1582 return contpte_ptep_get_lockless(ptep); 1583 } 1584 1585 static inline void set_pte(pte_t *ptep, pte_t pte) 1586 { 1587 /* 1588 * We don't have the mm or vaddr so cannot unfold contig entries (since 1589 * it requires tlb maintenance). set_pte() is not used in core code, so 1590 * this should never even be called. Regardless do our best to service 1591 * any call and emit a warning if there is any attempt to set a pte on 1592 * top of an existing contig range. 1593 */ 1594 pte_t orig_pte = __ptep_get(ptep); 1595 1596 WARN_ON_ONCE(pte_valid_cont(orig_pte)); 1597 __set_pte(ptep, pte_mknoncont(pte)); 1598 } 1599 1600 #define set_ptes set_ptes 1601 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1602 pte_t *ptep, pte_t pte, unsigned int nr) 1603 { 1604 pte = pte_mknoncont(pte); 1605 1606 if (likely(nr == 1)) { 1607 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1608 __set_ptes(mm, addr, ptep, pte, 1); 1609 contpte_try_fold(mm, addr, ptep, pte); 1610 } else { 1611 contpte_set_ptes(mm, addr, ptep, pte, nr); 1612 } 1613 } 1614 1615 static inline void pte_clear(struct mm_struct *mm, 1616 unsigned long addr, pte_t *ptep) 1617 { 1618 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1619 __pte_clear(mm, addr, ptep); 1620 } 1621 1622 #define clear_full_ptes clear_full_ptes 1623 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1624 pte_t *ptep, unsigned int nr, int full) 1625 { 1626 if (likely(nr == 1)) { 1627 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1628 __clear_full_ptes(mm, addr, ptep, nr, full); 1629 } else { 1630 contpte_clear_full_ptes(mm, addr, ptep, nr, full); 1631 } 1632 } 1633 1634 #define get_and_clear_full_ptes get_and_clear_full_ptes 1635 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 1636 unsigned long addr, pte_t *ptep, 1637 unsigned int nr, int full) 1638 { 1639 pte_t pte; 1640 1641 if (likely(nr == 1)) { 1642 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1643 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1644 } else { 1645 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1646 } 1647 1648 return pte; 1649 } 1650 1651 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1652 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1653 unsigned long addr, pte_t *ptep) 1654 { 1655 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1656 return __ptep_get_and_clear(mm, addr, ptep); 1657 } 1658 1659 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1660 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1661 unsigned long addr, pte_t *ptep) 1662 { 1663 pte_t orig_pte = __ptep_get(ptep); 1664 1665 if (likely(!pte_valid_cont(orig_pte))) 1666 return __ptep_test_and_clear_young(vma, addr, ptep); 1667 1668 return contpte_ptep_test_and_clear_young(vma, addr, ptep); 1669 } 1670 1671 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1672 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1673 unsigned long addr, pte_t *ptep) 1674 { 1675 pte_t orig_pte = __ptep_get(ptep); 1676 1677 if (likely(!pte_valid_cont(orig_pte))) 1678 return __ptep_clear_flush_young(vma, addr, ptep); 1679 1680 return contpte_ptep_clear_flush_young(vma, addr, ptep); 1681 } 1682 1683 #define wrprotect_ptes wrprotect_ptes 1684 static __always_inline void wrprotect_ptes(struct mm_struct *mm, 1685 unsigned long addr, pte_t *ptep, unsigned int nr) 1686 { 1687 if (likely(nr == 1)) { 1688 /* 1689 * Optimization: wrprotect_ptes() can only be called for present 1690 * ptes so we only need to check contig bit as condition for 1691 * unfold, and we can remove the contig bit from the pte we read 1692 * to avoid re-reading. This speeds up fork() which is sensitive 1693 * for order-0 folios. Equivalent to contpte_try_unfold(). 1694 */ 1695 pte_t orig_pte = __ptep_get(ptep); 1696 1697 if (unlikely(pte_cont(orig_pte))) { 1698 __contpte_try_unfold(mm, addr, ptep, orig_pte); 1699 orig_pte = pte_mknoncont(orig_pte); 1700 } 1701 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte); 1702 } else { 1703 contpte_wrprotect_ptes(mm, addr, ptep, nr); 1704 } 1705 } 1706 1707 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1708 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1709 unsigned long addr, pte_t *ptep) 1710 { 1711 wrprotect_ptes(mm, addr, ptep, 1); 1712 } 1713 1714 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1715 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1716 unsigned long addr, pte_t *ptep, 1717 pte_t entry, int dirty) 1718 { 1719 pte_t orig_pte = __ptep_get(ptep); 1720 1721 entry = pte_mknoncont(entry); 1722 1723 if (likely(!pte_valid_cont(orig_pte))) 1724 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1725 1726 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1727 } 1728 1729 #define clear_young_dirty_ptes clear_young_dirty_ptes 1730 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 1731 unsigned long addr, pte_t *ptep, 1732 unsigned int nr, cydp_t flags) 1733 { 1734 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep)))) 1735 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1736 else 1737 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1738 } 1739 1740 #else /* CONFIG_ARM64_CONTPTE */ 1741 1742 #define ptep_get __ptep_get 1743 #define set_pte __set_pte 1744 #define set_ptes __set_ptes 1745 #define pte_clear __pte_clear 1746 #define clear_full_ptes __clear_full_ptes 1747 #define get_and_clear_full_ptes __get_and_clear_full_ptes 1748 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1749 #define ptep_get_and_clear __ptep_get_and_clear 1750 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1751 #define ptep_test_and_clear_young __ptep_test_and_clear_young 1752 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1753 #define ptep_clear_flush_young __ptep_clear_flush_young 1754 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1755 #define ptep_set_wrprotect __ptep_set_wrprotect 1756 #define wrprotect_ptes __wrprotect_ptes 1757 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1758 #define ptep_set_access_flags __ptep_set_access_flags 1759 #define clear_young_dirty_ptes __clear_young_dirty_ptes 1760 1761 #endif /* CONFIG_ARM64_CONTPTE */ 1762 1763 #endif /* !__ASSEMBLY__ */ 1764 1765 #endif /* __ASM_PGTABLE_H */ 1766
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.