~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kernel/module-plts.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
  4  */
  5 
  6 #include <linux/elf.h>
  7 #include <linux/ftrace.h>
  8 #include <linux/kernel.h>
  9 #include <linux/module.h>
 10 #include <linux/moduleloader.h>
 11 #include <linux/sort.h>
 12 
 13 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
 14                                             enum aarch64_insn_register reg)
 15 {
 16         u32 adrp, add;
 17 
 18         adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
 19         add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
 20                                            AARCH64_INSN_VARIANT_64BIT,
 21                                            AARCH64_INSN_ADSB_ADD);
 22 
 23         return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
 24 }
 25 
 26 struct plt_entry get_plt_entry(u64 dst, void *pc)
 27 {
 28         struct plt_entry plt;
 29         static u32 br;
 30 
 31         if (!br)
 32                 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
 33                                                  AARCH64_INSN_BRANCH_NOLINK);
 34 
 35         plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
 36         plt.br = cpu_to_le32(br);
 37 
 38         return plt;
 39 }
 40 
 41 static bool plt_entries_equal(const struct plt_entry *a,
 42                               const struct plt_entry *b)
 43 {
 44         u64 p, q;
 45 
 46         /*
 47          * Check whether both entries refer to the same target:
 48          * do the cheapest checks first.
 49          * If the 'add' or 'br' opcodes are different, then the target
 50          * cannot be the same.
 51          */
 52         if (a->add != b->add || a->br != b->br)
 53                 return false;
 54 
 55         p = ALIGN_DOWN((u64)a, SZ_4K);
 56         q = ALIGN_DOWN((u64)b, SZ_4K);
 57 
 58         /*
 59          * If the 'adrp' opcodes are the same then we just need to check
 60          * that they refer to the same 4k region.
 61          */
 62         if (a->adrp == b->adrp && p == q)
 63                 return true;
 64 
 65         return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
 66                (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
 67 }
 68 
 69 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
 70                           void *loc, const Elf64_Rela *rela,
 71                           Elf64_Sym *sym)
 72 {
 73         struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
 74                                                 &mod->arch.core : &mod->arch.init;
 75         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
 76         int i = pltsec->plt_num_entries;
 77         int j = i - 1;
 78         u64 val = sym->st_value + rela->r_addend;
 79 
 80         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
 81                 i++;
 82 
 83         plt[i] = get_plt_entry(val, &plt[i]);
 84 
 85         /*
 86          * Check if the entry we just created is a duplicate. Given that the
 87          * relocations are sorted, this will be the last entry we allocated.
 88          * (if one exists).
 89          */
 90         if (j >= 0 && plt_entries_equal(plt + i, plt + j))
 91                 return (u64)&plt[j];
 92 
 93         pltsec->plt_num_entries += i - j;
 94         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
 95                 return 0;
 96 
 97         return (u64)&plt[i];
 98 }
 99 
100 #ifdef CONFIG_ARM64_ERRATUM_843419
101 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
102                                 void *loc, u64 val)
103 {
104         struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
105                                                 &mod->arch.core : &mod->arch.init;
106         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
107         int i = pltsec->plt_num_entries++;
108         u32 br;
109         int rd;
110 
111         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
112                 return 0;
113 
114         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
115                 i = pltsec->plt_num_entries++;
116 
117         /* get the destination register of the ADRP instruction */
118         rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
119                                           le32_to_cpup((__le32 *)loc));
120 
121         br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
122                                          AARCH64_INSN_BRANCH_NOLINK);
123 
124         plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
125         plt[i].br = cpu_to_le32(br);
126 
127         return (u64)&plt[i];
128 }
129 #endif
130 
131 #define cmp_3way(a, b)  ((a) < (b) ? -1 : (a) > (b))
132 
133 static int cmp_rela(const void *a, const void *b)
134 {
135         const Elf64_Rela *x = a, *y = b;
136         int i;
137 
138         /* sort by type, symbol index and addend */
139         i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
140         if (i == 0)
141                 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
142         if (i == 0)
143                 i = cmp_3way(x->r_addend, y->r_addend);
144         return i;
145 }
146 
147 static bool duplicate_rel(const Elf64_Rela *rela, int num)
148 {
149         /*
150          * Entries are sorted by type, symbol index and addend. That means
151          * that, if a duplicate entry exists, it must be in the preceding
152          * slot.
153          */
154         return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
155 }
156 
157 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
158                                Elf64_Word dstidx, Elf_Shdr *dstsec)
159 {
160         unsigned int ret = 0;
161         Elf64_Sym *s;
162         int i;
163 
164         for (i = 0; i < num; i++) {
165                 u64 min_align;
166 
167                 switch (ELF64_R_TYPE(rela[i].r_info)) {
168                 case R_AARCH64_JUMP26:
169                 case R_AARCH64_CALL26:
170                         /*
171                          * We only have to consider branch targets that resolve
172                          * to symbols that are defined in a different section.
173                          * This is not simply a heuristic, it is a fundamental
174                          * limitation, since there is no guaranteed way to emit
175                          * PLT entries sufficiently close to the branch if the
176                          * section size exceeds the range of a branch
177                          * instruction. So ignore relocations against defined
178                          * symbols if they live in the same section as the
179                          * relocation target.
180                          */
181                         s = syms + ELF64_R_SYM(rela[i].r_info);
182                         if (s->st_shndx == dstidx)
183                                 break;
184 
185                         /*
186                          * Jump relocations with non-zero addends against
187                          * undefined symbols are supported by the ELF spec, but
188                          * do not occur in practice (e.g., 'jump n bytes past
189                          * the entry point of undefined function symbol f').
190                          * So we need to support them, but there is no need to
191                          * take them into consideration when trying to optimize
192                          * this code. So let's only check for duplicates when
193                          * the addend is zero: this allows us to record the PLT
194                          * entry address in the symbol table itself, rather than
195                          * having to search the list for duplicates each time we
196                          * emit one.
197                          */
198                         if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
199                                 ret++;
200                         break;
201                 case R_AARCH64_ADR_PREL_PG_HI21_NC:
202                 case R_AARCH64_ADR_PREL_PG_HI21:
203                         if (!cpus_have_final_cap(ARM64_WORKAROUND_843419))
204                                 break;
205 
206                         /*
207                          * Determine the minimal safe alignment for this ADRP
208                          * instruction: the section alignment at which it is
209                          * guaranteed not to appear at a vulnerable offset.
210                          *
211                          * This comes down to finding the least significant zero
212                          * bit in bits [11:3] of the section offset, and
213                          * increasing the section's alignment so that the
214                          * resulting address of this instruction is guaranteed
215                          * to equal the offset in that particular bit (as well
216                          * as all less significant bits). This ensures that the
217                          * address modulo 4 KB != 0xfff8 or 0xfffc (which would
218                          * have all ones in bits [11:3])
219                          */
220                         min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
221 
222                         /*
223                          * Allocate veneer space for each ADRP that may appear
224                          * at a vulnerable offset nonetheless. At relocation
225                          * time, some of these will remain unused since some
226                          * ADRP instructions can be patched to ADR instructions
227                          * instead.
228                          */
229                         if (min_align > SZ_4K)
230                                 ret++;
231                         else
232                                 dstsec->sh_addralign = max(dstsec->sh_addralign,
233                                                            min_align);
234                         break;
235                 }
236         }
237 
238         if (cpus_have_final_cap(ARM64_WORKAROUND_843419)) {
239                 /*
240                  * Add some slack so we can skip PLT slots that may trigger
241                  * the erratum due to the placement of the ADRP instruction.
242                  */
243                 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
244         }
245 
246         return ret;
247 }
248 
249 static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
250                                   Elf64_Word dstidx)
251 {
252 
253         Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
254 
255         if (s->st_shndx == dstidx)
256                 return false;
257 
258         return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
259                ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
260 }
261 
262 /* Group branch PLT relas at the front end of the array. */
263 static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
264                                       int numrels, Elf64_Word dstidx)
265 {
266         int i = 0, j = numrels - 1;
267 
268         while (i < j) {
269                 if (branch_rela_needs_plt(syms, &rela[i], dstidx))
270                         i++;
271                 else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
272                         swap(rela[i], rela[j]);
273                 else
274                         j--;
275         }
276 
277         return i;
278 }
279 
280 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
281                               char *secstrings, struct module *mod)
282 {
283         unsigned long core_plts = 0;
284         unsigned long init_plts = 0;
285         Elf64_Sym *syms = NULL;
286         Elf_Shdr *pltsec, *tramp = NULL;
287         int i;
288 
289         /*
290          * Find the empty .plt section so we can expand it to store the PLT
291          * entries. Record the symtab address as well.
292          */
293         for (i = 0; i < ehdr->e_shnum; i++) {
294                 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
295                         mod->arch.core.plt_shndx = i;
296                 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
297                         mod->arch.init.plt_shndx = i;
298                 else if (!strcmp(secstrings + sechdrs[i].sh_name,
299                                  ".text.ftrace_trampoline"))
300                         tramp = sechdrs + i;
301                 else if (sechdrs[i].sh_type == SHT_SYMTAB)
302                         syms = (Elf64_Sym *)sechdrs[i].sh_addr;
303         }
304 
305         if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
306                 pr_err("%s: module PLT section(s) missing\n", mod->name);
307                 return -ENOEXEC;
308         }
309         if (!syms) {
310                 pr_err("%s: module symtab section missing\n", mod->name);
311                 return -ENOEXEC;
312         }
313 
314         for (i = 0; i < ehdr->e_shnum; i++) {
315                 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
316                 int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
317                 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
318 
319                 if (sechdrs[i].sh_type != SHT_RELA)
320                         continue;
321 
322                 /* ignore relocations that operate on non-exec sections */
323                 if (!(dstsec->sh_flags & SHF_EXECINSTR))
324                         continue;
325 
326                 /*
327                  * sort branch relocations requiring a PLT by type, symbol index
328                  * and addend
329                  */
330                 nents = partition_branch_plt_relas(syms, rels, numrels,
331                                                    sechdrs[i].sh_info);
332                 if (nents)
333                         sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
334 
335                 if (!module_init_layout_section(secstrings + dstsec->sh_name))
336                         core_plts += count_plts(syms, rels, numrels,
337                                                 sechdrs[i].sh_info, dstsec);
338                 else
339                         init_plts += count_plts(syms, rels, numrels,
340                                                 sechdrs[i].sh_info, dstsec);
341         }
342 
343         pltsec = sechdrs + mod->arch.core.plt_shndx;
344         pltsec->sh_type = SHT_NOBITS;
345         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
346         pltsec->sh_addralign = L1_CACHE_BYTES;
347         pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
348         mod->arch.core.plt_num_entries = 0;
349         mod->arch.core.plt_max_entries = core_plts;
350 
351         pltsec = sechdrs + mod->arch.init.plt_shndx;
352         pltsec->sh_type = SHT_NOBITS;
353         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
354         pltsec->sh_addralign = L1_CACHE_BYTES;
355         pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
356         mod->arch.init.plt_num_entries = 0;
357         mod->arch.init.plt_max_entries = init_plts;
358 
359         if (tramp) {
360                 tramp->sh_type = SHT_NOBITS;
361                 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
362                 tramp->sh_addralign = __alignof__(struct plt_entry);
363                 tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
364         }
365 
366         return 0;
367 }
368 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php