~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/arch_timer.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2012 ARM Ltd.
  4  * Author: Marc Zyngier <marc.zyngier@arm.com>
  5  */
  6 
  7 #include <linux/cpu.h>
  8 #include <linux/kvm.h>
  9 #include <linux/kvm_host.h>
 10 #include <linux/interrupt.h>
 11 #include <linux/irq.h>
 12 #include <linux/irqdomain.h>
 13 #include <linux/uaccess.h>
 14 
 15 #include <clocksource/arm_arch_timer.h>
 16 #include <asm/arch_timer.h>
 17 #include <asm/kvm_emulate.h>
 18 #include <asm/kvm_hyp.h>
 19 #include <asm/kvm_nested.h>
 20 
 21 #include <kvm/arm_vgic.h>
 22 #include <kvm/arm_arch_timer.h>
 23 
 24 #include "trace.h"
 25 
 26 static struct timecounter *timecounter;
 27 static unsigned int host_vtimer_irq;
 28 static unsigned int host_ptimer_irq;
 29 static u32 host_vtimer_irq_flags;
 30 static u32 host_ptimer_irq_flags;
 31 
 32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
 33 
 34 static const u8 default_ppi[] = {
 35         [TIMER_PTIMER]  = 30,
 36         [TIMER_VTIMER]  = 27,
 37         [TIMER_HPTIMER] = 26,
 38         [TIMER_HVTIMER] = 28,
 39 };
 40 
 41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
 42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
 43                                  struct arch_timer_context *timer_ctx);
 44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
 45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
 46                                 struct arch_timer_context *timer,
 47                                 enum kvm_arch_timer_regs treg,
 48                                 u64 val);
 49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
 50                               struct arch_timer_context *timer,
 51                               enum kvm_arch_timer_regs treg);
 52 static bool kvm_arch_timer_get_input_level(int vintid);
 53 
 54 static struct irq_ops arch_timer_irq_ops = {
 55         .get_input_level = kvm_arch_timer_get_input_level,
 56 };
 57 
 58 static int nr_timers(struct kvm_vcpu *vcpu)
 59 {
 60         if (!vcpu_has_nv(vcpu))
 61                 return NR_KVM_EL0_TIMERS;
 62 
 63         return NR_KVM_TIMERS;
 64 }
 65 
 66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
 67 {
 68         struct kvm_vcpu *vcpu = ctxt->vcpu;
 69 
 70         switch(arch_timer_ctx_index(ctxt)) {
 71         case TIMER_VTIMER:
 72                 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
 73         case TIMER_PTIMER:
 74                 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
 75         case TIMER_HVTIMER:
 76                 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
 77         case TIMER_HPTIMER:
 78                 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
 79         default:
 80                 WARN_ON(1);
 81                 return 0;
 82         }
 83 }
 84 
 85 u64 timer_get_cval(struct arch_timer_context *ctxt)
 86 {
 87         struct kvm_vcpu *vcpu = ctxt->vcpu;
 88 
 89         switch(arch_timer_ctx_index(ctxt)) {
 90         case TIMER_VTIMER:
 91                 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
 92         case TIMER_PTIMER:
 93                 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
 94         case TIMER_HVTIMER:
 95                 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
 96         case TIMER_HPTIMER:
 97                 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
 98         default:
 99                 WARN_ON(1);
100                 return 0;
101         }
102 }
103 
104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106         u64 offset = 0;
107 
108         if (!ctxt)
109                 return 0;
110 
111         if (ctxt->offset.vm_offset)
112                 offset += *ctxt->offset.vm_offset;
113         if (ctxt->offset.vcpu_offset)
114                 offset += *ctxt->offset.vcpu_offset;
115 
116         return offset;
117 }
118 
119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121         struct kvm_vcpu *vcpu = ctxt->vcpu;
122 
123         switch(arch_timer_ctx_index(ctxt)) {
124         case TIMER_VTIMER:
125                 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126                 break;
127         case TIMER_PTIMER:
128                 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129                 break;
130         case TIMER_HVTIMER:
131                 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132                 break;
133         case TIMER_HPTIMER:
134                 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135                 break;
136         default:
137                 WARN_ON(1);
138         }
139 }
140 
141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143         struct kvm_vcpu *vcpu = ctxt->vcpu;
144 
145         switch(arch_timer_ctx_index(ctxt)) {
146         case TIMER_VTIMER:
147                 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148                 break;
149         case TIMER_PTIMER:
150                 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151                 break;
152         case TIMER_HVTIMER:
153                 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154                 break;
155         case TIMER_HPTIMER:
156                 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157                 break;
158         default:
159                 WARN_ON(1);
160         }
161 }
162 
163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165         if (!ctxt->offset.vm_offset) {
166                 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167                 return;
168         }
169 
170         WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171 }
172 
173 u64 kvm_phys_timer_read(void)
174 {
175         return timecounter->cc->read(timecounter->cc);
176 }
177 
178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179 {
180         if (vcpu_has_nv(vcpu)) {
181                 if (is_hyp_ctxt(vcpu)) {
182                         map->direct_vtimer = vcpu_hvtimer(vcpu);
183                         map->direct_ptimer = vcpu_hptimer(vcpu);
184                         map->emul_vtimer = vcpu_vtimer(vcpu);
185                         map->emul_ptimer = vcpu_ptimer(vcpu);
186                 } else {
187                         map->direct_vtimer = vcpu_vtimer(vcpu);
188                         map->direct_ptimer = vcpu_ptimer(vcpu);
189                         map->emul_vtimer = vcpu_hvtimer(vcpu);
190                         map->emul_ptimer = vcpu_hptimer(vcpu);
191                 }
192         } else if (has_vhe()) {
193                 map->direct_vtimer = vcpu_vtimer(vcpu);
194                 map->direct_ptimer = vcpu_ptimer(vcpu);
195                 map->emul_vtimer = NULL;
196                 map->emul_ptimer = NULL;
197         } else {
198                 map->direct_vtimer = vcpu_vtimer(vcpu);
199                 map->direct_ptimer = NULL;
200                 map->emul_vtimer = NULL;
201                 map->emul_ptimer = vcpu_ptimer(vcpu);
202         }
203 
204         trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205 }
206 
207 static inline bool userspace_irqchip(struct kvm *kvm)
208 {
209         return static_branch_unlikely(&userspace_irqchip_in_use) &&
210                 unlikely(!irqchip_in_kernel(kvm));
211 }
212 
213 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
214 {
215         hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
216                       HRTIMER_MODE_ABS_HARD);
217 }
218 
219 static void soft_timer_cancel(struct hrtimer *hrt)
220 {
221         hrtimer_cancel(hrt);
222 }
223 
224 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
225 {
226         struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
227         struct arch_timer_context *ctx;
228         struct timer_map map;
229 
230         /*
231          * We may see a timer interrupt after vcpu_put() has been called which
232          * sets the CPU's vcpu pointer to NULL, because even though the timer
233          * has been disabled in timer_save_state(), the hardware interrupt
234          * signal may not have been retired from the interrupt controller yet.
235          */
236         if (!vcpu)
237                 return IRQ_HANDLED;
238 
239         get_timer_map(vcpu, &map);
240 
241         if (irq == host_vtimer_irq)
242                 ctx = map.direct_vtimer;
243         else
244                 ctx = map.direct_ptimer;
245 
246         if (kvm_timer_should_fire(ctx))
247                 kvm_timer_update_irq(vcpu, true, ctx);
248 
249         if (userspace_irqchip(vcpu->kvm) &&
250             !static_branch_unlikely(&has_gic_active_state))
251                 disable_percpu_irq(host_vtimer_irq);
252 
253         return IRQ_HANDLED;
254 }
255 
256 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
257                                      u64 val)
258 {
259         u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
260 
261         if (now < val) {
262                 u64 ns;
263 
264                 ns = cyclecounter_cyc2ns(timecounter->cc,
265                                          val - now,
266                                          timecounter->mask,
267                                          &timer_ctx->ns_frac);
268                 return ns;
269         }
270 
271         return 0;
272 }
273 
274 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
275 {
276         return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
277 }
278 
279 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
280 {
281         WARN_ON(timer_ctx && timer_ctx->loaded);
282         return timer_ctx &&
283                 ((timer_get_ctl(timer_ctx) &
284                   (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
285 }
286 
287 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
288 {
289         return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
290                 vcpu_get_flag(vcpu, IN_WFIT));
291 }
292 
293 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
294 {
295         u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
296         struct arch_timer_context *ctx;
297 
298         ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
299 
300         return kvm_counter_compute_delta(ctx, val);
301 }
302 
303 /*
304  * Returns the earliest expiration time in ns among guest timers.
305  * Note that it will return 0 if none of timers can fire.
306  */
307 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
308 {
309         u64 min_delta = ULLONG_MAX;
310         int i;
311 
312         for (i = 0; i < nr_timers(vcpu); i++) {
313                 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
314 
315                 WARN(ctx->loaded, "timer %d loaded\n", i);
316                 if (kvm_timer_irq_can_fire(ctx))
317                         min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
318         }
319 
320         if (vcpu_has_wfit_active(vcpu))
321                 min_delta = min(min_delta, wfit_delay_ns(vcpu));
322 
323         /* If none of timers can fire, then return 0 */
324         if (min_delta == ULLONG_MAX)
325                 return 0;
326 
327         return min_delta;
328 }
329 
330 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
331 {
332         struct arch_timer_cpu *timer;
333         struct kvm_vcpu *vcpu;
334         u64 ns;
335 
336         timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
337         vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
338 
339         /*
340          * Check that the timer has really expired from the guest's
341          * PoV (NTP on the host may have forced it to expire
342          * early). If we should have slept longer, restart it.
343          */
344         ns = kvm_timer_earliest_exp(vcpu);
345         if (unlikely(ns)) {
346                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
347                 return HRTIMER_RESTART;
348         }
349 
350         kvm_vcpu_wake_up(vcpu);
351         return HRTIMER_NORESTART;
352 }
353 
354 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
355 {
356         struct arch_timer_context *ctx;
357         struct kvm_vcpu *vcpu;
358         u64 ns;
359 
360         ctx = container_of(hrt, struct arch_timer_context, hrtimer);
361         vcpu = ctx->vcpu;
362 
363         trace_kvm_timer_hrtimer_expire(ctx);
364 
365         /*
366          * Check that the timer has really expired from the guest's
367          * PoV (NTP on the host may have forced it to expire
368          * early). If not ready, schedule for a later time.
369          */
370         ns = kvm_timer_compute_delta(ctx);
371         if (unlikely(ns)) {
372                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
373                 return HRTIMER_RESTART;
374         }
375 
376         kvm_timer_update_irq(vcpu, true, ctx);
377         return HRTIMER_NORESTART;
378 }
379 
380 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
381 {
382         enum kvm_arch_timers index;
383         u64 cval, now;
384 
385         if (!timer_ctx)
386                 return false;
387 
388         index = arch_timer_ctx_index(timer_ctx);
389 
390         if (timer_ctx->loaded) {
391                 u32 cnt_ctl = 0;
392 
393                 switch (index) {
394                 case TIMER_VTIMER:
395                 case TIMER_HVTIMER:
396                         cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
397                         break;
398                 case TIMER_PTIMER:
399                 case TIMER_HPTIMER:
400                         cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
401                         break;
402                 case NR_KVM_TIMERS:
403                         /* GCC is braindead */
404                         cnt_ctl = 0;
405                         break;
406                 }
407 
408                 return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
409                         (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
410                        !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
411         }
412 
413         if (!kvm_timer_irq_can_fire(timer_ctx))
414                 return false;
415 
416         cval = timer_get_cval(timer_ctx);
417         now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
418 
419         return cval <= now;
420 }
421 
422 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
423 {
424         return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
425 }
426 
427 /*
428  * Reflect the timer output level into the kvm_run structure
429  */
430 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
431 {
432         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
433         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
434         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
435 
436         /* Populate the device bitmap with the timer states */
437         regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
438                                     KVM_ARM_DEV_EL1_PTIMER);
439         if (kvm_timer_should_fire(vtimer))
440                 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
441         if (kvm_timer_should_fire(ptimer))
442                 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
443 }
444 
445 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
446                                  struct arch_timer_context *timer_ctx)
447 {
448         int ret;
449 
450         timer_ctx->irq.level = new_level;
451         trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
452                                    timer_ctx->irq.level);
453 
454         if (!userspace_irqchip(vcpu->kvm)) {
455                 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
456                                           timer_irq(timer_ctx),
457                                           timer_ctx->irq.level,
458                                           timer_ctx);
459                 WARN_ON(ret);
460         }
461 }
462 
463 /* Only called for a fully emulated timer */
464 static void timer_emulate(struct arch_timer_context *ctx)
465 {
466         bool should_fire = kvm_timer_should_fire(ctx);
467 
468         trace_kvm_timer_emulate(ctx, should_fire);
469 
470         if (should_fire != ctx->irq.level) {
471                 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
472                 return;
473         }
474 
475         /*
476          * If the timer can fire now, we don't need to have a soft timer
477          * scheduled for the future.  If the timer cannot fire at all,
478          * then we also don't need a soft timer.
479          */
480         if (should_fire || !kvm_timer_irq_can_fire(ctx))
481                 return;
482 
483         soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
484 }
485 
486 static void set_cntvoff(u64 cntvoff)
487 {
488         kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
489 }
490 
491 static void set_cntpoff(u64 cntpoff)
492 {
493         if (has_cntpoff())
494                 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
495 }
496 
497 static void timer_save_state(struct arch_timer_context *ctx)
498 {
499         struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
500         enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
501         unsigned long flags;
502 
503         if (!timer->enabled)
504                 return;
505 
506         local_irq_save(flags);
507 
508         if (!ctx->loaded)
509                 goto out;
510 
511         switch (index) {
512                 u64 cval;
513 
514         case TIMER_VTIMER:
515         case TIMER_HVTIMER:
516                 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
517                 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
518 
519                 /* Disable the timer */
520                 write_sysreg_el0(0, SYS_CNTV_CTL);
521                 isb();
522 
523                 /*
524                  * The kernel may decide to run userspace after
525                  * calling vcpu_put, so we reset cntvoff to 0 to
526                  * ensure a consistent read between user accesses to
527                  * the virtual counter and kernel access to the
528                  * physical counter of non-VHE case.
529                  *
530                  * For VHE, the virtual counter uses a fixed virtual
531                  * offset of zero, so no need to zero CNTVOFF_EL2
532                  * register, but this is actually useful when switching
533                  * between EL1/vEL2 with NV.
534                  *
535                  * Do it unconditionally, as this is either unavoidable
536                  * or dirt cheap.
537                  */
538                 set_cntvoff(0);
539                 break;
540         case TIMER_PTIMER:
541         case TIMER_HPTIMER:
542                 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
543                 cval = read_sysreg_el0(SYS_CNTP_CVAL);
544 
545                 cval -= timer_get_offset(ctx);
546 
547                 timer_set_cval(ctx, cval);
548 
549                 /* Disable the timer */
550                 write_sysreg_el0(0, SYS_CNTP_CTL);
551                 isb();
552 
553                 set_cntpoff(0);
554                 break;
555         case NR_KVM_TIMERS:
556                 BUG();
557         }
558 
559         trace_kvm_timer_save_state(ctx);
560 
561         ctx->loaded = false;
562 out:
563         local_irq_restore(flags);
564 }
565 
566 /*
567  * Schedule the background timer before calling kvm_vcpu_halt, so that this
568  * thread is removed from its waitqueue and made runnable when there's a timer
569  * interrupt to handle.
570  */
571 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
572 {
573         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
574         struct timer_map map;
575 
576         get_timer_map(vcpu, &map);
577 
578         /*
579          * If no timers are capable of raising interrupts (disabled or
580          * masked), then there's no more work for us to do.
581          */
582         if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
583             !kvm_timer_irq_can_fire(map.direct_ptimer) &&
584             !kvm_timer_irq_can_fire(map.emul_vtimer) &&
585             !kvm_timer_irq_can_fire(map.emul_ptimer) &&
586             !vcpu_has_wfit_active(vcpu))
587                 return;
588 
589         /*
590          * At least one guest time will expire. Schedule a background timer.
591          * Set the earliest expiration time among the guest timers.
592          */
593         soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
594 }
595 
596 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
597 {
598         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
599 
600         soft_timer_cancel(&timer->bg_timer);
601 }
602 
603 static void timer_restore_state(struct arch_timer_context *ctx)
604 {
605         struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
606         enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
607         unsigned long flags;
608 
609         if (!timer->enabled)
610                 return;
611 
612         local_irq_save(flags);
613 
614         if (ctx->loaded)
615                 goto out;
616 
617         switch (index) {
618                 u64 cval, offset;
619 
620         case TIMER_VTIMER:
621         case TIMER_HVTIMER:
622                 set_cntvoff(timer_get_offset(ctx));
623                 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
624                 isb();
625                 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
626                 break;
627         case TIMER_PTIMER:
628         case TIMER_HPTIMER:
629                 cval = timer_get_cval(ctx);
630                 offset = timer_get_offset(ctx);
631                 set_cntpoff(offset);
632                 cval += offset;
633                 write_sysreg_el0(cval, SYS_CNTP_CVAL);
634                 isb();
635                 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
636                 break;
637         case NR_KVM_TIMERS:
638                 BUG();
639         }
640 
641         trace_kvm_timer_restore_state(ctx);
642 
643         ctx->loaded = true;
644 out:
645         local_irq_restore(flags);
646 }
647 
648 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
649 {
650         int r;
651         r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
652         WARN_ON(r);
653 }
654 
655 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
656 {
657         struct kvm_vcpu *vcpu = ctx->vcpu;
658         bool phys_active = false;
659 
660         /*
661          * Update the timer output so that it is likely to match the
662          * state we're about to restore. If the timer expires between
663          * this point and the register restoration, we'll take the
664          * interrupt anyway.
665          */
666         kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
667 
668         if (irqchip_in_kernel(vcpu->kvm))
669                 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
670 
671         phys_active |= ctx->irq.level;
672 
673         set_timer_irq_phys_active(ctx, phys_active);
674 }
675 
676 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
677 {
678         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
679 
680         /*
681          * Update the timer output so that it is likely to match the
682          * state we're about to restore. If the timer expires between
683          * this point and the register restoration, we'll take the
684          * interrupt anyway.
685          */
686         kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
687 
688         /*
689          * When using a userspace irqchip with the architected timers and a
690          * host interrupt controller that doesn't support an active state, we
691          * must still prevent continuously exiting from the guest, and
692          * therefore mask the physical interrupt by disabling it on the host
693          * interrupt controller when the virtual level is high, such that the
694          * guest can make forward progress.  Once we detect the output level
695          * being de-asserted, we unmask the interrupt again so that we exit
696          * from the guest when the timer fires.
697          */
698         if (vtimer->irq.level)
699                 disable_percpu_irq(host_vtimer_irq);
700         else
701                 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
702 }
703 
704 /* If _pred is true, set bit in _set, otherwise set it in _clr */
705 #define assign_clear_set_bit(_pred, _bit, _clr, _set)                   \
706         do {                                                            \
707                 if (_pred)                                              \
708                         (_set) |= (_bit);                               \
709                 else                                                    \
710                         (_clr) |= (_bit);                               \
711         } while (0)
712 
713 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
714                                               struct timer_map *map)
715 {
716         int hw, ret;
717 
718         if (!irqchip_in_kernel(vcpu->kvm))
719                 return;
720 
721         /*
722          * We only ever unmap the vtimer irq on a VHE system that runs nested
723          * virtualization, in which case we have both a valid emul_vtimer,
724          * emul_ptimer, direct_vtimer, and direct_ptimer.
725          *
726          * Since this is called from kvm_timer_vcpu_load(), a change between
727          * vEL2 and vEL1/0 will have just happened, and the timer_map will
728          * represent this, and therefore we switch the emul/direct mappings
729          * below.
730          */
731         hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
732         if (hw < 0) {
733                 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
734                 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
735 
736                 ret = kvm_vgic_map_phys_irq(vcpu,
737                                             map->direct_vtimer->host_timer_irq,
738                                             timer_irq(map->direct_vtimer),
739                                             &arch_timer_irq_ops);
740                 WARN_ON_ONCE(ret);
741                 ret = kvm_vgic_map_phys_irq(vcpu,
742                                             map->direct_ptimer->host_timer_irq,
743                                             timer_irq(map->direct_ptimer),
744                                             &arch_timer_irq_ops);
745                 WARN_ON_ONCE(ret);
746 
747                 /*
748                  * The virtual offset behaviour is "interesting", as it
749                  * always applies when HCR_EL2.E2H==0, but only when
750                  * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
751                  * track E2H when putting the HV timer in "direct" mode.
752                  */
753                 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
754                         struct arch_timer_offset *offs = &map->direct_vtimer->offset;
755 
756                         if (vcpu_el2_e2h_is_set(vcpu))
757                                 offs->vcpu_offset = NULL;
758                         else
759                                 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
760                 }
761         }
762 }
763 
764 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
765 {
766         bool tpt, tpc;
767         u64 clr, set;
768 
769         /*
770          * No trapping gets configured here with nVHE. See
771          * __timer_enable_traps(), which is where the stuff happens.
772          */
773         if (!has_vhe())
774                 return;
775 
776         /*
777          * Our default policy is not to trap anything. As we progress
778          * within this function, reality kicks in and we start adding
779          * traps based on emulation requirements.
780          */
781         tpt = tpc = false;
782 
783         /*
784          * We have two possibility to deal with a physical offset:
785          *
786          * - Either we have CNTPOFF (yay!) or the offset is 0:
787          *   we let the guest freely access the HW
788          *
789          * - or neither of these condition apply:
790          *   we trap accesses to the HW, but still use it
791          *   after correcting the physical offset
792          */
793         if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
794                 tpt = tpc = true;
795 
796         /*
797          * Apply the enable bits that the guest hypervisor has requested for
798          * its own guest. We can only add traps that wouldn't have been set
799          * above.
800          */
801         if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
802                 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
803 
804                 /* Use the VHE format for mental sanity */
805                 if (!vcpu_el2_e2h_is_set(vcpu))
806                         val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
807 
808                 tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
809                 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
810         }
811 
812         /*
813          * Now that we have collected our requirements, compute the
814          * trap and enable bits.
815          */
816         set = 0;
817         clr = 0;
818 
819         assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
820         assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
821 
822         /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
823         sysreg_clear_set(cnthctl_el2, clr, set);
824 }
825 
826 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
827 {
828         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
829         struct timer_map map;
830 
831         if (unlikely(!timer->enabled))
832                 return;
833 
834         get_timer_map(vcpu, &map);
835 
836         if (static_branch_likely(&has_gic_active_state)) {
837                 if (vcpu_has_nv(vcpu))
838                         kvm_timer_vcpu_load_nested_switch(vcpu, &map);
839 
840                 kvm_timer_vcpu_load_gic(map.direct_vtimer);
841                 if (map.direct_ptimer)
842                         kvm_timer_vcpu_load_gic(map.direct_ptimer);
843         } else {
844                 kvm_timer_vcpu_load_nogic(vcpu);
845         }
846 
847         kvm_timer_unblocking(vcpu);
848 
849         timer_restore_state(map.direct_vtimer);
850         if (map.direct_ptimer)
851                 timer_restore_state(map.direct_ptimer);
852         if (map.emul_vtimer)
853                 timer_emulate(map.emul_vtimer);
854         if (map.emul_ptimer)
855                 timer_emulate(map.emul_ptimer);
856 
857         timer_set_traps(vcpu, &map);
858 }
859 
860 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
861 {
862         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
863         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
864         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
865         bool vlevel, plevel;
866 
867         if (likely(irqchip_in_kernel(vcpu->kvm)))
868                 return false;
869 
870         vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
871         plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
872 
873         return kvm_timer_should_fire(vtimer) != vlevel ||
874                kvm_timer_should_fire(ptimer) != plevel;
875 }
876 
877 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
878 {
879         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
880         struct timer_map map;
881 
882         if (unlikely(!timer->enabled))
883                 return;
884 
885         get_timer_map(vcpu, &map);
886 
887         timer_save_state(map.direct_vtimer);
888         if (map.direct_ptimer)
889                 timer_save_state(map.direct_ptimer);
890 
891         /*
892          * Cancel soft timer emulation, because the only case where we
893          * need it after a vcpu_put is in the context of a sleeping VCPU, and
894          * in that case we already factor in the deadline for the physical
895          * timer when scheduling the bg_timer.
896          *
897          * In any case, we re-schedule the hrtimer for the physical timer when
898          * coming back to the VCPU thread in kvm_timer_vcpu_load().
899          */
900         if (map.emul_vtimer)
901                 soft_timer_cancel(&map.emul_vtimer->hrtimer);
902         if (map.emul_ptimer)
903                 soft_timer_cancel(&map.emul_ptimer->hrtimer);
904 
905         if (kvm_vcpu_is_blocking(vcpu))
906                 kvm_timer_blocking(vcpu);
907 }
908 
909 /*
910  * With a userspace irqchip we have to check if the guest de-asserted the
911  * timer and if so, unmask the timer irq signal on the host interrupt
912  * controller to ensure that we see future timer signals.
913  */
914 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
915 {
916         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
917 
918         if (!kvm_timer_should_fire(vtimer)) {
919                 kvm_timer_update_irq(vcpu, false, vtimer);
920                 if (static_branch_likely(&has_gic_active_state))
921                         set_timer_irq_phys_active(vtimer, false);
922                 else
923                         enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
924         }
925 }
926 
927 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
928 {
929         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
930 
931         if (unlikely(!timer->enabled))
932                 return;
933 
934         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
935                 unmask_vtimer_irq_user(vcpu);
936 }
937 
938 void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
939 {
940         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
941         struct timer_map map;
942 
943         get_timer_map(vcpu, &map);
944 
945         /*
946          * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
947          * and to 0 for ARMv7.  We provide an implementation that always
948          * resets the timer to be disabled and unmasked and is compliant with
949          * the ARMv7 architecture.
950          */
951         for (int i = 0; i < nr_timers(vcpu); i++)
952                 timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
953 
954         /*
955          * A vcpu running at EL2 is in charge of the offset applied to
956          * the virtual timer, so use the physical VM offset, and point
957          * the vcpu offset to CNTVOFF_EL2.
958          */
959         if (vcpu_has_nv(vcpu)) {
960                 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
961 
962                 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
963                 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
964         }
965 
966         if (timer->enabled) {
967                 for (int i = 0; i < nr_timers(vcpu); i++)
968                         kvm_timer_update_irq(vcpu, false,
969                                              vcpu_get_timer(vcpu, i));
970 
971                 if (irqchip_in_kernel(vcpu->kvm)) {
972                         kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
973                         if (map.direct_ptimer)
974                                 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
975                 }
976         }
977 
978         if (map.emul_vtimer)
979                 soft_timer_cancel(&map.emul_vtimer->hrtimer);
980         if (map.emul_ptimer)
981                 soft_timer_cancel(&map.emul_ptimer->hrtimer);
982 }
983 
984 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
985 {
986         struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
987         struct kvm *kvm = vcpu->kvm;
988 
989         ctxt->vcpu = vcpu;
990 
991         if (timerid == TIMER_VTIMER)
992                 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
993         else
994                 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
995 
996         hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
997         ctxt->hrtimer.function = kvm_hrtimer_expire;
998 
999         switch (timerid) {
1000         case TIMER_PTIMER:
1001         case TIMER_HPTIMER:
1002                 ctxt->host_timer_irq = host_ptimer_irq;
1003                 break;
1004         case TIMER_VTIMER:
1005         case TIMER_HVTIMER:
1006                 ctxt->host_timer_irq = host_vtimer_irq;
1007                 break;
1008         }
1009 }
1010 
1011 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1012 {
1013         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1014 
1015         for (int i = 0; i < NR_KVM_TIMERS; i++)
1016                 timer_context_init(vcpu, i);
1017 
1018         /* Synchronize offsets across timers of a VM if not already provided */
1019         if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1020                 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1021                 timer_set_offset(vcpu_ptimer(vcpu), 0);
1022         }
1023 
1024         hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1025         timer->bg_timer.function = kvm_bg_timer_expire;
1026 }
1027 
1028 void kvm_timer_init_vm(struct kvm *kvm)
1029 {
1030         for (int i = 0; i < NR_KVM_TIMERS; i++)
1031                 kvm->arch.timer_data.ppi[i] = default_ppi[i];
1032 }
1033 
1034 void kvm_timer_cpu_up(void)
1035 {
1036         enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1037         if (host_ptimer_irq)
1038                 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1039 }
1040 
1041 void kvm_timer_cpu_down(void)
1042 {
1043         disable_percpu_irq(host_vtimer_irq);
1044         if (host_ptimer_irq)
1045                 disable_percpu_irq(host_ptimer_irq);
1046 }
1047 
1048 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1049 {
1050         struct arch_timer_context *timer;
1051 
1052         switch (regid) {
1053         case KVM_REG_ARM_TIMER_CTL:
1054                 timer = vcpu_vtimer(vcpu);
1055                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1056                 break;
1057         case KVM_REG_ARM_TIMER_CNT:
1058                 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1059                               &vcpu->kvm->arch.flags)) {
1060                         timer = vcpu_vtimer(vcpu);
1061                         timer_set_offset(timer, kvm_phys_timer_read() - value);
1062                 }
1063                 break;
1064         case KVM_REG_ARM_TIMER_CVAL:
1065                 timer = vcpu_vtimer(vcpu);
1066                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1067                 break;
1068         case KVM_REG_ARM_PTIMER_CTL:
1069                 timer = vcpu_ptimer(vcpu);
1070                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1071                 break;
1072         case KVM_REG_ARM_PTIMER_CNT:
1073                 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1074                               &vcpu->kvm->arch.flags)) {
1075                         timer = vcpu_ptimer(vcpu);
1076                         timer_set_offset(timer, kvm_phys_timer_read() - value);
1077                 }
1078                 break;
1079         case KVM_REG_ARM_PTIMER_CVAL:
1080                 timer = vcpu_ptimer(vcpu);
1081                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1082                 break;
1083 
1084         default:
1085                 return -1;
1086         }
1087 
1088         return 0;
1089 }
1090 
1091 static u64 read_timer_ctl(struct arch_timer_context *timer)
1092 {
1093         /*
1094          * Set ISTATUS bit if it's expired.
1095          * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1096          * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1097          * regardless of ENABLE bit for our implementation convenience.
1098          */
1099         u32 ctl = timer_get_ctl(timer);
1100 
1101         if (!kvm_timer_compute_delta(timer))
1102                 ctl |= ARCH_TIMER_CTRL_IT_STAT;
1103 
1104         return ctl;
1105 }
1106 
1107 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1108 {
1109         switch (regid) {
1110         case KVM_REG_ARM_TIMER_CTL:
1111                 return kvm_arm_timer_read(vcpu,
1112                                           vcpu_vtimer(vcpu), TIMER_REG_CTL);
1113         case KVM_REG_ARM_TIMER_CNT:
1114                 return kvm_arm_timer_read(vcpu,
1115                                           vcpu_vtimer(vcpu), TIMER_REG_CNT);
1116         case KVM_REG_ARM_TIMER_CVAL:
1117                 return kvm_arm_timer_read(vcpu,
1118                                           vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1119         case KVM_REG_ARM_PTIMER_CTL:
1120                 return kvm_arm_timer_read(vcpu,
1121                                           vcpu_ptimer(vcpu), TIMER_REG_CTL);
1122         case KVM_REG_ARM_PTIMER_CNT:
1123                 return kvm_arm_timer_read(vcpu,
1124                                           vcpu_ptimer(vcpu), TIMER_REG_CNT);
1125         case KVM_REG_ARM_PTIMER_CVAL:
1126                 return kvm_arm_timer_read(vcpu,
1127                                           vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1128         }
1129         return (u64)-1;
1130 }
1131 
1132 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1133                               struct arch_timer_context *timer,
1134                               enum kvm_arch_timer_regs treg)
1135 {
1136         u64 val;
1137 
1138         switch (treg) {
1139         case TIMER_REG_TVAL:
1140                 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1141                 val = lower_32_bits(val);
1142                 break;
1143 
1144         case TIMER_REG_CTL:
1145                 val = read_timer_ctl(timer);
1146                 break;
1147 
1148         case TIMER_REG_CVAL:
1149                 val = timer_get_cval(timer);
1150                 break;
1151 
1152         case TIMER_REG_CNT:
1153                 val = kvm_phys_timer_read() - timer_get_offset(timer);
1154                 break;
1155 
1156         case TIMER_REG_VOFF:
1157                 val = *timer->offset.vcpu_offset;
1158                 break;
1159 
1160         default:
1161                 BUG();
1162         }
1163 
1164         return val;
1165 }
1166 
1167 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1168                               enum kvm_arch_timers tmr,
1169                               enum kvm_arch_timer_regs treg)
1170 {
1171         struct arch_timer_context *timer;
1172         struct timer_map map;
1173         u64 val;
1174 
1175         get_timer_map(vcpu, &map);
1176         timer = vcpu_get_timer(vcpu, tmr);
1177 
1178         if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1179                 return kvm_arm_timer_read(vcpu, timer, treg);
1180 
1181         preempt_disable();
1182         timer_save_state(timer);
1183 
1184         val = kvm_arm_timer_read(vcpu, timer, treg);
1185 
1186         timer_restore_state(timer);
1187         preempt_enable();
1188 
1189         return val;
1190 }
1191 
1192 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1193                                 struct arch_timer_context *timer,
1194                                 enum kvm_arch_timer_regs treg,
1195                                 u64 val)
1196 {
1197         switch (treg) {
1198         case TIMER_REG_TVAL:
1199                 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1200                 break;
1201 
1202         case TIMER_REG_CTL:
1203                 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1204                 break;
1205 
1206         case TIMER_REG_CVAL:
1207                 timer_set_cval(timer, val);
1208                 break;
1209 
1210         case TIMER_REG_VOFF:
1211                 *timer->offset.vcpu_offset = val;
1212                 break;
1213 
1214         default:
1215                 BUG();
1216         }
1217 }
1218 
1219 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1220                                 enum kvm_arch_timers tmr,
1221                                 enum kvm_arch_timer_regs treg,
1222                                 u64 val)
1223 {
1224         struct arch_timer_context *timer;
1225         struct timer_map map;
1226 
1227         get_timer_map(vcpu, &map);
1228         timer = vcpu_get_timer(vcpu, tmr);
1229         if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1230                 soft_timer_cancel(&timer->hrtimer);
1231                 kvm_arm_timer_write(vcpu, timer, treg, val);
1232                 timer_emulate(timer);
1233         } else {
1234                 preempt_disable();
1235                 timer_save_state(timer);
1236                 kvm_arm_timer_write(vcpu, timer, treg, val);
1237                 timer_restore_state(timer);
1238                 preempt_enable();
1239         }
1240 }
1241 
1242 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1243 {
1244         if (vcpu)
1245                 irqd_set_forwarded_to_vcpu(d);
1246         else
1247                 irqd_clr_forwarded_to_vcpu(d);
1248 
1249         return 0;
1250 }
1251 
1252 static int timer_irq_set_irqchip_state(struct irq_data *d,
1253                                        enum irqchip_irq_state which, bool val)
1254 {
1255         if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1256                 return irq_chip_set_parent_state(d, which, val);
1257 
1258         if (val)
1259                 irq_chip_mask_parent(d);
1260         else
1261                 irq_chip_unmask_parent(d);
1262 
1263         return 0;
1264 }
1265 
1266 static void timer_irq_eoi(struct irq_data *d)
1267 {
1268         if (!irqd_is_forwarded_to_vcpu(d))
1269                 irq_chip_eoi_parent(d);
1270 }
1271 
1272 static void timer_irq_ack(struct irq_data *d)
1273 {
1274         d = d->parent_data;
1275         if (d->chip->irq_ack)
1276                 d->chip->irq_ack(d);
1277 }
1278 
1279 static struct irq_chip timer_chip = {
1280         .name                   = "KVM",
1281         .irq_ack                = timer_irq_ack,
1282         .irq_mask               = irq_chip_mask_parent,
1283         .irq_unmask             = irq_chip_unmask_parent,
1284         .irq_eoi                = timer_irq_eoi,
1285         .irq_set_type           = irq_chip_set_type_parent,
1286         .irq_set_vcpu_affinity  = timer_irq_set_vcpu_affinity,
1287         .irq_set_irqchip_state  = timer_irq_set_irqchip_state,
1288 };
1289 
1290 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1291                                   unsigned int nr_irqs, void *arg)
1292 {
1293         irq_hw_number_t hwirq = (uintptr_t)arg;
1294 
1295         return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1296                                              &timer_chip, NULL);
1297 }
1298 
1299 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1300                                   unsigned int nr_irqs)
1301 {
1302 }
1303 
1304 static const struct irq_domain_ops timer_domain_ops = {
1305         .alloc  = timer_irq_domain_alloc,
1306         .free   = timer_irq_domain_free,
1307 };
1308 
1309 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1310 {
1311         *flags = irq_get_trigger_type(virq);
1312         if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1313                 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1314                         virq);
1315                 *flags = IRQF_TRIGGER_LOW;
1316         }
1317 }
1318 
1319 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1320 {
1321         struct irq_domain *domain = NULL;
1322 
1323         if (info->virtual_irq <= 0) {
1324                 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1325                         info->virtual_irq);
1326                 return -ENODEV;
1327         }
1328 
1329         host_vtimer_irq = info->virtual_irq;
1330         kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1331 
1332         if (kvm_vgic_global_state.no_hw_deactivation) {
1333                 struct fwnode_handle *fwnode;
1334                 struct irq_data *data;
1335 
1336                 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1337                 if (!fwnode)
1338                         return -ENOMEM;
1339 
1340                 /* Assume both vtimer and ptimer in the same parent */
1341                 data = irq_get_irq_data(host_vtimer_irq);
1342                 domain = irq_domain_create_hierarchy(data->domain, 0,
1343                                                      NR_KVM_TIMERS, fwnode,
1344                                                      &timer_domain_ops, NULL);
1345                 if (!domain) {
1346                         irq_domain_free_fwnode(fwnode);
1347                         return -ENOMEM;
1348                 }
1349 
1350                 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1351                 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1352                                             (void *)TIMER_VTIMER));
1353         }
1354 
1355         if (info->physical_irq > 0) {
1356                 host_ptimer_irq = info->physical_irq;
1357                 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1358 
1359                 if (domain)
1360                         WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1361                                                     (void *)TIMER_PTIMER));
1362         }
1363 
1364         return 0;
1365 }
1366 
1367 int __init kvm_timer_hyp_init(bool has_gic)
1368 {
1369         struct arch_timer_kvm_info *info;
1370         int err;
1371 
1372         info = arch_timer_get_kvm_info();
1373         timecounter = &info->timecounter;
1374 
1375         if (!timecounter->cc) {
1376                 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1377                 return -ENODEV;
1378         }
1379 
1380         err = kvm_irq_init(info);
1381         if (err)
1382                 return err;
1383 
1384         /* First, do the virtual EL1 timer irq */
1385 
1386         err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1387                                  "kvm guest vtimer", kvm_get_running_vcpus());
1388         if (err) {
1389                 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1390                         host_vtimer_irq, err);
1391                 return err;
1392         }
1393 
1394         if (has_gic) {
1395                 err = irq_set_vcpu_affinity(host_vtimer_irq,
1396                                             kvm_get_running_vcpus());
1397                 if (err) {
1398                         kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1399                         goto out_free_vtimer_irq;
1400                 }
1401 
1402                 static_branch_enable(&has_gic_active_state);
1403         }
1404 
1405         kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1406 
1407         /* Now let's do the physical EL1 timer irq */
1408 
1409         if (info->physical_irq > 0) {
1410                 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1411                                          "kvm guest ptimer", kvm_get_running_vcpus());
1412                 if (err) {
1413                         kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1414                                 host_ptimer_irq, err);
1415                         goto out_free_vtimer_irq;
1416                 }
1417 
1418                 if (has_gic) {
1419                         err = irq_set_vcpu_affinity(host_ptimer_irq,
1420                                                     kvm_get_running_vcpus());
1421                         if (err) {
1422                                 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1423                                 goto out_free_ptimer_irq;
1424                         }
1425                 }
1426 
1427                 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1428         } else if (has_vhe()) {
1429                 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1430                         info->physical_irq);
1431                 err = -ENODEV;
1432                 goto out_free_vtimer_irq;
1433         }
1434 
1435         return 0;
1436 
1437 out_free_ptimer_irq:
1438         if (info->physical_irq > 0)
1439                 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1440 out_free_vtimer_irq:
1441         free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1442         return err;
1443 }
1444 
1445 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1446 {
1447         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1448 
1449         soft_timer_cancel(&timer->bg_timer);
1450 }
1451 
1452 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1453 {
1454         u32 ppis = 0;
1455         bool valid;
1456 
1457         mutex_lock(&vcpu->kvm->arch.config_lock);
1458 
1459         for (int i = 0; i < nr_timers(vcpu); i++) {
1460                 struct arch_timer_context *ctx;
1461                 int irq;
1462 
1463                 ctx = vcpu_get_timer(vcpu, i);
1464                 irq = timer_irq(ctx);
1465                 if (kvm_vgic_set_owner(vcpu, irq, ctx))
1466                         break;
1467 
1468                 /*
1469                  * We know by construction that we only have PPIs, so
1470                  * all values are less than 32.
1471                  */
1472                 ppis |= BIT(irq);
1473         }
1474 
1475         valid = hweight32(ppis) == nr_timers(vcpu);
1476 
1477         if (valid)
1478                 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1479 
1480         mutex_unlock(&vcpu->kvm->arch.config_lock);
1481 
1482         return valid;
1483 }
1484 
1485 static bool kvm_arch_timer_get_input_level(int vintid)
1486 {
1487         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1488 
1489         if (WARN(!vcpu, "No vcpu context!\n"))
1490                 return false;
1491 
1492         for (int i = 0; i < nr_timers(vcpu); i++) {
1493                 struct arch_timer_context *ctx;
1494 
1495                 ctx = vcpu_get_timer(vcpu, i);
1496                 if (timer_irq(ctx) == vintid)
1497                         return kvm_timer_should_fire(ctx);
1498         }
1499 
1500         /* A timer IRQ has fired, but no matching timer was found? */
1501         WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1502 
1503         return false;
1504 }
1505 
1506 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1507 {
1508         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1509         struct timer_map map;
1510         int ret;
1511 
1512         if (timer->enabled)
1513                 return 0;
1514 
1515         /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1516         if (!irqchip_in_kernel(vcpu->kvm))
1517                 goto no_vgic;
1518 
1519         /*
1520          * At this stage, we have the guarantee that the vgic is both
1521          * available and initialized.
1522          */
1523         if (!timer_irqs_are_valid(vcpu)) {
1524                 kvm_debug("incorrectly configured timer irqs\n");
1525                 return -EINVAL;
1526         }
1527 
1528         get_timer_map(vcpu, &map);
1529 
1530         ret = kvm_vgic_map_phys_irq(vcpu,
1531                                     map.direct_vtimer->host_timer_irq,
1532                                     timer_irq(map.direct_vtimer),
1533                                     &arch_timer_irq_ops);
1534         if (ret)
1535                 return ret;
1536 
1537         if (map.direct_ptimer) {
1538                 ret = kvm_vgic_map_phys_irq(vcpu,
1539                                             map.direct_ptimer->host_timer_irq,
1540                                             timer_irq(map.direct_ptimer),
1541                                             &arch_timer_irq_ops);
1542         }
1543 
1544         if (ret)
1545                 return ret;
1546 
1547 no_vgic:
1548         timer->enabled = 1;
1549         return 0;
1550 }
1551 
1552 /* If we have CNTPOFF, permanently set ECV to enable it */
1553 void kvm_timer_init_vhe(void)
1554 {
1555         if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1556                 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1557 }
1558 
1559 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1560 {
1561         int __user *uaddr = (int __user *)(long)attr->addr;
1562         int irq, idx, ret = 0;
1563 
1564         if (!irqchip_in_kernel(vcpu->kvm))
1565                 return -EINVAL;
1566 
1567         if (get_user(irq, uaddr))
1568                 return -EFAULT;
1569 
1570         if (!(irq_is_ppi(irq)))
1571                 return -EINVAL;
1572 
1573         mutex_lock(&vcpu->kvm->arch.config_lock);
1574 
1575         if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1576                      &vcpu->kvm->arch.flags)) {
1577                 ret = -EBUSY;
1578                 goto out;
1579         }
1580 
1581         switch (attr->attr) {
1582         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1583                 idx = TIMER_VTIMER;
1584                 break;
1585         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1586                 idx = TIMER_PTIMER;
1587                 break;
1588         case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1589                 idx = TIMER_HVTIMER;
1590                 break;
1591         case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1592                 idx = TIMER_HPTIMER;
1593                 break;
1594         default:
1595                 ret = -ENXIO;
1596                 goto out;
1597         }
1598 
1599         /*
1600          * We cannot validate the IRQ unicity before we run, so take it at
1601          * face value. The verdict will be given on first vcpu run, for each
1602          * vcpu. Yes this is late. Blame it on the stupid API.
1603          */
1604         vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1605 
1606 out:
1607         mutex_unlock(&vcpu->kvm->arch.config_lock);
1608         return ret;
1609 }
1610 
1611 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1612 {
1613         int __user *uaddr = (int __user *)(long)attr->addr;
1614         struct arch_timer_context *timer;
1615         int irq;
1616 
1617         switch (attr->attr) {
1618         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1619                 timer = vcpu_vtimer(vcpu);
1620                 break;
1621         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1622                 timer = vcpu_ptimer(vcpu);
1623                 break;
1624         case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1625                 timer = vcpu_hvtimer(vcpu);
1626                 break;
1627         case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1628                 timer = vcpu_hptimer(vcpu);
1629                 break;
1630         default:
1631                 return -ENXIO;
1632         }
1633 
1634         irq = timer_irq(timer);
1635         return put_user(irq, uaddr);
1636 }
1637 
1638 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1639 {
1640         switch (attr->attr) {
1641         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1642         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1643         case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1644         case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1645                 return 0;
1646         }
1647 
1648         return -ENXIO;
1649 }
1650 
1651 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1652                                     struct kvm_arm_counter_offset *offset)
1653 {
1654         int ret = 0;
1655 
1656         if (offset->reserved)
1657                 return -EINVAL;
1658 
1659         mutex_lock(&kvm->lock);
1660 
1661         if (lock_all_vcpus(kvm)) {
1662                 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1663 
1664                 /*
1665                  * If userspace decides to set the offset using this
1666                  * API rather than merely restoring the counter
1667                  * values, the offset applies to both the virtual and
1668                  * physical views.
1669                  */
1670                 kvm->arch.timer_data.voffset = offset->counter_offset;
1671                 kvm->arch.timer_data.poffset = offset->counter_offset;
1672 
1673                 unlock_all_vcpus(kvm);
1674         } else {
1675                 ret = -EBUSY;
1676         }
1677 
1678         mutex_unlock(&kvm->lock);
1679 
1680         return ret;
1681 }
1682 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php