~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/arm.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  5  */
  6 
  7 #include <linux/bug.h>
  8 #include <linux/cpu_pm.h>
  9 #include <linux/entry-kvm.h>
 10 #include <linux/errno.h>
 11 #include <linux/err.h>
 12 #include <linux/kvm_host.h>
 13 #include <linux/list.h>
 14 #include <linux/module.h>
 15 #include <linux/vmalloc.h>
 16 #include <linux/fs.h>
 17 #include <linux/mman.h>
 18 #include <linux/sched.h>
 19 #include <linux/kvm.h>
 20 #include <linux/kvm_irqfd.h>
 21 #include <linux/irqbypass.h>
 22 #include <linux/sched/stat.h>
 23 #include <linux/psci.h>
 24 #include <trace/events/kvm.h>
 25 
 26 #define CREATE_TRACE_POINTS
 27 #include "trace_arm.h"
 28 
 29 #include <linux/uaccess.h>
 30 #include <asm/ptrace.h>
 31 #include <asm/mman.h>
 32 #include <asm/tlbflush.h>
 33 #include <asm/cacheflush.h>
 34 #include <asm/cpufeature.h>
 35 #include <asm/virt.h>
 36 #include <asm/kvm_arm.h>
 37 #include <asm/kvm_asm.h>
 38 #include <asm/kvm_emulate.h>
 39 #include <asm/kvm_mmu.h>
 40 #include <asm/kvm_nested.h>
 41 #include <asm/kvm_pkvm.h>
 42 #include <asm/kvm_ptrauth.h>
 43 #include <asm/sections.h>
 44 
 45 #include <kvm/arm_hypercalls.h>
 46 #include <kvm/arm_pmu.h>
 47 #include <kvm/arm_psci.h>
 48 
 49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
 50 
 51 enum kvm_wfx_trap_policy {
 52         KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
 53         KVM_WFX_NOTRAP,
 54         KVM_WFX_TRAP,
 55 };
 56 
 57 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
 58 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
 59 
 60 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
 61 
 62 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
 63 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
 64 
 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
 66 
 67 static bool vgic_present, kvm_arm_initialised;
 68 
 69 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
 70 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
 71 
 72 bool is_kvm_arm_initialised(void)
 73 {
 74         return kvm_arm_initialised;
 75 }
 76 
 77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 78 {
 79         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
 80 }
 81 
 82 /*
 83  * This functions as an allow-list of protected VM capabilities.
 84  * Features not explicitly allowed by this function are denied.
 85  */
 86 static bool pkvm_ext_allowed(struct kvm *kvm, long ext)
 87 {
 88         switch (ext) {
 89         case KVM_CAP_IRQCHIP:
 90         case KVM_CAP_ARM_PSCI:
 91         case KVM_CAP_ARM_PSCI_0_2:
 92         case KVM_CAP_NR_VCPUS:
 93         case KVM_CAP_MAX_VCPUS:
 94         case KVM_CAP_MAX_VCPU_ID:
 95         case KVM_CAP_MSI_DEVID:
 96         case KVM_CAP_ARM_VM_IPA_SIZE:
 97         case KVM_CAP_ARM_PMU_V3:
 98         case KVM_CAP_ARM_SVE:
 99         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
100         case KVM_CAP_ARM_PTRAUTH_GENERIC:
101                 return true;
102         default:
103                 return false;
104         }
105 }
106 
107 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
108                             struct kvm_enable_cap *cap)
109 {
110         int r = -EINVAL;
111 
112         if (cap->flags)
113                 return -EINVAL;
114 
115         if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap))
116                 return -EINVAL;
117 
118         switch (cap->cap) {
119         case KVM_CAP_ARM_NISV_TO_USER:
120                 r = 0;
121                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
122                         &kvm->arch.flags);
123                 break;
124         case KVM_CAP_ARM_MTE:
125                 mutex_lock(&kvm->lock);
126                 if (system_supports_mte() && !kvm->created_vcpus) {
127                         r = 0;
128                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
129                 }
130                 mutex_unlock(&kvm->lock);
131                 break;
132         case KVM_CAP_ARM_SYSTEM_SUSPEND:
133                 r = 0;
134                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
135                 break;
136         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
137                 mutex_lock(&kvm->slots_lock);
138                 /*
139                  * To keep things simple, allow changing the chunk
140                  * size only when no memory slots have been created.
141                  */
142                 if (kvm_are_all_memslots_empty(kvm)) {
143                         u64 new_cap = cap->args[0];
144 
145                         if (!new_cap || kvm_is_block_size_supported(new_cap)) {
146                                 r = 0;
147                                 kvm->arch.mmu.split_page_chunk_size = new_cap;
148                         }
149                 }
150                 mutex_unlock(&kvm->slots_lock);
151                 break;
152         default:
153                 break;
154         }
155 
156         return r;
157 }
158 
159 static int kvm_arm_default_max_vcpus(void)
160 {
161         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
162 }
163 
164 /**
165  * kvm_arch_init_vm - initializes a VM data structure
166  * @kvm:        pointer to the KVM struct
167  * @type:       kvm device type
168  */
169 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
170 {
171         int ret;
172 
173         mutex_init(&kvm->arch.config_lock);
174 
175 #ifdef CONFIG_LOCKDEP
176         /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
177         mutex_lock(&kvm->lock);
178         mutex_lock(&kvm->arch.config_lock);
179         mutex_unlock(&kvm->arch.config_lock);
180         mutex_unlock(&kvm->lock);
181 #endif
182 
183         kvm_init_nested(kvm);
184 
185         ret = kvm_share_hyp(kvm, kvm + 1);
186         if (ret)
187                 return ret;
188 
189         ret = pkvm_init_host_vm(kvm);
190         if (ret)
191                 goto err_unshare_kvm;
192 
193         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
194                 ret = -ENOMEM;
195                 goto err_unshare_kvm;
196         }
197         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
198 
199         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
200         if (ret)
201                 goto err_free_cpumask;
202 
203         kvm_vgic_early_init(kvm);
204 
205         kvm_timer_init_vm(kvm);
206 
207         /* The maximum number of VCPUs is limited by the host's GIC model */
208         kvm->max_vcpus = kvm_arm_default_max_vcpus();
209 
210         kvm_arm_init_hypercalls(kvm);
211 
212         bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
213 
214         return 0;
215 
216 err_free_cpumask:
217         free_cpumask_var(kvm->arch.supported_cpus);
218 err_unshare_kvm:
219         kvm_unshare_hyp(kvm, kvm + 1);
220         return ret;
221 }
222 
223 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
224 {
225         return VM_FAULT_SIGBUS;
226 }
227 
228 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
229 {
230         kvm_sys_regs_create_debugfs(kvm);
231 }
232 
233 static void kvm_destroy_mpidr_data(struct kvm *kvm)
234 {
235         struct kvm_mpidr_data *data;
236 
237         mutex_lock(&kvm->arch.config_lock);
238 
239         data = rcu_dereference_protected(kvm->arch.mpidr_data,
240                                          lockdep_is_held(&kvm->arch.config_lock));
241         if (data) {
242                 rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
243                 synchronize_rcu();
244                 kfree(data);
245         }
246 
247         mutex_unlock(&kvm->arch.config_lock);
248 }
249 
250 /**
251  * kvm_arch_destroy_vm - destroy the VM data structure
252  * @kvm:        pointer to the KVM struct
253  */
254 void kvm_arch_destroy_vm(struct kvm *kvm)
255 {
256         bitmap_free(kvm->arch.pmu_filter);
257         free_cpumask_var(kvm->arch.supported_cpus);
258 
259         kvm_vgic_destroy(kvm);
260 
261         if (is_protected_kvm_enabled())
262                 pkvm_destroy_hyp_vm(kvm);
263 
264         kvm_destroy_mpidr_data(kvm);
265 
266         kfree(kvm->arch.sysreg_masks);
267         kvm_destroy_vcpus(kvm);
268 
269         kvm_unshare_hyp(kvm, kvm + 1);
270 
271         kvm_arm_teardown_hypercalls(kvm);
272 }
273 
274 static bool kvm_has_full_ptr_auth(void)
275 {
276         bool apa, gpa, api, gpi, apa3, gpa3;
277         u64 isar1, isar2, val;
278 
279         /*
280          * Check that:
281          *
282          * - both Address and Generic auth are implemented for a given
283          *   algorithm (Q5, IMPDEF or Q3)
284          * - only a single algorithm is implemented.
285          */
286         if (!system_has_full_ptr_auth())
287                 return false;
288 
289         isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
290         isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
291 
292         apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
293         val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
294         gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
295 
296         api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
297         val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
298         gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
299 
300         apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
301         val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
302         gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
303 
304         return (apa == gpa && api == gpi && apa3 == gpa3 &&
305                 (apa + api + apa3) == 1);
306 }
307 
308 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
309 {
310         int r;
311 
312         if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext))
313                 return 0;
314 
315         switch (ext) {
316         case KVM_CAP_IRQCHIP:
317                 r = vgic_present;
318                 break;
319         case KVM_CAP_IOEVENTFD:
320         case KVM_CAP_USER_MEMORY:
321         case KVM_CAP_SYNC_MMU:
322         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
323         case KVM_CAP_ONE_REG:
324         case KVM_CAP_ARM_PSCI:
325         case KVM_CAP_ARM_PSCI_0_2:
326         case KVM_CAP_READONLY_MEM:
327         case KVM_CAP_MP_STATE:
328         case KVM_CAP_IMMEDIATE_EXIT:
329         case KVM_CAP_VCPU_EVENTS:
330         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
331         case KVM_CAP_ARM_NISV_TO_USER:
332         case KVM_CAP_ARM_INJECT_EXT_DABT:
333         case KVM_CAP_SET_GUEST_DEBUG:
334         case KVM_CAP_VCPU_ATTRIBUTES:
335         case KVM_CAP_PTP_KVM:
336         case KVM_CAP_ARM_SYSTEM_SUSPEND:
337         case KVM_CAP_IRQFD_RESAMPLE:
338         case KVM_CAP_COUNTER_OFFSET:
339                 r = 1;
340                 break;
341         case KVM_CAP_SET_GUEST_DEBUG2:
342                 return KVM_GUESTDBG_VALID_MASK;
343         case KVM_CAP_ARM_SET_DEVICE_ADDR:
344                 r = 1;
345                 break;
346         case KVM_CAP_NR_VCPUS:
347                 /*
348                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
349                  * architectures, as it does not always bound it to
350                  * KVM_CAP_MAX_VCPUS. It should not matter much because
351                  * this is just an advisory value.
352                  */
353                 r = min_t(unsigned int, num_online_cpus(),
354                           kvm_arm_default_max_vcpus());
355                 break;
356         case KVM_CAP_MAX_VCPUS:
357         case KVM_CAP_MAX_VCPU_ID:
358                 if (kvm)
359                         r = kvm->max_vcpus;
360                 else
361                         r = kvm_arm_default_max_vcpus();
362                 break;
363         case KVM_CAP_MSI_DEVID:
364                 if (!kvm)
365                         r = -EINVAL;
366                 else
367                         r = kvm->arch.vgic.msis_require_devid;
368                 break;
369         case KVM_CAP_ARM_USER_IRQ:
370                 /*
371                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
372                  * (bump this number if adding more devices)
373                  */
374                 r = 1;
375                 break;
376         case KVM_CAP_ARM_MTE:
377                 r = system_supports_mte();
378                 break;
379         case KVM_CAP_STEAL_TIME:
380                 r = kvm_arm_pvtime_supported();
381                 break;
382         case KVM_CAP_ARM_EL1_32BIT:
383                 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
384                 break;
385         case KVM_CAP_GUEST_DEBUG_HW_BPS:
386                 r = get_num_brps();
387                 break;
388         case KVM_CAP_GUEST_DEBUG_HW_WPS:
389                 r = get_num_wrps();
390                 break;
391         case KVM_CAP_ARM_PMU_V3:
392                 r = kvm_arm_support_pmu_v3();
393                 break;
394         case KVM_CAP_ARM_INJECT_SERROR_ESR:
395                 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
396                 break;
397         case KVM_CAP_ARM_VM_IPA_SIZE:
398                 r = get_kvm_ipa_limit();
399                 break;
400         case KVM_CAP_ARM_SVE:
401                 r = system_supports_sve();
402                 break;
403         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
404         case KVM_CAP_ARM_PTRAUTH_GENERIC:
405                 r = kvm_has_full_ptr_auth();
406                 break;
407         case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
408                 if (kvm)
409                         r = kvm->arch.mmu.split_page_chunk_size;
410                 else
411                         r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
412                 break;
413         case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
414                 r = kvm_supported_block_sizes();
415                 break;
416         case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
417                 r = BIT(0);
418                 break;
419         default:
420                 r = 0;
421         }
422 
423         return r;
424 }
425 
426 long kvm_arch_dev_ioctl(struct file *filp,
427                         unsigned int ioctl, unsigned long arg)
428 {
429         return -EINVAL;
430 }
431 
432 struct kvm *kvm_arch_alloc_vm(void)
433 {
434         size_t sz = sizeof(struct kvm);
435 
436         if (!has_vhe())
437                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
438 
439         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
440 }
441 
442 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
443 {
444         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
445                 return -EBUSY;
446 
447         if (id >= kvm->max_vcpus)
448                 return -EINVAL;
449 
450         return 0;
451 }
452 
453 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
454 {
455         int err;
456 
457         spin_lock_init(&vcpu->arch.mp_state_lock);
458 
459 #ifdef CONFIG_LOCKDEP
460         /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
461         mutex_lock(&vcpu->mutex);
462         mutex_lock(&vcpu->kvm->arch.config_lock);
463         mutex_unlock(&vcpu->kvm->arch.config_lock);
464         mutex_unlock(&vcpu->mutex);
465 #endif
466 
467         /* Force users to call KVM_ARM_VCPU_INIT */
468         vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
469 
470         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
471 
472         /* Set up the timer */
473         kvm_timer_vcpu_init(vcpu);
474 
475         kvm_pmu_vcpu_init(vcpu);
476 
477         kvm_arm_reset_debug_ptr(vcpu);
478 
479         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
480 
481         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
482 
483         /*
484          * This vCPU may have been created after mpidr_data was initialized.
485          * Throw out the pre-computed mappings if that is the case which forces
486          * KVM to fall back to iteratively searching the vCPUs.
487          */
488         kvm_destroy_mpidr_data(vcpu->kvm);
489 
490         err = kvm_vgic_vcpu_init(vcpu);
491         if (err)
492                 return err;
493 
494         return kvm_share_hyp(vcpu, vcpu + 1);
495 }
496 
497 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
498 {
499 }
500 
501 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
502 {
503         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
504                 static_branch_dec(&userspace_irqchip_in_use);
505 
506         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
507         kvm_timer_vcpu_terminate(vcpu);
508         kvm_pmu_vcpu_destroy(vcpu);
509         kvm_vgic_vcpu_destroy(vcpu);
510         kvm_arm_vcpu_destroy(vcpu);
511 }
512 
513 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
514 {
515 
516 }
517 
518 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
519 {
520 
521 }
522 
523 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
524 {
525         if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
526                 /*
527                  * Either we're running an L2 guest, and the API/APK bits come
528                  * from L1's HCR_EL2, or API/APK are both set.
529                  */
530                 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) {
531                         u64 val;
532 
533                         val = __vcpu_sys_reg(vcpu, HCR_EL2);
534                         val &= (HCR_API | HCR_APK);
535                         vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
536                         vcpu->arch.hcr_el2 |= val;
537                 } else {
538                         vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
539                 }
540 
541                 /*
542                  * Save the host keys if there is any chance for the guest
543                  * to use pauth, as the entry code will reload the guest
544                  * keys in that case.
545                  */
546                 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
547                         struct kvm_cpu_context *ctxt;
548 
549                         ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
550                         ptrauth_save_keys(ctxt);
551                 }
552         }
553 }
554 
555 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
556 {
557         if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
558                 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
559 
560         return single_task_running() &&
561                (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
562                 vcpu->kvm->arch.vgic.nassgireq);
563 }
564 
565 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
566 {
567         if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
568                 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
569 
570         return single_task_running();
571 }
572 
573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
574 {
575         struct kvm_s2_mmu *mmu;
576         int *last_ran;
577 
578         if (vcpu_has_nv(vcpu))
579                 kvm_vcpu_load_hw_mmu(vcpu);
580 
581         mmu = vcpu->arch.hw_mmu;
582         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
583 
584         /*
585          * We guarantee that both TLBs and I-cache are private to each
586          * vcpu. If detecting that a vcpu from the same VM has
587          * previously run on the same physical CPU, call into the
588          * hypervisor code to nuke the relevant contexts.
589          *
590          * We might get preempted before the vCPU actually runs, but
591          * over-invalidation doesn't affect correctness.
592          */
593         if (*last_ran != vcpu->vcpu_idx) {
594                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
595                 *last_ran = vcpu->vcpu_idx;
596         }
597 
598         vcpu->cpu = cpu;
599 
600         kvm_vgic_load(vcpu);
601         kvm_timer_vcpu_load(vcpu);
602         if (has_vhe())
603                 kvm_vcpu_load_vhe(vcpu);
604         kvm_arch_vcpu_load_fp(vcpu);
605         kvm_vcpu_pmu_restore_guest(vcpu);
606         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
607                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
608 
609         if (kvm_vcpu_should_clear_twe(vcpu))
610                 vcpu->arch.hcr_el2 &= ~HCR_TWE;
611         else
612                 vcpu->arch.hcr_el2 |= HCR_TWE;
613 
614         if (kvm_vcpu_should_clear_twi(vcpu))
615                 vcpu->arch.hcr_el2 &= ~HCR_TWI;
616         else
617                 vcpu->arch.hcr_el2 |= HCR_TWI;
618 
619         vcpu_set_pauth_traps(vcpu);
620 
621         kvm_arch_vcpu_load_debug_state_flags(vcpu);
622 
623         if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
624                 vcpu_set_on_unsupported_cpu(vcpu);
625 }
626 
627 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
628 {
629         kvm_arch_vcpu_put_debug_state_flags(vcpu);
630         kvm_arch_vcpu_put_fp(vcpu);
631         if (has_vhe())
632                 kvm_vcpu_put_vhe(vcpu);
633         kvm_timer_vcpu_put(vcpu);
634         kvm_vgic_put(vcpu);
635         kvm_vcpu_pmu_restore_host(vcpu);
636         if (vcpu_has_nv(vcpu))
637                 kvm_vcpu_put_hw_mmu(vcpu);
638         kvm_arm_vmid_clear_active();
639 
640         vcpu_clear_on_unsupported_cpu(vcpu);
641         vcpu->cpu = -1;
642 }
643 
644 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
645 {
646         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
647         kvm_make_request(KVM_REQ_SLEEP, vcpu);
648         kvm_vcpu_kick(vcpu);
649 }
650 
651 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
652 {
653         spin_lock(&vcpu->arch.mp_state_lock);
654         __kvm_arm_vcpu_power_off(vcpu);
655         spin_unlock(&vcpu->arch.mp_state_lock);
656 }
657 
658 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
659 {
660         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
661 }
662 
663 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
664 {
665         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
666         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
667         kvm_vcpu_kick(vcpu);
668 }
669 
670 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
671 {
672         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
673 }
674 
675 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
676                                     struct kvm_mp_state *mp_state)
677 {
678         *mp_state = READ_ONCE(vcpu->arch.mp_state);
679 
680         return 0;
681 }
682 
683 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
684                                     struct kvm_mp_state *mp_state)
685 {
686         int ret = 0;
687 
688         spin_lock(&vcpu->arch.mp_state_lock);
689 
690         switch (mp_state->mp_state) {
691         case KVM_MP_STATE_RUNNABLE:
692                 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
693                 break;
694         case KVM_MP_STATE_STOPPED:
695                 __kvm_arm_vcpu_power_off(vcpu);
696                 break;
697         case KVM_MP_STATE_SUSPENDED:
698                 kvm_arm_vcpu_suspend(vcpu);
699                 break;
700         default:
701                 ret = -EINVAL;
702         }
703 
704         spin_unlock(&vcpu->arch.mp_state_lock);
705 
706         return ret;
707 }
708 
709 /**
710  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
711  * @v:          The VCPU pointer
712  *
713  * If the guest CPU is not waiting for interrupts or an interrupt line is
714  * asserted, the CPU is by definition runnable.
715  */
716 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
717 {
718         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
719         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
720                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
721 }
722 
723 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
724 {
725         return vcpu_mode_priv(vcpu);
726 }
727 
728 #ifdef CONFIG_GUEST_PERF_EVENTS
729 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
730 {
731         return *vcpu_pc(vcpu);
732 }
733 #endif
734 
735 static void kvm_init_mpidr_data(struct kvm *kvm)
736 {
737         struct kvm_mpidr_data *data = NULL;
738         unsigned long c, mask, nr_entries;
739         u64 aff_set = 0, aff_clr = ~0UL;
740         struct kvm_vcpu *vcpu;
741 
742         mutex_lock(&kvm->arch.config_lock);
743 
744         if (rcu_access_pointer(kvm->arch.mpidr_data) ||
745             atomic_read(&kvm->online_vcpus) == 1)
746                 goto out;
747 
748         kvm_for_each_vcpu(c, vcpu, kvm) {
749                 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
750                 aff_set |= aff;
751                 aff_clr &= aff;
752         }
753 
754         /*
755          * A significant bit can be either 0 or 1, and will only appear in
756          * aff_set. Use aff_clr to weed out the useless stuff.
757          */
758         mask = aff_set ^ aff_clr;
759         nr_entries = BIT_ULL(hweight_long(mask));
760 
761         /*
762          * Don't let userspace fool us. If we need more than a single page
763          * to describe the compressed MPIDR array, just fall back to the
764          * iterative method. Single vcpu VMs do not need this either.
765          */
766         if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
767                 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
768                                GFP_KERNEL_ACCOUNT);
769 
770         if (!data)
771                 goto out;
772 
773         data->mpidr_mask = mask;
774 
775         kvm_for_each_vcpu(c, vcpu, kvm) {
776                 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
777                 u16 index = kvm_mpidr_index(data, aff);
778 
779                 data->cmpidr_to_idx[index] = c;
780         }
781 
782         rcu_assign_pointer(kvm->arch.mpidr_data, data);
783 out:
784         mutex_unlock(&kvm->arch.config_lock);
785 }
786 
787 /*
788  * Handle both the initialisation that is being done when the vcpu is
789  * run for the first time, as well as the updates that must be
790  * performed each time we get a new thread dealing with this vcpu.
791  */
792 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
793 {
794         struct kvm *kvm = vcpu->kvm;
795         int ret;
796 
797         if (!kvm_vcpu_initialized(vcpu))
798                 return -ENOEXEC;
799 
800         if (!kvm_arm_vcpu_is_finalized(vcpu))
801                 return -EPERM;
802 
803         ret = kvm_arch_vcpu_run_map_fp(vcpu);
804         if (ret)
805                 return ret;
806 
807         if (likely(vcpu_has_run_once(vcpu)))
808                 return 0;
809 
810         kvm_init_mpidr_data(kvm);
811 
812         kvm_arm_vcpu_init_debug(vcpu);
813 
814         if (likely(irqchip_in_kernel(kvm))) {
815                 /*
816                  * Map the VGIC hardware resources before running a vcpu the
817                  * first time on this VM.
818                  */
819                 ret = kvm_vgic_map_resources(kvm);
820                 if (ret)
821                         return ret;
822         }
823 
824         if (vcpu_has_nv(vcpu)) {
825                 ret = kvm_init_nv_sysregs(vcpu->kvm);
826                 if (ret)
827                         return ret;
828         }
829 
830         /*
831          * This needs to happen after NV has imposed its own restrictions on
832          * the feature set
833          */
834         kvm_calculate_traps(vcpu);
835 
836         ret = kvm_timer_enable(vcpu);
837         if (ret)
838                 return ret;
839 
840         ret = kvm_arm_pmu_v3_enable(vcpu);
841         if (ret)
842                 return ret;
843 
844         if (is_protected_kvm_enabled()) {
845                 ret = pkvm_create_hyp_vm(kvm);
846                 if (ret)
847                         return ret;
848         }
849 
850         if (!irqchip_in_kernel(kvm)) {
851                 /*
852                  * Tell the rest of the code that there are userspace irqchip
853                  * VMs in the wild.
854                  */
855                 static_branch_inc(&userspace_irqchip_in_use);
856         }
857 
858         /*
859          * Initialize traps for protected VMs.
860          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
861          * the code is in place for first run initialization at EL2.
862          */
863         if (kvm_vm_is_protected(kvm))
864                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
865 
866         mutex_lock(&kvm->arch.config_lock);
867         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
868         mutex_unlock(&kvm->arch.config_lock);
869 
870         return ret;
871 }
872 
873 bool kvm_arch_intc_initialized(struct kvm *kvm)
874 {
875         return vgic_initialized(kvm);
876 }
877 
878 void kvm_arm_halt_guest(struct kvm *kvm)
879 {
880         unsigned long i;
881         struct kvm_vcpu *vcpu;
882 
883         kvm_for_each_vcpu(i, vcpu, kvm)
884                 vcpu->arch.pause = true;
885         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
886 }
887 
888 void kvm_arm_resume_guest(struct kvm *kvm)
889 {
890         unsigned long i;
891         struct kvm_vcpu *vcpu;
892 
893         kvm_for_each_vcpu(i, vcpu, kvm) {
894                 vcpu->arch.pause = false;
895                 __kvm_vcpu_wake_up(vcpu);
896         }
897 }
898 
899 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
900 {
901         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
902 
903         rcuwait_wait_event(wait,
904                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
905                            TASK_INTERRUPTIBLE);
906 
907         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
908                 /* Awaken to handle a signal, request we sleep again later. */
909                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
910         }
911 
912         /*
913          * Make sure we will observe a potential reset request if we've
914          * observed a change to the power state. Pairs with the smp_wmb() in
915          * kvm_psci_vcpu_on().
916          */
917         smp_rmb();
918 }
919 
920 /**
921  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
922  * @vcpu:       The VCPU pointer
923  *
924  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
925  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
926  * on when a wake event arrives, e.g. there may already be a pending wake event.
927  */
928 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
929 {
930         /*
931          * Sync back the state of the GIC CPU interface so that we have
932          * the latest PMR and group enables. This ensures that
933          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
934          * we have pending interrupts, e.g. when determining if the
935          * vCPU should block.
936          *
937          * For the same reason, we want to tell GICv4 that we need
938          * doorbells to be signalled, should an interrupt become pending.
939          */
940         preempt_disable();
941         vcpu_set_flag(vcpu, IN_WFI);
942         kvm_vgic_put(vcpu);
943         preempt_enable();
944 
945         kvm_vcpu_halt(vcpu);
946         vcpu_clear_flag(vcpu, IN_WFIT);
947 
948         preempt_disable();
949         vcpu_clear_flag(vcpu, IN_WFI);
950         kvm_vgic_load(vcpu);
951         preempt_enable();
952 }
953 
954 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
955 {
956         if (!kvm_arm_vcpu_suspended(vcpu))
957                 return 1;
958 
959         kvm_vcpu_wfi(vcpu);
960 
961         /*
962          * The suspend state is sticky; we do not leave it until userspace
963          * explicitly marks the vCPU as runnable. Request that we suspend again
964          * later.
965          */
966         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
967 
968         /*
969          * Check to make sure the vCPU is actually runnable. If so, exit to
970          * userspace informing it of the wakeup condition.
971          */
972         if (kvm_arch_vcpu_runnable(vcpu)) {
973                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
974                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
975                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
976                 return 0;
977         }
978 
979         /*
980          * Otherwise, we were unblocked to process a different event, such as a
981          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
982          * process the event.
983          */
984         return 1;
985 }
986 
987 /**
988  * check_vcpu_requests - check and handle pending vCPU requests
989  * @vcpu:       the VCPU pointer
990  *
991  * Return: 1 if we should enter the guest
992  *         0 if we should exit to userspace
993  *         < 0 if we should exit to userspace, where the return value indicates
994  *         an error
995  */
996 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
997 {
998         if (kvm_request_pending(vcpu)) {
999                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1000                         kvm_vcpu_sleep(vcpu);
1001 
1002                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1003                         kvm_reset_vcpu(vcpu);
1004 
1005                 /*
1006                  * Clear IRQ_PENDING requests that were made to guarantee
1007                  * that a VCPU sees new virtual interrupts.
1008                  */
1009                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1010 
1011                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1012                         kvm_update_stolen_time(vcpu);
1013 
1014                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1015                         /* The distributor enable bits were changed */
1016                         preempt_disable();
1017                         vgic_v4_put(vcpu);
1018                         vgic_v4_load(vcpu);
1019                         preempt_enable();
1020                 }
1021 
1022                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1023                         kvm_vcpu_reload_pmu(vcpu);
1024 
1025                 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1026                         kvm_vcpu_pmu_restore_guest(vcpu);
1027 
1028                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1029                         return kvm_vcpu_suspend(vcpu);
1030 
1031                 if (kvm_dirty_ring_check_request(vcpu))
1032                         return 0;
1033         }
1034 
1035         return 1;
1036 }
1037 
1038 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1039 {
1040         if (likely(!vcpu_mode_is_32bit(vcpu)))
1041                 return false;
1042 
1043         if (vcpu_has_nv(vcpu))
1044                 return true;
1045 
1046         return !kvm_supports_32bit_el0();
1047 }
1048 
1049 /**
1050  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1051  * @vcpu:       The VCPU pointer
1052  * @ret:        Pointer to write optional return code
1053  *
1054  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1055  *          and skip guest entry.
1056  *
1057  * This function disambiguates between two different types of exits: exits to a
1058  * preemptible + interruptible kernel context and exits to userspace. For an
1059  * exit to userspace, this function will write the return code to ret and return
1060  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1061  * for pending work and re-enter), return true without writing to ret.
1062  */
1063 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1064 {
1065         struct kvm_run *run = vcpu->run;
1066 
1067         /*
1068          * If we're using a userspace irqchip, then check if we need
1069          * to tell a userspace irqchip about timer or PMU level
1070          * changes and if so, exit to userspace (the actual level
1071          * state gets updated in kvm_timer_update_run and
1072          * kvm_pmu_update_run below).
1073          */
1074         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
1075                 if (kvm_timer_should_notify_user(vcpu) ||
1076                     kvm_pmu_should_notify_user(vcpu)) {
1077                         *ret = -EINTR;
1078                         run->exit_reason = KVM_EXIT_INTR;
1079                         return true;
1080                 }
1081         }
1082 
1083         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1084                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1085                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1086                 run->fail_entry.cpu = smp_processor_id();
1087                 *ret = 0;
1088                 return true;
1089         }
1090 
1091         return kvm_request_pending(vcpu) ||
1092                         xfer_to_guest_mode_work_pending();
1093 }
1094 
1095 /*
1096  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1097  * the vCPU is running.
1098  *
1099  * This must be noinstr as instrumentation may make use of RCU, and this is not
1100  * safe during the EQS.
1101  */
1102 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1103 {
1104         int ret;
1105 
1106         guest_state_enter_irqoff();
1107         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1108         guest_state_exit_irqoff();
1109 
1110         return ret;
1111 }
1112 
1113 /**
1114  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1115  * @vcpu:       The VCPU pointer
1116  *
1117  * This function is called through the VCPU_RUN ioctl called from user space. It
1118  * will execute VM code in a loop until the time slice for the process is used
1119  * or some emulation is needed from user space in which case the function will
1120  * return with return value 0 and with the kvm_run structure filled in with the
1121  * required data for the requested emulation.
1122  */
1123 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1124 {
1125         struct kvm_run *run = vcpu->run;
1126         int ret;
1127 
1128         if (run->exit_reason == KVM_EXIT_MMIO) {
1129                 ret = kvm_handle_mmio_return(vcpu);
1130                 if (ret <= 0)
1131                         return ret;
1132         }
1133 
1134         vcpu_load(vcpu);
1135 
1136         if (!vcpu->wants_to_run) {
1137                 ret = -EINTR;
1138                 goto out;
1139         }
1140 
1141         kvm_sigset_activate(vcpu);
1142 
1143         ret = 1;
1144         run->exit_reason = KVM_EXIT_UNKNOWN;
1145         run->flags = 0;
1146         while (ret > 0) {
1147                 /*
1148                  * Check conditions before entering the guest
1149                  */
1150                 ret = xfer_to_guest_mode_handle_work(vcpu);
1151                 if (!ret)
1152                         ret = 1;
1153 
1154                 if (ret > 0)
1155                         ret = check_vcpu_requests(vcpu);
1156 
1157                 /*
1158                  * Preparing the interrupts to be injected also
1159                  * involves poking the GIC, which must be done in a
1160                  * non-preemptible context.
1161                  */
1162                 preempt_disable();
1163 
1164                 /*
1165                  * The VMID allocator only tracks active VMIDs per
1166                  * physical CPU, and therefore the VMID allocated may not be
1167                  * preserved on VMID roll-over if the task was preempted,
1168                  * making a thread's VMID inactive. So we need to call
1169                  * kvm_arm_vmid_update() in non-premptible context.
1170                  */
1171                 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1172                     has_vhe())
1173                         __load_stage2(vcpu->arch.hw_mmu,
1174                                       vcpu->arch.hw_mmu->arch);
1175 
1176                 kvm_pmu_flush_hwstate(vcpu);
1177 
1178                 local_irq_disable();
1179 
1180                 kvm_vgic_flush_hwstate(vcpu);
1181 
1182                 kvm_pmu_update_vcpu_events(vcpu);
1183 
1184                 /*
1185                  * Ensure we set mode to IN_GUEST_MODE after we disable
1186                  * interrupts and before the final VCPU requests check.
1187                  * See the comment in kvm_vcpu_exiting_guest_mode() and
1188                  * Documentation/virt/kvm/vcpu-requests.rst
1189                  */
1190                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1191 
1192                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1193                         vcpu->mode = OUTSIDE_GUEST_MODE;
1194                         isb(); /* Ensure work in x_flush_hwstate is committed */
1195                         kvm_pmu_sync_hwstate(vcpu);
1196                         if (static_branch_unlikely(&userspace_irqchip_in_use))
1197                                 kvm_timer_sync_user(vcpu);
1198                         kvm_vgic_sync_hwstate(vcpu);
1199                         local_irq_enable();
1200                         preempt_enable();
1201                         continue;
1202                 }
1203 
1204                 kvm_arm_setup_debug(vcpu);
1205                 kvm_arch_vcpu_ctxflush_fp(vcpu);
1206 
1207                 /**************************************************************
1208                  * Enter the guest
1209                  */
1210                 trace_kvm_entry(*vcpu_pc(vcpu));
1211                 guest_timing_enter_irqoff();
1212 
1213                 ret = kvm_arm_vcpu_enter_exit(vcpu);
1214 
1215                 vcpu->mode = OUTSIDE_GUEST_MODE;
1216                 vcpu->stat.exits++;
1217                 /*
1218                  * Back from guest
1219                  *************************************************************/
1220 
1221                 kvm_arm_clear_debug(vcpu);
1222 
1223                 /*
1224                  * We must sync the PMU state before the vgic state so
1225                  * that the vgic can properly sample the updated state of the
1226                  * interrupt line.
1227                  */
1228                 kvm_pmu_sync_hwstate(vcpu);
1229 
1230                 /*
1231                  * Sync the vgic state before syncing the timer state because
1232                  * the timer code needs to know if the virtual timer
1233                  * interrupts are active.
1234                  */
1235                 kvm_vgic_sync_hwstate(vcpu);
1236 
1237                 /*
1238                  * Sync the timer hardware state before enabling interrupts as
1239                  * we don't want vtimer interrupts to race with syncing the
1240                  * timer virtual interrupt state.
1241                  */
1242                 if (static_branch_unlikely(&userspace_irqchip_in_use))
1243                         kvm_timer_sync_user(vcpu);
1244 
1245                 kvm_arch_vcpu_ctxsync_fp(vcpu);
1246 
1247                 /*
1248                  * We must ensure that any pending interrupts are taken before
1249                  * we exit guest timing so that timer ticks are accounted as
1250                  * guest time. Transiently unmask interrupts so that any
1251                  * pending interrupts are taken.
1252                  *
1253                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1254                  * context synchronization event) is necessary to ensure that
1255                  * pending interrupts are taken.
1256                  */
1257                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1258                         local_irq_enable();
1259                         isb();
1260                         local_irq_disable();
1261                 }
1262 
1263                 guest_timing_exit_irqoff();
1264 
1265                 local_irq_enable();
1266 
1267                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1268 
1269                 /* Exit types that need handling before we can be preempted */
1270                 handle_exit_early(vcpu, ret);
1271 
1272                 preempt_enable();
1273 
1274                 /*
1275                  * The ARMv8 architecture doesn't give the hypervisor
1276                  * a mechanism to prevent a guest from dropping to AArch32 EL0
1277                  * if implemented by the CPU. If we spot the guest in such
1278                  * state and that we decided it wasn't supposed to do so (like
1279                  * with the asymmetric AArch32 case), return to userspace with
1280                  * a fatal error.
1281                  */
1282                 if (vcpu_mode_is_bad_32bit(vcpu)) {
1283                         /*
1284                          * As we have caught the guest red-handed, decide that
1285                          * it isn't fit for purpose anymore by making the vcpu
1286                          * invalid. The VMM can try and fix it by issuing  a
1287                          * KVM_ARM_VCPU_INIT if it really wants to.
1288                          */
1289                         vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1290                         ret = ARM_EXCEPTION_IL;
1291                 }
1292 
1293                 ret = handle_exit(vcpu, ret);
1294         }
1295 
1296         /* Tell userspace about in-kernel device output levels */
1297         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1298                 kvm_timer_update_run(vcpu);
1299                 kvm_pmu_update_run(vcpu);
1300         }
1301 
1302         kvm_sigset_deactivate(vcpu);
1303 
1304 out:
1305         /*
1306          * In the unlikely event that we are returning to userspace
1307          * with pending exceptions or PC adjustment, commit these
1308          * adjustments in order to give userspace a consistent view of
1309          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1310          * being preempt-safe on VHE.
1311          */
1312         if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1313                      vcpu_get_flag(vcpu, INCREMENT_PC)))
1314                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1315 
1316         vcpu_put(vcpu);
1317         return ret;
1318 }
1319 
1320 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1321 {
1322         int bit_index;
1323         bool set;
1324         unsigned long *hcr;
1325 
1326         if (number == KVM_ARM_IRQ_CPU_IRQ)
1327                 bit_index = __ffs(HCR_VI);
1328         else /* KVM_ARM_IRQ_CPU_FIQ */
1329                 bit_index = __ffs(HCR_VF);
1330 
1331         hcr = vcpu_hcr(vcpu);
1332         if (level)
1333                 set = test_and_set_bit(bit_index, hcr);
1334         else
1335                 set = test_and_clear_bit(bit_index, hcr);
1336 
1337         /*
1338          * If we didn't change anything, no need to wake up or kick other CPUs
1339          */
1340         if (set == level)
1341                 return 0;
1342 
1343         /*
1344          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1345          * trigger a world-switch round on the running physical CPU to set the
1346          * virtual IRQ/FIQ fields in the HCR appropriately.
1347          */
1348         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1349         kvm_vcpu_kick(vcpu);
1350 
1351         return 0;
1352 }
1353 
1354 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1355                           bool line_status)
1356 {
1357         u32 irq = irq_level->irq;
1358         unsigned int irq_type, vcpu_id, irq_num;
1359         struct kvm_vcpu *vcpu = NULL;
1360         bool level = irq_level->level;
1361 
1362         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1363         vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1364         vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1365         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1366 
1367         trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1368 
1369         switch (irq_type) {
1370         case KVM_ARM_IRQ_TYPE_CPU:
1371                 if (irqchip_in_kernel(kvm))
1372                         return -ENXIO;
1373 
1374                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1375                 if (!vcpu)
1376                         return -EINVAL;
1377 
1378                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1379                         return -EINVAL;
1380 
1381                 return vcpu_interrupt_line(vcpu, irq_num, level);
1382         case KVM_ARM_IRQ_TYPE_PPI:
1383                 if (!irqchip_in_kernel(kvm))
1384                         return -ENXIO;
1385 
1386                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1387                 if (!vcpu)
1388                         return -EINVAL;
1389 
1390                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1391                         return -EINVAL;
1392 
1393                 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1394         case KVM_ARM_IRQ_TYPE_SPI:
1395                 if (!irqchip_in_kernel(kvm))
1396                         return -ENXIO;
1397 
1398                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1399                         return -EINVAL;
1400 
1401                 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1402         }
1403 
1404         return -EINVAL;
1405 }
1406 
1407 static unsigned long system_supported_vcpu_features(void)
1408 {
1409         unsigned long features = KVM_VCPU_VALID_FEATURES;
1410 
1411         if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1412                 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1413 
1414         if (!kvm_arm_support_pmu_v3())
1415                 clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1416 
1417         if (!system_supports_sve())
1418                 clear_bit(KVM_ARM_VCPU_SVE, &features);
1419 
1420         if (!kvm_has_full_ptr_auth()) {
1421                 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1422                 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1423         }
1424 
1425         if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1426                 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1427 
1428         return features;
1429 }
1430 
1431 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1432                                         const struct kvm_vcpu_init *init)
1433 {
1434         unsigned long features = init->features[0];
1435         int i;
1436 
1437         if (features & ~KVM_VCPU_VALID_FEATURES)
1438                 return -ENOENT;
1439 
1440         for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1441                 if (init->features[i])
1442                         return -ENOENT;
1443         }
1444 
1445         if (features & ~system_supported_vcpu_features())
1446                 return -EINVAL;
1447 
1448         /*
1449          * For now make sure that both address/generic pointer authentication
1450          * features are requested by the userspace together.
1451          */
1452         if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1453             test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1454                 return -EINVAL;
1455 
1456         if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1457                 return 0;
1458 
1459         /* MTE is incompatible with AArch32 */
1460         if (kvm_has_mte(vcpu->kvm))
1461                 return -EINVAL;
1462 
1463         /* NV is incompatible with AArch32 */
1464         if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1465                 return -EINVAL;
1466 
1467         return 0;
1468 }
1469 
1470 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1471                                   const struct kvm_vcpu_init *init)
1472 {
1473         unsigned long features = init->features[0];
1474 
1475         return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1476                              KVM_VCPU_MAX_FEATURES);
1477 }
1478 
1479 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1480 {
1481         struct kvm *kvm = vcpu->kvm;
1482         int ret = 0;
1483 
1484         /*
1485          * When the vCPU has a PMU, but no PMU is set for the guest
1486          * yet, set the default one.
1487          */
1488         if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1489                 ret = kvm_arm_set_default_pmu(kvm);
1490 
1491         /* Prepare for nested if required */
1492         if (!ret && vcpu_has_nv(vcpu))
1493                 ret = kvm_vcpu_init_nested(vcpu);
1494 
1495         return ret;
1496 }
1497 
1498 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1499                                  const struct kvm_vcpu_init *init)
1500 {
1501         unsigned long features = init->features[0];
1502         struct kvm *kvm = vcpu->kvm;
1503         int ret = -EINVAL;
1504 
1505         mutex_lock(&kvm->arch.config_lock);
1506 
1507         if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1508             kvm_vcpu_init_changed(vcpu, init))
1509                 goto out_unlock;
1510 
1511         bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1512 
1513         ret = kvm_setup_vcpu(vcpu);
1514         if (ret)
1515                 goto out_unlock;
1516 
1517         /* Now we know what it is, we can reset it. */
1518         kvm_reset_vcpu(vcpu);
1519 
1520         set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1521         vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1522         ret = 0;
1523 out_unlock:
1524         mutex_unlock(&kvm->arch.config_lock);
1525         return ret;
1526 }
1527 
1528 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1529                                const struct kvm_vcpu_init *init)
1530 {
1531         int ret;
1532 
1533         if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1534             init->target != kvm_target_cpu())
1535                 return -EINVAL;
1536 
1537         ret = kvm_vcpu_init_check_features(vcpu, init);
1538         if (ret)
1539                 return ret;
1540 
1541         if (!kvm_vcpu_initialized(vcpu))
1542                 return __kvm_vcpu_set_target(vcpu, init);
1543 
1544         if (kvm_vcpu_init_changed(vcpu, init))
1545                 return -EINVAL;
1546 
1547         kvm_reset_vcpu(vcpu);
1548         return 0;
1549 }
1550 
1551 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1552                                          struct kvm_vcpu_init *init)
1553 {
1554         bool power_off = false;
1555         int ret;
1556 
1557         /*
1558          * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1559          * reflecting it in the finalized feature set, thus limiting its scope
1560          * to a single KVM_ARM_VCPU_INIT call.
1561          */
1562         if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1563                 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1564                 power_off = true;
1565         }
1566 
1567         ret = kvm_vcpu_set_target(vcpu, init);
1568         if (ret)
1569                 return ret;
1570 
1571         /*
1572          * Ensure a rebooted VM will fault in RAM pages and detect if the
1573          * guest MMU is turned off and flush the caches as needed.
1574          *
1575          * S2FWB enforces all memory accesses to RAM being cacheable,
1576          * ensuring that the data side is always coherent. We still
1577          * need to invalidate the I-cache though, as FWB does *not*
1578          * imply CTR_EL0.DIC.
1579          */
1580         if (vcpu_has_run_once(vcpu)) {
1581                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1582                         stage2_unmap_vm(vcpu->kvm);
1583                 else
1584                         icache_inval_all_pou();
1585         }
1586 
1587         vcpu_reset_hcr(vcpu);
1588         vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1589 
1590         /*
1591          * Handle the "start in power-off" case.
1592          */
1593         spin_lock(&vcpu->arch.mp_state_lock);
1594 
1595         if (power_off)
1596                 __kvm_arm_vcpu_power_off(vcpu);
1597         else
1598                 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1599 
1600         spin_unlock(&vcpu->arch.mp_state_lock);
1601 
1602         return 0;
1603 }
1604 
1605 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1606                                  struct kvm_device_attr *attr)
1607 {
1608         int ret = -ENXIO;
1609 
1610         switch (attr->group) {
1611         default:
1612                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1613                 break;
1614         }
1615 
1616         return ret;
1617 }
1618 
1619 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1620                                  struct kvm_device_attr *attr)
1621 {
1622         int ret = -ENXIO;
1623 
1624         switch (attr->group) {
1625         default:
1626                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1627                 break;
1628         }
1629 
1630         return ret;
1631 }
1632 
1633 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1634                                  struct kvm_device_attr *attr)
1635 {
1636         int ret = -ENXIO;
1637 
1638         switch (attr->group) {
1639         default:
1640                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1641                 break;
1642         }
1643 
1644         return ret;
1645 }
1646 
1647 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1648                                    struct kvm_vcpu_events *events)
1649 {
1650         memset(events, 0, sizeof(*events));
1651 
1652         return __kvm_arm_vcpu_get_events(vcpu, events);
1653 }
1654 
1655 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1656                                    struct kvm_vcpu_events *events)
1657 {
1658         int i;
1659 
1660         /* check whether the reserved field is zero */
1661         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1662                 if (events->reserved[i])
1663                         return -EINVAL;
1664 
1665         /* check whether the pad field is zero */
1666         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1667                 if (events->exception.pad[i])
1668                         return -EINVAL;
1669 
1670         return __kvm_arm_vcpu_set_events(vcpu, events);
1671 }
1672 
1673 long kvm_arch_vcpu_ioctl(struct file *filp,
1674                          unsigned int ioctl, unsigned long arg)
1675 {
1676         struct kvm_vcpu *vcpu = filp->private_data;
1677         void __user *argp = (void __user *)arg;
1678         struct kvm_device_attr attr;
1679         long r;
1680 
1681         switch (ioctl) {
1682         case KVM_ARM_VCPU_INIT: {
1683                 struct kvm_vcpu_init init;
1684 
1685                 r = -EFAULT;
1686                 if (copy_from_user(&init, argp, sizeof(init)))
1687                         break;
1688 
1689                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1690                 break;
1691         }
1692         case KVM_SET_ONE_REG:
1693         case KVM_GET_ONE_REG: {
1694                 struct kvm_one_reg reg;
1695 
1696                 r = -ENOEXEC;
1697                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1698                         break;
1699 
1700                 r = -EFAULT;
1701                 if (copy_from_user(&reg, argp, sizeof(reg)))
1702                         break;
1703 
1704                 /*
1705                  * We could owe a reset due to PSCI. Handle the pending reset
1706                  * here to ensure userspace register accesses are ordered after
1707                  * the reset.
1708                  */
1709                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1710                         kvm_reset_vcpu(vcpu);
1711 
1712                 if (ioctl == KVM_SET_ONE_REG)
1713                         r = kvm_arm_set_reg(vcpu, &reg);
1714                 else
1715                         r = kvm_arm_get_reg(vcpu, &reg);
1716                 break;
1717         }
1718         case KVM_GET_REG_LIST: {
1719                 struct kvm_reg_list __user *user_list = argp;
1720                 struct kvm_reg_list reg_list;
1721                 unsigned n;
1722 
1723                 r = -ENOEXEC;
1724                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1725                         break;
1726 
1727                 r = -EPERM;
1728                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1729                         break;
1730 
1731                 r = -EFAULT;
1732                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1733                         break;
1734                 n = reg_list.n;
1735                 reg_list.n = kvm_arm_num_regs(vcpu);
1736                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1737                         break;
1738                 r = -E2BIG;
1739                 if (n < reg_list.n)
1740                         break;
1741                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1742                 break;
1743         }
1744         case KVM_SET_DEVICE_ATTR: {
1745                 r = -EFAULT;
1746                 if (copy_from_user(&attr, argp, sizeof(attr)))
1747                         break;
1748                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1749                 break;
1750         }
1751         case KVM_GET_DEVICE_ATTR: {
1752                 r = -EFAULT;
1753                 if (copy_from_user(&attr, argp, sizeof(attr)))
1754                         break;
1755                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1756                 break;
1757         }
1758         case KVM_HAS_DEVICE_ATTR: {
1759                 r = -EFAULT;
1760                 if (copy_from_user(&attr, argp, sizeof(attr)))
1761                         break;
1762                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1763                 break;
1764         }
1765         case KVM_GET_VCPU_EVENTS: {
1766                 struct kvm_vcpu_events events;
1767 
1768                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1769                         return -EINVAL;
1770 
1771                 if (copy_to_user(argp, &events, sizeof(events)))
1772                         return -EFAULT;
1773 
1774                 return 0;
1775         }
1776         case KVM_SET_VCPU_EVENTS: {
1777                 struct kvm_vcpu_events events;
1778 
1779                 if (copy_from_user(&events, argp, sizeof(events)))
1780                         return -EFAULT;
1781 
1782                 return kvm_arm_vcpu_set_events(vcpu, &events);
1783         }
1784         case KVM_ARM_VCPU_FINALIZE: {
1785                 int what;
1786 
1787                 if (!kvm_vcpu_initialized(vcpu))
1788                         return -ENOEXEC;
1789 
1790                 if (get_user(what, (const int __user *)argp))
1791                         return -EFAULT;
1792 
1793                 return kvm_arm_vcpu_finalize(vcpu, what);
1794         }
1795         default:
1796                 r = -EINVAL;
1797         }
1798 
1799         return r;
1800 }
1801 
1802 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1803 {
1804 
1805 }
1806 
1807 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1808                                         struct kvm_arm_device_addr *dev_addr)
1809 {
1810         switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1811         case KVM_ARM_DEVICE_VGIC_V2:
1812                 if (!vgic_present)
1813                         return -ENXIO;
1814                 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1815         default:
1816                 return -ENODEV;
1817         }
1818 }
1819 
1820 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1821 {
1822         switch (attr->group) {
1823         case KVM_ARM_VM_SMCCC_CTRL:
1824                 return kvm_vm_smccc_has_attr(kvm, attr);
1825         default:
1826                 return -ENXIO;
1827         }
1828 }
1829 
1830 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1831 {
1832         switch (attr->group) {
1833         case KVM_ARM_VM_SMCCC_CTRL:
1834                 return kvm_vm_smccc_set_attr(kvm, attr);
1835         default:
1836                 return -ENXIO;
1837         }
1838 }
1839 
1840 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1841 {
1842         struct kvm *kvm = filp->private_data;
1843         void __user *argp = (void __user *)arg;
1844         struct kvm_device_attr attr;
1845 
1846         switch (ioctl) {
1847         case KVM_CREATE_IRQCHIP: {
1848                 int ret;
1849                 if (!vgic_present)
1850                         return -ENXIO;
1851                 mutex_lock(&kvm->lock);
1852                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1853                 mutex_unlock(&kvm->lock);
1854                 return ret;
1855         }
1856         case KVM_ARM_SET_DEVICE_ADDR: {
1857                 struct kvm_arm_device_addr dev_addr;
1858 
1859                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1860                         return -EFAULT;
1861                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1862         }
1863         case KVM_ARM_PREFERRED_TARGET: {
1864                 struct kvm_vcpu_init init = {
1865                         .target = KVM_ARM_TARGET_GENERIC_V8,
1866                 };
1867 
1868                 if (copy_to_user(argp, &init, sizeof(init)))
1869                         return -EFAULT;
1870 
1871                 return 0;
1872         }
1873         case KVM_ARM_MTE_COPY_TAGS: {
1874                 struct kvm_arm_copy_mte_tags copy_tags;
1875 
1876                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1877                         return -EFAULT;
1878                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1879         }
1880         case KVM_ARM_SET_COUNTER_OFFSET: {
1881                 struct kvm_arm_counter_offset offset;
1882 
1883                 if (copy_from_user(&offset, argp, sizeof(offset)))
1884                         return -EFAULT;
1885                 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1886         }
1887         case KVM_HAS_DEVICE_ATTR: {
1888                 if (copy_from_user(&attr, argp, sizeof(attr)))
1889                         return -EFAULT;
1890 
1891                 return kvm_vm_has_attr(kvm, &attr);
1892         }
1893         case KVM_SET_DEVICE_ATTR: {
1894                 if (copy_from_user(&attr, argp, sizeof(attr)))
1895                         return -EFAULT;
1896 
1897                 return kvm_vm_set_attr(kvm, &attr);
1898         }
1899         case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1900                 struct reg_mask_range range;
1901 
1902                 if (copy_from_user(&range, argp, sizeof(range)))
1903                         return -EFAULT;
1904                 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1905         }
1906         default:
1907                 return -EINVAL;
1908         }
1909 }
1910 
1911 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1912 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1913 {
1914         struct kvm_vcpu *tmp_vcpu;
1915 
1916         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1917                 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1918                 mutex_unlock(&tmp_vcpu->mutex);
1919         }
1920 }
1921 
1922 void unlock_all_vcpus(struct kvm *kvm)
1923 {
1924         lockdep_assert_held(&kvm->lock);
1925 
1926         unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1927 }
1928 
1929 /* Returns true if all vcpus were locked, false otherwise */
1930 bool lock_all_vcpus(struct kvm *kvm)
1931 {
1932         struct kvm_vcpu *tmp_vcpu;
1933         unsigned long c;
1934 
1935         lockdep_assert_held(&kvm->lock);
1936 
1937         /*
1938          * Any time a vcpu is in an ioctl (including running), the
1939          * core KVM code tries to grab the vcpu->mutex.
1940          *
1941          * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1942          * other VCPUs can fiddle with the state while we access it.
1943          */
1944         kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1945                 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1946                         unlock_vcpus(kvm, c - 1);
1947                         return false;
1948                 }
1949         }
1950 
1951         return true;
1952 }
1953 
1954 static unsigned long nvhe_percpu_size(void)
1955 {
1956         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1957                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1958 }
1959 
1960 static unsigned long nvhe_percpu_order(void)
1961 {
1962         unsigned long size = nvhe_percpu_size();
1963 
1964         return size ? get_order(size) : 0;
1965 }
1966 
1967 static size_t pkvm_host_sve_state_order(void)
1968 {
1969         return get_order(pkvm_host_sve_state_size());
1970 }
1971 
1972 /* A lookup table holding the hypervisor VA for each vector slot */
1973 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1974 
1975 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1976 {
1977         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1978 }
1979 
1980 static int kvm_init_vector_slots(void)
1981 {
1982         int err;
1983         void *base;
1984 
1985         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1986         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1987 
1988         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1989         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1990 
1991         if (kvm_system_needs_idmapped_vectors() &&
1992             !is_protected_kvm_enabled()) {
1993                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1994                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1995                 if (err)
1996                         return err;
1997         }
1998 
1999         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2000         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2001         return 0;
2002 }
2003 
2004 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2005 {
2006         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2007         u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2008         unsigned long tcr;
2009 
2010         /*
2011          * Calculate the raw per-cpu offset without a translation from the
2012          * kernel's mapping to the linear mapping, and store it in tpidr_el2
2013          * so that we can use adr_l to access per-cpu variables in EL2.
2014          * Also drop the KASAN tag which gets in the way...
2015          */
2016         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2017                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2018 
2019         params->mair_el2 = read_sysreg(mair_el1);
2020 
2021         tcr = read_sysreg(tcr_el1);
2022         if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2023                 tcr |= TCR_EPD1_MASK;
2024         } else {
2025                 tcr &= TCR_EL2_MASK;
2026                 tcr |= TCR_EL2_RES1;
2027         }
2028         tcr &= ~TCR_T0SZ_MASK;
2029         tcr |= TCR_T0SZ(hyp_va_bits);
2030         tcr &= ~TCR_EL2_PS_MASK;
2031         tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
2032         if (kvm_lpa2_is_enabled())
2033                 tcr |= TCR_EL2_DS;
2034         params->tcr_el2 = tcr;
2035 
2036         params->pgd_pa = kvm_mmu_get_httbr();
2037         if (is_protected_kvm_enabled())
2038                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2039         else
2040                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2041         if (cpus_have_final_cap(ARM64_KVM_HVHE))
2042                 params->hcr_el2 |= HCR_E2H;
2043         params->vttbr = params->vtcr = 0;
2044 
2045         /*
2046          * Flush the init params from the data cache because the struct will
2047          * be read while the MMU is off.
2048          */
2049         kvm_flush_dcache_to_poc(params, sizeof(*params));
2050 }
2051 
2052 static void hyp_install_host_vector(void)
2053 {
2054         struct kvm_nvhe_init_params *params;
2055         struct arm_smccc_res res;
2056 
2057         /* Switch from the HYP stub to our own HYP init vector */
2058         __hyp_set_vectors(kvm_get_idmap_vector());
2059 
2060         /*
2061          * Call initialization code, and switch to the full blown HYP code.
2062          * If the cpucaps haven't been finalized yet, something has gone very
2063          * wrong, and hyp will crash and burn when it uses any
2064          * cpus_have_*_cap() wrapper.
2065          */
2066         BUG_ON(!system_capabilities_finalized());
2067         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2068         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2069         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2070 }
2071 
2072 static void cpu_init_hyp_mode(void)
2073 {
2074         hyp_install_host_vector();
2075 
2076         /*
2077          * Disabling SSBD on a non-VHE system requires us to enable SSBS
2078          * at EL2.
2079          */
2080         if (this_cpu_has_cap(ARM64_SSBS) &&
2081             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2082                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2083         }
2084 }
2085 
2086 static void cpu_hyp_reset(void)
2087 {
2088         if (!is_kernel_in_hyp_mode())
2089                 __hyp_reset_vectors();
2090 }
2091 
2092 /*
2093  * EL2 vectors can be mapped and rerouted in a number of ways,
2094  * depending on the kernel configuration and CPU present:
2095  *
2096  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2097  *   placed in one of the vector slots, which is executed before jumping
2098  *   to the real vectors.
2099  *
2100  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2101  *   containing the hardening sequence is mapped next to the idmap page,
2102  *   and executed before jumping to the real vectors.
2103  *
2104  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2105  *   empty slot is selected, mapped next to the idmap page, and
2106  *   executed before jumping to the real vectors.
2107  *
2108  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2109  * VHE, as we don't have hypervisor-specific mappings. If the system
2110  * is VHE and yet selects this capability, it will be ignored.
2111  */
2112 static void cpu_set_hyp_vector(void)
2113 {
2114         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2115         void *vector = hyp_spectre_vector_selector[data->slot];
2116 
2117         if (!is_protected_kvm_enabled())
2118                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2119         else
2120                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2121 }
2122 
2123 static void cpu_hyp_init_context(void)
2124 {
2125         kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2126 
2127         if (!is_kernel_in_hyp_mode())
2128                 cpu_init_hyp_mode();
2129 }
2130 
2131 static void cpu_hyp_init_features(void)
2132 {
2133         cpu_set_hyp_vector();
2134         kvm_arm_init_debug();
2135 
2136         if (is_kernel_in_hyp_mode())
2137                 kvm_timer_init_vhe();
2138 
2139         if (vgic_present)
2140                 kvm_vgic_init_cpu_hardware();
2141 }
2142 
2143 static void cpu_hyp_reinit(void)
2144 {
2145         cpu_hyp_reset();
2146         cpu_hyp_init_context();
2147         cpu_hyp_init_features();
2148 }
2149 
2150 static void cpu_hyp_init(void *discard)
2151 {
2152         if (!__this_cpu_read(kvm_hyp_initialized)) {
2153                 cpu_hyp_reinit();
2154                 __this_cpu_write(kvm_hyp_initialized, 1);
2155         }
2156 }
2157 
2158 static void cpu_hyp_uninit(void *discard)
2159 {
2160         if (__this_cpu_read(kvm_hyp_initialized)) {
2161                 cpu_hyp_reset();
2162                 __this_cpu_write(kvm_hyp_initialized, 0);
2163         }
2164 }
2165 
2166 int kvm_arch_hardware_enable(void)
2167 {
2168         /*
2169          * Most calls to this function are made with migration
2170          * disabled, but not with preemption disabled. The former is
2171          * enough to ensure correctness, but most of the helpers
2172          * expect the later and will throw a tantrum otherwise.
2173          */
2174         preempt_disable();
2175 
2176         cpu_hyp_init(NULL);
2177 
2178         kvm_vgic_cpu_up();
2179         kvm_timer_cpu_up();
2180 
2181         preempt_enable();
2182 
2183         return 0;
2184 }
2185 
2186 void kvm_arch_hardware_disable(void)
2187 {
2188         kvm_timer_cpu_down();
2189         kvm_vgic_cpu_down();
2190 
2191         if (!is_protected_kvm_enabled())
2192                 cpu_hyp_uninit(NULL);
2193 }
2194 
2195 #ifdef CONFIG_CPU_PM
2196 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2197                                     unsigned long cmd,
2198                                     void *v)
2199 {
2200         /*
2201          * kvm_hyp_initialized is left with its old value over
2202          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2203          * re-enable hyp.
2204          */
2205         switch (cmd) {
2206         case CPU_PM_ENTER:
2207                 if (__this_cpu_read(kvm_hyp_initialized))
2208                         /*
2209                          * don't update kvm_hyp_initialized here
2210                          * so that the hyp will be re-enabled
2211                          * when we resume. See below.
2212                          */
2213                         cpu_hyp_reset();
2214 
2215                 return NOTIFY_OK;
2216         case CPU_PM_ENTER_FAILED:
2217         case CPU_PM_EXIT:
2218                 if (__this_cpu_read(kvm_hyp_initialized))
2219                         /* The hyp was enabled before suspend. */
2220                         cpu_hyp_reinit();
2221 
2222                 return NOTIFY_OK;
2223 
2224         default:
2225                 return NOTIFY_DONE;
2226         }
2227 }
2228 
2229 static struct notifier_block hyp_init_cpu_pm_nb = {
2230         .notifier_call = hyp_init_cpu_pm_notifier,
2231 };
2232 
2233 static void __init hyp_cpu_pm_init(void)
2234 {
2235         if (!is_protected_kvm_enabled())
2236                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2237 }
2238 static void __init hyp_cpu_pm_exit(void)
2239 {
2240         if (!is_protected_kvm_enabled())
2241                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2242 }
2243 #else
2244 static inline void __init hyp_cpu_pm_init(void)
2245 {
2246 }
2247 static inline void __init hyp_cpu_pm_exit(void)
2248 {
2249 }
2250 #endif
2251 
2252 static void __init init_cpu_logical_map(void)
2253 {
2254         unsigned int cpu;
2255 
2256         /*
2257          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2258          * Only copy the set of online CPUs whose features have been checked
2259          * against the finalized system capabilities. The hypervisor will not
2260          * allow any other CPUs from the `possible` set to boot.
2261          */
2262         for_each_online_cpu(cpu)
2263                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2264 }
2265 
2266 #define init_psci_0_1_impl_state(config, what)  \
2267         config.psci_0_1_ ## what ## _implemented = psci_ops.what
2268 
2269 static bool __init init_psci_relay(void)
2270 {
2271         /*
2272          * If PSCI has not been initialized, protected KVM cannot install
2273          * itself on newly booted CPUs.
2274          */
2275         if (!psci_ops.get_version) {
2276                 kvm_err("Cannot initialize protected mode without PSCI\n");
2277                 return false;
2278         }
2279 
2280         kvm_host_psci_config.version = psci_ops.get_version();
2281         kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2282 
2283         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2284                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2285                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2286                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2287                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2288                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2289         }
2290         return true;
2291 }
2292 
2293 static int __init init_subsystems(void)
2294 {
2295         int err = 0;
2296 
2297         /*
2298          * Enable hardware so that subsystem initialisation can access EL2.
2299          */
2300         on_each_cpu(cpu_hyp_init, NULL, 1);
2301 
2302         /*
2303          * Register CPU lower-power notifier
2304          */
2305         hyp_cpu_pm_init();
2306 
2307         /*
2308          * Init HYP view of VGIC
2309          */
2310         err = kvm_vgic_hyp_init();
2311         switch (err) {
2312         case 0:
2313                 vgic_present = true;
2314                 break;
2315         case -ENODEV:
2316         case -ENXIO:
2317                 vgic_present = false;
2318                 err = 0;
2319                 break;
2320         default:
2321                 goto out;
2322         }
2323 
2324         /*
2325          * Init HYP architected timer support
2326          */
2327         err = kvm_timer_hyp_init(vgic_present);
2328         if (err)
2329                 goto out;
2330 
2331         kvm_register_perf_callbacks(NULL);
2332 
2333 out:
2334         if (err)
2335                 hyp_cpu_pm_exit();
2336 
2337         if (err || !is_protected_kvm_enabled())
2338                 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2339 
2340         return err;
2341 }
2342 
2343 static void __init teardown_subsystems(void)
2344 {
2345         kvm_unregister_perf_callbacks();
2346         hyp_cpu_pm_exit();
2347 }
2348 
2349 static void __init teardown_hyp_mode(void)
2350 {
2351         bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2352         int cpu;
2353 
2354         free_hyp_pgds();
2355         for_each_possible_cpu(cpu) {
2356                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2357                 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2358 
2359                 if (free_sve) {
2360                         struct cpu_sve_state *sve_state;
2361 
2362                         sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2363                         free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2364                 }
2365         }
2366 }
2367 
2368 static int __init do_pkvm_init(u32 hyp_va_bits)
2369 {
2370         void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2371         int ret;
2372 
2373         preempt_disable();
2374         cpu_hyp_init_context();
2375         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2376                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2377                                 hyp_va_bits);
2378         cpu_hyp_init_features();
2379 
2380         /*
2381          * The stub hypercalls are now disabled, so set our local flag to
2382          * prevent a later re-init attempt in kvm_arch_hardware_enable().
2383          */
2384         __this_cpu_write(kvm_hyp_initialized, 1);
2385         preempt_enable();
2386 
2387         return ret;
2388 }
2389 
2390 static u64 get_hyp_id_aa64pfr0_el1(void)
2391 {
2392         /*
2393          * Track whether the system isn't affected by spectre/meltdown in the
2394          * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2395          * Although this is per-CPU, we make it global for simplicity, e.g., not
2396          * to have to worry about vcpu migration.
2397          *
2398          * Unlike for non-protected VMs, userspace cannot override this for
2399          * protected VMs.
2400          */
2401         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2402 
2403         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2404                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2405 
2406         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2407                           arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2408         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2409                           arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2410 
2411         return val;
2412 }
2413 
2414 static void kvm_hyp_init_symbols(void)
2415 {
2416         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2417         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2418         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2419         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2420         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2421         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2422         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2423         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2424         kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2425         kvm_nvhe_sym(__icache_flags) = __icache_flags;
2426         kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2427 }
2428 
2429 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2430 {
2431         void *addr = phys_to_virt(hyp_mem_base);
2432         int ret;
2433 
2434         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2435         if (ret)
2436                 return ret;
2437 
2438         ret = do_pkvm_init(hyp_va_bits);
2439         if (ret)
2440                 return ret;
2441 
2442         free_hyp_pgds();
2443 
2444         return 0;
2445 }
2446 
2447 static int init_pkvm_host_sve_state(void)
2448 {
2449         int cpu;
2450 
2451         if (!system_supports_sve())
2452                 return 0;
2453 
2454         /* Allocate pages for host sve state in protected mode. */
2455         for_each_possible_cpu(cpu) {
2456                 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2457 
2458                 if (!page)
2459                         return -ENOMEM;
2460 
2461                 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2462         }
2463 
2464         /*
2465          * Don't map the pages in hyp since these are only used in protected
2466          * mode, which will (re)create its own mapping when initialized.
2467          */
2468 
2469         return 0;
2470 }
2471 
2472 /*
2473  * Finalizes the initialization of hyp mode, once everything else is initialized
2474  * and the initialziation process cannot fail.
2475  */
2476 static void finalize_init_hyp_mode(void)
2477 {
2478         int cpu;
2479 
2480         if (system_supports_sve() && is_protected_kvm_enabled()) {
2481                 for_each_possible_cpu(cpu) {
2482                         struct cpu_sve_state *sve_state;
2483 
2484                         sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2485                         per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2486                                 kern_hyp_va(sve_state);
2487                 }
2488         } else {
2489                 for_each_possible_cpu(cpu) {
2490                         struct user_fpsimd_state *fpsimd_state;
2491 
2492                         fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs;
2493                         per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state =
2494                                 kern_hyp_va(fpsimd_state);
2495                 }
2496         }
2497 }
2498 
2499 static void pkvm_hyp_init_ptrauth(void)
2500 {
2501         struct kvm_cpu_context *hyp_ctxt;
2502         int cpu;
2503 
2504         for_each_possible_cpu(cpu) {
2505                 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2506                 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2507                 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2508                 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2509                 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2510                 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2511                 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2512                 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2513                 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2514                 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2515                 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2516         }
2517 }
2518 
2519 /* Inits Hyp-mode on all online CPUs */
2520 static int __init init_hyp_mode(void)
2521 {
2522         u32 hyp_va_bits;
2523         int cpu;
2524         int err = -ENOMEM;
2525 
2526         /*
2527          * The protected Hyp-mode cannot be initialized if the memory pool
2528          * allocation has failed.
2529          */
2530         if (is_protected_kvm_enabled() && !hyp_mem_base)
2531                 goto out_err;
2532 
2533         /*
2534          * Allocate Hyp PGD and setup Hyp identity mapping
2535          */
2536         err = kvm_mmu_init(&hyp_va_bits);
2537         if (err)
2538                 goto out_err;
2539 
2540         /*
2541          * Allocate stack pages for Hypervisor-mode
2542          */
2543         for_each_possible_cpu(cpu) {
2544                 unsigned long stack_page;
2545 
2546                 stack_page = __get_free_page(GFP_KERNEL);
2547                 if (!stack_page) {
2548                         err = -ENOMEM;
2549                         goto out_err;
2550                 }
2551 
2552                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2553         }
2554 
2555         /*
2556          * Allocate and initialize pages for Hypervisor-mode percpu regions.
2557          */
2558         for_each_possible_cpu(cpu) {
2559                 struct page *page;
2560                 void *page_addr;
2561 
2562                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2563                 if (!page) {
2564                         err = -ENOMEM;
2565                         goto out_err;
2566                 }
2567 
2568                 page_addr = page_address(page);
2569                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2570                 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2571         }
2572 
2573         /*
2574          * Map the Hyp-code called directly from the host
2575          */
2576         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2577                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2578         if (err) {
2579                 kvm_err("Cannot map world-switch code\n");
2580                 goto out_err;
2581         }
2582 
2583         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2584                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2585         if (err) {
2586                 kvm_err("Cannot map .hyp.rodata section\n");
2587                 goto out_err;
2588         }
2589 
2590         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2591                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2592         if (err) {
2593                 kvm_err("Cannot map rodata section\n");
2594                 goto out_err;
2595         }
2596 
2597         /*
2598          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2599          * section thanks to an assertion in the linker script. Map it RW and
2600          * the rest of .bss RO.
2601          */
2602         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2603                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2604         if (err) {
2605                 kvm_err("Cannot map hyp bss section: %d\n", err);
2606                 goto out_err;
2607         }
2608 
2609         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2610                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2611         if (err) {
2612                 kvm_err("Cannot map bss section\n");
2613                 goto out_err;
2614         }
2615 
2616         /*
2617          * Map the Hyp stack pages
2618          */
2619         for_each_possible_cpu(cpu) {
2620                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2621                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2622 
2623                 err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2624                 if (err) {
2625                         kvm_err("Cannot map hyp stack\n");
2626                         goto out_err;
2627                 }
2628 
2629                 /*
2630                  * Save the stack PA in nvhe_init_params. This will be needed
2631                  * to recreate the stack mapping in protected nVHE mode.
2632                  * __hyp_pa() won't do the right thing there, since the stack
2633                  * has been mapped in the flexible private VA space.
2634                  */
2635                 params->stack_pa = __pa(stack_page);
2636         }
2637 
2638         for_each_possible_cpu(cpu) {
2639                 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2640                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2641 
2642                 /* Map Hyp percpu pages */
2643                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2644                 if (err) {
2645                         kvm_err("Cannot map hyp percpu region\n");
2646                         goto out_err;
2647                 }
2648 
2649                 /* Prepare the CPU initialization parameters */
2650                 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2651         }
2652 
2653         kvm_hyp_init_symbols();
2654 
2655         if (is_protected_kvm_enabled()) {
2656                 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2657                     cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2658                         pkvm_hyp_init_ptrauth();
2659 
2660                 init_cpu_logical_map();
2661 
2662                 if (!init_psci_relay()) {
2663                         err = -ENODEV;
2664                         goto out_err;
2665                 }
2666 
2667                 err = init_pkvm_host_sve_state();
2668                 if (err)
2669                         goto out_err;
2670 
2671                 err = kvm_hyp_init_protection(hyp_va_bits);
2672                 if (err) {
2673                         kvm_err("Failed to init hyp memory protection\n");
2674                         goto out_err;
2675                 }
2676         }
2677 
2678         return 0;
2679 
2680 out_err:
2681         teardown_hyp_mode();
2682         kvm_err("error initializing Hyp mode: %d\n", err);
2683         return err;
2684 }
2685 
2686 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2687 {
2688         struct kvm_vcpu *vcpu = NULL;
2689         struct kvm_mpidr_data *data;
2690         unsigned long i;
2691 
2692         mpidr &= MPIDR_HWID_BITMASK;
2693 
2694         rcu_read_lock();
2695         data = rcu_dereference(kvm->arch.mpidr_data);
2696 
2697         if (data) {
2698                 u16 idx = kvm_mpidr_index(data, mpidr);
2699 
2700                 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2701                 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2702                         vcpu = NULL;
2703         }
2704 
2705         rcu_read_unlock();
2706 
2707         if (vcpu)
2708                 return vcpu;
2709 
2710         kvm_for_each_vcpu(i, vcpu, kvm) {
2711                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2712                         return vcpu;
2713         }
2714         return NULL;
2715 }
2716 
2717 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2718 {
2719         return irqchip_in_kernel(kvm);
2720 }
2721 
2722 bool kvm_arch_has_irq_bypass(void)
2723 {
2724         return true;
2725 }
2726 
2727 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2728                                       struct irq_bypass_producer *prod)
2729 {
2730         struct kvm_kernel_irqfd *irqfd =
2731                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2732 
2733         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2734                                           &irqfd->irq_entry);
2735 }
2736 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2737                                       struct irq_bypass_producer *prod)
2738 {
2739         struct kvm_kernel_irqfd *irqfd =
2740                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2741 
2742         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2743                                      &irqfd->irq_entry);
2744 }
2745 
2746 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2747 {
2748         struct kvm_kernel_irqfd *irqfd =
2749                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2750 
2751         kvm_arm_halt_guest(irqfd->kvm);
2752 }
2753 
2754 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2755 {
2756         struct kvm_kernel_irqfd *irqfd =
2757                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2758 
2759         kvm_arm_resume_guest(irqfd->kvm);
2760 }
2761 
2762 /* Initialize Hyp-mode and memory mappings on all CPUs */
2763 static __init int kvm_arm_init(void)
2764 {
2765         int err;
2766         bool in_hyp_mode;
2767 
2768         if (!is_hyp_mode_available()) {
2769                 kvm_info("HYP mode not available\n");
2770                 return -ENODEV;
2771         }
2772 
2773         if (kvm_get_mode() == KVM_MODE_NONE) {
2774                 kvm_info("KVM disabled from command line\n");
2775                 return -ENODEV;
2776         }
2777 
2778         err = kvm_sys_reg_table_init();
2779         if (err) {
2780                 kvm_info("Error initializing system register tables");
2781                 return err;
2782         }
2783 
2784         in_hyp_mode = is_kernel_in_hyp_mode();
2785 
2786         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2787             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2788                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2789                          "Only trusted guests should be used on this system.\n");
2790 
2791         err = kvm_set_ipa_limit();
2792         if (err)
2793                 return err;
2794 
2795         err = kvm_arm_init_sve();
2796         if (err)
2797                 return err;
2798 
2799         err = kvm_arm_vmid_alloc_init();
2800         if (err) {
2801                 kvm_err("Failed to initialize VMID allocator.\n");
2802                 return err;
2803         }
2804 
2805         if (!in_hyp_mode) {
2806                 err = init_hyp_mode();
2807                 if (err)
2808                         goto out_err;
2809         }
2810 
2811         err = kvm_init_vector_slots();
2812         if (err) {
2813                 kvm_err("Cannot initialise vector slots\n");
2814                 goto out_hyp;
2815         }
2816 
2817         err = init_subsystems();
2818         if (err)
2819                 goto out_hyp;
2820 
2821         kvm_info("%s%sVHE mode initialized successfully\n",
2822                  in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2823                                      "Protected " : "Hyp "),
2824                  in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2825                                      "h" : "n"));
2826 
2827         /*
2828          * FIXME: Do something reasonable if kvm_init() fails after pKVM
2829          * hypervisor protection is finalized.
2830          */
2831         err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2832         if (err)
2833                 goto out_subs;
2834 
2835         /*
2836          * This should be called after initialization is done and failure isn't
2837          * possible anymore.
2838          */
2839         if (!in_hyp_mode)
2840                 finalize_init_hyp_mode();
2841 
2842         kvm_arm_initialised = true;
2843 
2844         return 0;
2845 
2846 out_subs:
2847         teardown_subsystems();
2848 out_hyp:
2849         if (!in_hyp_mode)
2850                 teardown_hyp_mode();
2851 out_err:
2852         kvm_arm_vmid_alloc_free();
2853         return err;
2854 }
2855 
2856 static int __init early_kvm_mode_cfg(char *arg)
2857 {
2858         if (!arg)
2859                 return -EINVAL;
2860 
2861         if (strcmp(arg, "none") == 0) {
2862                 kvm_mode = KVM_MODE_NONE;
2863                 return 0;
2864         }
2865 
2866         if (!is_hyp_mode_available()) {
2867                 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2868                 return 0;
2869         }
2870 
2871         if (strcmp(arg, "protected") == 0) {
2872                 if (!is_kernel_in_hyp_mode())
2873                         kvm_mode = KVM_MODE_PROTECTED;
2874                 else
2875                         pr_warn_once("Protected KVM not available with VHE\n");
2876 
2877                 return 0;
2878         }
2879 
2880         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2881                 kvm_mode = KVM_MODE_DEFAULT;
2882                 return 0;
2883         }
2884 
2885         if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2886                 kvm_mode = KVM_MODE_NV;
2887                 return 0;
2888         }
2889 
2890         return -EINVAL;
2891 }
2892 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2893 
2894 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2895 {
2896         if (!arg)
2897                 return -EINVAL;
2898 
2899         if (strcmp(arg, "trap") == 0) {
2900                 *p = KVM_WFX_TRAP;
2901                 return 0;
2902         }
2903 
2904         if (strcmp(arg, "notrap") == 0) {
2905                 *p = KVM_WFX_NOTRAP;
2906                 return 0;
2907         }
2908 
2909         return -EINVAL;
2910 }
2911 
2912 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2913 {
2914         return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2915 }
2916 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2917 
2918 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2919 {
2920         return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2921 }
2922 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2923 
2924 enum kvm_mode kvm_get_mode(void)
2925 {
2926         return kvm_mode;
2927 }
2928 
2929 module_init(kvm_arm_init);
2930 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php