1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/entry-kvm.h> 10 #include <linux/errno.h> 11 #include <linux/err.h> 12 #include <linux/kvm_host.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/vmalloc.h> 16 #include <linux/fs.h> 17 #include <linux/mman.h> 18 #include <linux/sched.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_irqfd.h> 21 #include <linux/irqbypass.h> 22 #include <linux/sched/stat.h> 23 #include <linux/psci.h> 24 #include <trace/events/kvm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_arm.h" 28 29 #include <linux/uaccess.h> 30 #include <asm/ptrace.h> 31 #include <asm/mman.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpufeature.h> 35 #include <asm/virt.h> 36 #include <asm/kvm_arm.h> 37 #include <asm/kvm_asm.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/kvm_mmu.h> 40 #include <asm/kvm_nested.h> 41 #include <asm/kvm_pkvm.h> 42 #include <asm/kvm_ptrauth.h> 43 #include <asm/sections.h> 44 45 #include <kvm/arm_hypercalls.h> 46 #include <kvm/arm_pmu.h> 47 #include <kvm/arm_psci.h> 48 49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 50 51 enum kvm_wfx_trap_policy { 52 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */ 53 KVM_WFX_NOTRAP, 54 KVM_WFX_TRAP, 55 }; 56 57 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 58 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK; 59 60 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 61 62 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 63 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 64 65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 66 67 static bool vgic_present, kvm_arm_initialised; 68 69 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized); 70 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 71 72 bool is_kvm_arm_initialised(void) 73 { 74 return kvm_arm_initialised; 75 } 76 77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 78 { 79 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 80 } 81 82 /* 83 * This functions as an allow-list of protected VM capabilities. 84 * Features not explicitly allowed by this function are denied. 85 */ 86 static bool pkvm_ext_allowed(struct kvm *kvm, long ext) 87 { 88 switch (ext) { 89 case KVM_CAP_IRQCHIP: 90 case KVM_CAP_ARM_PSCI: 91 case KVM_CAP_ARM_PSCI_0_2: 92 case KVM_CAP_NR_VCPUS: 93 case KVM_CAP_MAX_VCPUS: 94 case KVM_CAP_MAX_VCPU_ID: 95 case KVM_CAP_MSI_DEVID: 96 case KVM_CAP_ARM_VM_IPA_SIZE: 97 case KVM_CAP_ARM_PMU_V3: 98 case KVM_CAP_ARM_SVE: 99 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 100 case KVM_CAP_ARM_PTRAUTH_GENERIC: 101 return true; 102 default: 103 return false; 104 } 105 } 106 107 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 108 struct kvm_enable_cap *cap) 109 { 110 int r = -EINVAL; 111 112 if (cap->flags) 113 return -EINVAL; 114 115 if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap)) 116 return -EINVAL; 117 118 switch (cap->cap) { 119 case KVM_CAP_ARM_NISV_TO_USER: 120 r = 0; 121 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER, 122 &kvm->arch.flags); 123 break; 124 case KVM_CAP_ARM_MTE: 125 mutex_lock(&kvm->lock); 126 if (system_supports_mte() && !kvm->created_vcpus) { 127 r = 0; 128 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags); 129 } 130 mutex_unlock(&kvm->lock); 131 break; 132 case KVM_CAP_ARM_SYSTEM_SUSPEND: 133 r = 0; 134 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags); 135 break; 136 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 137 mutex_lock(&kvm->slots_lock); 138 /* 139 * To keep things simple, allow changing the chunk 140 * size only when no memory slots have been created. 141 */ 142 if (kvm_are_all_memslots_empty(kvm)) { 143 u64 new_cap = cap->args[0]; 144 145 if (!new_cap || kvm_is_block_size_supported(new_cap)) { 146 r = 0; 147 kvm->arch.mmu.split_page_chunk_size = new_cap; 148 } 149 } 150 mutex_unlock(&kvm->slots_lock); 151 break; 152 default: 153 break; 154 } 155 156 return r; 157 } 158 159 static int kvm_arm_default_max_vcpus(void) 160 { 161 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 162 } 163 164 /** 165 * kvm_arch_init_vm - initializes a VM data structure 166 * @kvm: pointer to the KVM struct 167 * @type: kvm device type 168 */ 169 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 170 { 171 int ret; 172 173 mutex_init(&kvm->arch.config_lock); 174 175 #ifdef CONFIG_LOCKDEP 176 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */ 177 mutex_lock(&kvm->lock); 178 mutex_lock(&kvm->arch.config_lock); 179 mutex_unlock(&kvm->arch.config_lock); 180 mutex_unlock(&kvm->lock); 181 #endif 182 183 kvm_init_nested(kvm); 184 185 ret = kvm_share_hyp(kvm, kvm + 1); 186 if (ret) 187 return ret; 188 189 ret = pkvm_init_host_vm(kvm); 190 if (ret) 191 goto err_unshare_kvm; 192 193 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) { 194 ret = -ENOMEM; 195 goto err_unshare_kvm; 196 } 197 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask); 198 199 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type); 200 if (ret) 201 goto err_free_cpumask; 202 203 kvm_vgic_early_init(kvm); 204 205 kvm_timer_init_vm(kvm); 206 207 /* The maximum number of VCPUs is limited by the host's GIC model */ 208 kvm->max_vcpus = kvm_arm_default_max_vcpus(); 209 210 kvm_arm_init_hypercalls(kvm); 211 212 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES); 213 214 return 0; 215 216 err_free_cpumask: 217 free_cpumask_var(kvm->arch.supported_cpus); 218 err_unshare_kvm: 219 kvm_unshare_hyp(kvm, kvm + 1); 220 return ret; 221 } 222 223 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 224 { 225 return VM_FAULT_SIGBUS; 226 } 227 228 void kvm_arch_create_vm_debugfs(struct kvm *kvm) 229 { 230 kvm_sys_regs_create_debugfs(kvm); 231 } 232 233 static void kvm_destroy_mpidr_data(struct kvm *kvm) 234 { 235 struct kvm_mpidr_data *data; 236 237 mutex_lock(&kvm->arch.config_lock); 238 239 data = rcu_dereference_protected(kvm->arch.mpidr_data, 240 lockdep_is_held(&kvm->arch.config_lock)); 241 if (data) { 242 rcu_assign_pointer(kvm->arch.mpidr_data, NULL); 243 synchronize_rcu(); 244 kfree(data); 245 } 246 247 mutex_unlock(&kvm->arch.config_lock); 248 } 249 250 /** 251 * kvm_arch_destroy_vm - destroy the VM data structure 252 * @kvm: pointer to the KVM struct 253 */ 254 void kvm_arch_destroy_vm(struct kvm *kvm) 255 { 256 bitmap_free(kvm->arch.pmu_filter); 257 free_cpumask_var(kvm->arch.supported_cpus); 258 259 kvm_vgic_destroy(kvm); 260 261 if (is_protected_kvm_enabled()) 262 pkvm_destroy_hyp_vm(kvm); 263 264 kvm_destroy_mpidr_data(kvm); 265 266 kfree(kvm->arch.sysreg_masks); 267 kvm_destroy_vcpus(kvm); 268 269 kvm_unshare_hyp(kvm, kvm + 1); 270 271 kvm_arm_teardown_hypercalls(kvm); 272 } 273 274 static bool kvm_has_full_ptr_auth(void) 275 { 276 bool apa, gpa, api, gpi, apa3, gpa3; 277 u64 isar1, isar2, val; 278 279 /* 280 * Check that: 281 * 282 * - both Address and Generic auth are implemented for a given 283 * algorithm (Q5, IMPDEF or Q3) 284 * - only a single algorithm is implemented. 285 */ 286 if (!system_has_full_ptr_auth()) 287 return false; 288 289 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 290 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 291 292 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1); 293 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1); 294 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP); 295 296 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1); 297 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1); 298 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP); 299 300 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2); 301 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2); 302 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP); 303 304 return (apa == gpa && api == gpi && apa3 == gpa3 && 305 (apa + api + apa3) == 1); 306 } 307 308 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 309 { 310 int r; 311 312 if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext)) 313 return 0; 314 315 switch (ext) { 316 case KVM_CAP_IRQCHIP: 317 r = vgic_present; 318 break; 319 case KVM_CAP_IOEVENTFD: 320 case KVM_CAP_USER_MEMORY: 321 case KVM_CAP_SYNC_MMU: 322 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 323 case KVM_CAP_ONE_REG: 324 case KVM_CAP_ARM_PSCI: 325 case KVM_CAP_ARM_PSCI_0_2: 326 case KVM_CAP_READONLY_MEM: 327 case KVM_CAP_MP_STATE: 328 case KVM_CAP_IMMEDIATE_EXIT: 329 case KVM_CAP_VCPU_EVENTS: 330 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 331 case KVM_CAP_ARM_NISV_TO_USER: 332 case KVM_CAP_ARM_INJECT_EXT_DABT: 333 case KVM_CAP_SET_GUEST_DEBUG: 334 case KVM_CAP_VCPU_ATTRIBUTES: 335 case KVM_CAP_PTP_KVM: 336 case KVM_CAP_ARM_SYSTEM_SUSPEND: 337 case KVM_CAP_IRQFD_RESAMPLE: 338 case KVM_CAP_COUNTER_OFFSET: 339 r = 1; 340 break; 341 case KVM_CAP_SET_GUEST_DEBUG2: 342 return KVM_GUESTDBG_VALID_MASK; 343 case KVM_CAP_ARM_SET_DEVICE_ADDR: 344 r = 1; 345 break; 346 case KVM_CAP_NR_VCPUS: 347 /* 348 * ARM64 treats KVM_CAP_NR_CPUS differently from all other 349 * architectures, as it does not always bound it to 350 * KVM_CAP_MAX_VCPUS. It should not matter much because 351 * this is just an advisory value. 352 */ 353 r = min_t(unsigned int, num_online_cpus(), 354 kvm_arm_default_max_vcpus()); 355 break; 356 case KVM_CAP_MAX_VCPUS: 357 case KVM_CAP_MAX_VCPU_ID: 358 if (kvm) 359 r = kvm->max_vcpus; 360 else 361 r = kvm_arm_default_max_vcpus(); 362 break; 363 case KVM_CAP_MSI_DEVID: 364 if (!kvm) 365 r = -EINVAL; 366 else 367 r = kvm->arch.vgic.msis_require_devid; 368 break; 369 case KVM_CAP_ARM_USER_IRQ: 370 /* 371 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 372 * (bump this number if adding more devices) 373 */ 374 r = 1; 375 break; 376 case KVM_CAP_ARM_MTE: 377 r = system_supports_mte(); 378 break; 379 case KVM_CAP_STEAL_TIME: 380 r = kvm_arm_pvtime_supported(); 381 break; 382 case KVM_CAP_ARM_EL1_32BIT: 383 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1); 384 break; 385 case KVM_CAP_GUEST_DEBUG_HW_BPS: 386 r = get_num_brps(); 387 break; 388 case KVM_CAP_GUEST_DEBUG_HW_WPS: 389 r = get_num_wrps(); 390 break; 391 case KVM_CAP_ARM_PMU_V3: 392 r = kvm_arm_support_pmu_v3(); 393 break; 394 case KVM_CAP_ARM_INJECT_SERROR_ESR: 395 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN); 396 break; 397 case KVM_CAP_ARM_VM_IPA_SIZE: 398 r = get_kvm_ipa_limit(); 399 break; 400 case KVM_CAP_ARM_SVE: 401 r = system_supports_sve(); 402 break; 403 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 404 case KVM_CAP_ARM_PTRAUTH_GENERIC: 405 r = kvm_has_full_ptr_auth(); 406 break; 407 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE: 408 if (kvm) 409 r = kvm->arch.mmu.split_page_chunk_size; 410 else 411 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 412 break; 413 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES: 414 r = kvm_supported_block_sizes(); 415 break; 416 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES: 417 r = BIT(0); 418 break; 419 default: 420 r = 0; 421 } 422 423 return r; 424 } 425 426 long kvm_arch_dev_ioctl(struct file *filp, 427 unsigned int ioctl, unsigned long arg) 428 { 429 return -EINVAL; 430 } 431 432 struct kvm *kvm_arch_alloc_vm(void) 433 { 434 size_t sz = sizeof(struct kvm); 435 436 if (!has_vhe()) 437 return kzalloc(sz, GFP_KERNEL_ACCOUNT); 438 439 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO); 440 } 441 442 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 443 { 444 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 445 return -EBUSY; 446 447 if (id >= kvm->max_vcpus) 448 return -EINVAL; 449 450 return 0; 451 } 452 453 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 454 { 455 int err; 456 457 spin_lock_init(&vcpu->arch.mp_state_lock); 458 459 #ifdef CONFIG_LOCKDEP 460 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */ 461 mutex_lock(&vcpu->mutex); 462 mutex_lock(&vcpu->kvm->arch.config_lock); 463 mutex_unlock(&vcpu->kvm->arch.config_lock); 464 mutex_unlock(&vcpu->mutex); 465 #endif 466 467 /* Force users to call KVM_ARM_VCPU_INIT */ 468 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 469 470 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 471 472 /* Set up the timer */ 473 kvm_timer_vcpu_init(vcpu); 474 475 kvm_pmu_vcpu_init(vcpu); 476 477 kvm_arm_reset_debug_ptr(vcpu); 478 479 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 480 481 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 482 483 /* 484 * This vCPU may have been created after mpidr_data was initialized. 485 * Throw out the pre-computed mappings if that is the case which forces 486 * KVM to fall back to iteratively searching the vCPUs. 487 */ 488 kvm_destroy_mpidr_data(vcpu->kvm); 489 490 err = kvm_vgic_vcpu_init(vcpu); 491 if (err) 492 return err; 493 494 return kvm_share_hyp(vcpu, vcpu + 1); 495 } 496 497 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 498 { 499 } 500 501 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 502 { 503 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm))) 504 static_branch_dec(&userspace_irqchip_in_use); 505 506 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 507 kvm_timer_vcpu_terminate(vcpu); 508 kvm_pmu_vcpu_destroy(vcpu); 509 kvm_vgic_vcpu_destroy(vcpu); 510 kvm_arm_vcpu_destroy(vcpu); 511 } 512 513 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 514 { 515 516 } 517 518 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 519 { 520 521 } 522 523 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu) 524 { 525 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) { 526 /* 527 * Either we're running an L2 guest, and the API/APK bits come 528 * from L1's HCR_EL2, or API/APK are both set. 529 */ 530 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) { 531 u64 val; 532 533 val = __vcpu_sys_reg(vcpu, HCR_EL2); 534 val &= (HCR_API | HCR_APK); 535 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); 536 vcpu->arch.hcr_el2 |= val; 537 } else { 538 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK); 539 } 540 541 /* 542 * Save the host keys if there is any chance for the guest 543 * to use pauth, as the entry code will reload the guest 544 * keys in that case. 545 */ 546 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) { 547 struct kvm_cpu_context *ctxt; 548 549 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt); 550 ptrauth_save_keys(ctxt); 551 } 552 } 553 } 554 555 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu) 556 { 557 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 558 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP; 559 560 return single_task_running() && 561 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || 562 vcpu->kvm->arch.vgic.nassgireq); 563 } 564 565 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu) 566 { 567 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK)) 568 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP; 569 570 return single_task_running(); 571 } 572 573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 574 { 575 struct kvm_s2_mmu *mmu; 576 int *last_ran; 577 578 if (vcpu_has_nv(vcpu)) 579 kvm_vcpu_load_hw_mmu(vcpu); 580 581 mmu = vcpu->arch.hw_mmu; 582 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 583 584 /* 585 * We guarantee that both TLBs and I-cache are private to each 586 * vcpu. If detecting that a vcpu from the same VM has 587 * previously run on the same physical CPU, call into the 588 * hypervisor code to nuke the relevant contexts. 589 * 590 * We might get preempted before the vCPU actually runs, but 591 * over-invalidation doesn't affect correctness. 592 */ 593 if (*last_ran != vcpu->vcpu_idx) { 594 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 595 *last_ran = vcpu->vcpu_idx; 596 } 597 598 vcpu->cpu = cpu; 599 600 kvm_vgic_load(vcpu); 601 kvm_timer_vcpu_load(vcpu); 602 if (has_vhe()) 603 kvm_vcpu_load_vhe(vcpu); 604 kvm_arch_vcpu_load_fp(vcpu); 605 kvm_vcpu_pmu_restore_guest(vcpu); 606 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 607 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 608 609 if (kvm_vcpu_should_clear_twe(vcpu)) 610 vcpu->arch.hcr_el2 &= ~HCR_TWE; 611 else 612 vcpu->arch.hcr_el2 |= HCR_TWE; 613 614 if (kvm_vcpu_should_clear_twi(vcpu)) 615 vcpu->arch.hcr_el2 &= ~HCR_TWI; 616 else 617 vcpu->arch.hcr_el2 |= HCR_TWI; 618 619 vcpu_set_pauth_traps(vcpu); 620 621 kvm_arch_vcpu_load_debug_state_flags(vcpu); 622 623 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus)) 624 vcpu_set_on_unsupported_cpu(vcpu); 625 } 626 627 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 628 { 629 kvm_arch_vcpu_put_debug_state_flags(vcpu); 630 kvm_arch_vcpu_put_fp(vcpu); 631 if (has_vhe()) 632 kvm_vcpu_put_vhe(vcpu); 633 kvm_timer_vcpu_put(vcpu); 634 kvm_vgic_put(vcpu); 635 kvm_vcpu_pmu_restore_host(vcpu); 636 if (vcpu_has_nv(vcpu)) 637 kvm_vcpu_put_hw_mmu(vcpu); 638 kvm_arm_vmid_clear_active(); 639 640 vcpu_clear_on_unsupported_cpu(vcpu); 641 vcpu->cpu = -1; 642 } 643 644 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 645 { 646 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); 647 kvm_make_request(KVM_REQ_SLEEP, vcpu); 648 kvm_vcpu_kick(vcpu); 649 } 650 651 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu) 652 { 653 spin_lock(&vcpu->arch.mp_state_lock); 654 __kvm_arm_vcpu_power_off(vcpu); 655 spin_unlock(&vcpu->arch.mp_state_lock); 656 } 657 658 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu) 659 { 660 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; 661 } 662 663 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu) 664 { 665 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED); 666 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 667 kvm_vcpu_kick(vcpu); 668 } 669 670 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu) 671 { 672 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED; 673 } 674 675 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 676 struct kvm_mp_state *mp_state) 677 { 678 *mp_state = READ_ONCE(vcpu->arch.mp_state); 679 680 return 0; 681 } 682 683 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 684 struct kvm_mp_state *mp_state) 685 { 686 int ret = 0; 687 688 spin_lock(&vcpu->arch.mp_state_lock); 689 690 switch (mp_state->mp_state) { 691 case KVM_MP_STATE_RUNNABLE: 692 WRITE_ONCE(vcpu->arch.mp_state, *mp_state); 693 break; 694 case KVM_MP_STATE_STOPPED: 695 __kvm_arm_vcpu_power_off(vcpu); 696 break; 697 case KVM_MP_STATE_SUSPENDED: 698 kvm_arm_vcpu_suspend(vcpu); 699 break; 700 default: 701 ret = -EINVAL; 702 } 703 704 spin_unlock(&vcpu->arch.mp_state_lock); 705 706 return ret; 707 } 708 709 /** 710 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 711 * @v: The VCPU pointer 712 * 713 * If the guest CPU is not waiting for interrupts or an interrupt line is 714 * asserted, the CPU is by definition runnable. 715 */ 716 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 717 { 718 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 719 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 720 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause); 721 } 722 723 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 724 { 725 return vcpu_mode_priv(vcpu); 726 } 727 728 #ifdef CONFIG_GUEST_PERF_EVENTS 729 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 730 { 731 return *vcpu_pc(vcpu); 732 } 733 #endif 734 735 static void kvm_init_mpidr_data(struct kvm *kvm) 736 { 737 struct kvm_mpidr_data *data = NULL; 738 unsigned long c, mask, nr_entries; 739 u64 aff_set = 0, aff_clr = ~0UL; 740 struct kvm_vcpu *vcpu; 741 742 mutex_lock(&kvm->arch.config_lock); 743 744 if (rcu_access_pointer(kvm->arch.mpidr_data) || 745 atomic_read(&kvm->online_vcpus) == 1) 746 goto out; 747 748 kvm_for_each_vcpu(c, vcpu, kvm) { 749 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 750 aff_set |= aff; 751 aff_clr &= aff; 752 } 753 754 /* 755 * A significant bit can be either 0 or 1, and will only appear in 756 * aff_set. Use aff_clr to weed out the useless stuff. 757 */ 758 mask = aff_set ^ aff_clr; 759 nr_entries = BIT_ULL(hweight_long(mask)); 760 761 /* 762 * Don't let userspace fool us. If we need more than a single page 763 * to describe the compressed MPIDR array, just fall back to the 764 * iterative method. Single vcpu VMs do not need this either. 765 */ 766 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE) 767 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries), 768 GFP_KERNEL_ACCOUNT); 769 770 if (!data) 771 goto out; 772 773 data->mpidr_mask = mask; 774 775 kvm_for_each_vcpu(c, vcpu, kvm) { 776 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu); 777 u16 index = kvm_mpidr_index(data, aff); 778 779 data->cmpidr_to_idx[index] = c; 780 } 781 782 rcu_assign_pointer(kvm->arch.mpidr_data, data); 783 out: 784 mutex_unlock(&kvm->arch.config_lock); 785 } 786 787 /* 788 * Handle both the initialisation that is being done when the vcpu is 789 * run for the first time, as well as the updates that must be 790 * performed each time we get a new thread dealing with this vcpu. 791 */ 792 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 793 { 794 struct kvm *kvm = vcpu->kvm; 795 int ret; 796 797 if (!kvm_vcpu_initialized(vcpu)) 798 return -ENOEXEC; 799 800 if (!kvm_arm_vcpu_is_finalized(vcpu)) 801 return -EPERM; 802 803 ret = kvm_arch_vcpu_run_map_fp(vcpu); 804 if (ret) 805 return ret; 806 807 if (likely(vcpu_has_run_once(vcpu))) 808 return 0; 809 810 kvm_init_mpidr_data(kvm); 811 812 kvm_arm_vcpu_init_debug(vcpu); 813 814 if (likely(irqchip_in_kernel(kvm))) { 815 /* 816 * Map the VGIC hardware resources before running a vcpu the 817 * first time on this VM. 818 */ 819 ret = kvm_vgic_map_resources(kvm); 820 if (ret) 821 return ret; 822 } 823 824 if (vcpu_has_nv(vcpu)) { 825 ret = kvm_init_nv_sysregs(vcpu->kvm); 826 if (ret) 827 return ret; 828 } 829 830 /* 831 * This needs to happen after NV has imposed its own restrictions on 832 * the feature set 833 */ 834 kvm_calculate_traps(vcpu); 835 836 ret = kvm_timer_enable(vcpu); 837 if (ret) 838 return ret; 839 840 ret = kvm_arm_pmu_v3_enable(vcpu); 841 if (ret) 842 return ret; 843 844 if (is_protected_kvm_enabled()) { 845 ret = pkvm_create_hyp_vm(kvm); 846 if (ret) 847 return ret; 848 } 849 850 if (!irqchip_in_kernel(kvm)) { 851 /* 852 * Tell the rest of the code that there are userspace irqchip 853 * VMs in the wild. 854 */ 855 static_branch_inc(&userspace_irqchip_in_use); 856 } 857 858 /* 859 * Initialize traps for protected VMs. 860 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once 861 * the code is in place for first run initialization at EL2. 862 */ 863 if (kvm_vm_is_protected(kvm)) 864 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu); 865 866 mutex_lock(&kvm->arch.config_lock); 867 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags); 868 mutex_unlock(&kvm->arch.config_lock); 869 870 return ret; 871 } 872 873 bool kvm_arch_intc_initialized(struct kvm *kvm) 874 { 875 return vgic_initialized(kvm); 876 } 877 878 void kvm_arm_halt_guest(struct kvm *kvm) 879 { 880 unsigned long i; 881 struct kvm_vcpu *vcpu; 882 883 kvm_for_each_vcpu(i, vcpu, kvm) 884 vcpu->arch.pause = true; 885 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 886 } 887 888 void kvm_arm_resume_guest(struct kvm *kvm) 889 { 890 unsigned long i; 891 struct kvm_vcpu *vcpu; 892 893 kvm_for_each_vcpu(i, vcpu, kvm) { 894 vcpu->arch.pause = false; 895 __kvm_vcpu_wake_up(vcpu); 896 } 897 } 898 899 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu) 900 { 901 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 902 903 rcuwait_wait_event(wait, 904 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), 905 TASK_INTERRUPTIBLE); 906 907 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) { 908 /* Awaken to handle a signal, request we sleep again later. */ 909 kvm_make_request(KVM_REQ_SLEEP, vcpu); 910 } 911 912 /* 913 * Make sure we will observe a potential reset request if we've 914 * observed a change to the power state. Pairs with the smp_wmb() in 915 * kvm_psci_vcpu_on(). 916 */ 917 smp_rmb(); 918 } 919 920 /** 921 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior 922 * @vcpu: The VCPU pointer 923 * 924 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until 925 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending 926 * on when a wake event arrives, e.g. there may already be a pending wake event. 927 */ 928 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu) 929 { 930 /* 931 * Sync back the state of the GIC CPU interface so that we have 932 * the latest PMR and group enables. This ensures that 933 * kvm_arch_vcpu_runnable has up-to-date data to decide whether 934 * we have pending interrupts, e.g. when determining if the 935 * vCPU should block. 936 * 937 * For the same reason, we want to tell GICv4 that we need 938 * doorbells to be signalled, should an interrupt become pending. 939 */ 940 preempt_disable(); 941 vcpu_set_flag(vcpu, IN_WFI); 942 kvm_vgic_put(vcpu); 943 preempt_enable(); 944 945 kvm_vcpu_halt(vcpu); 946 vcpu_clear_flag(vcpu, IN_WFIT); 947 948 preempt_disable(); 949 vcpu_clear_flag(vcpu, IN_WFI); 950 kvm_vgic_load(vcpu); 951 preempt_enable(); 952 } 953 954 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu) 955 { 956 if (!kvm_arm_vcpu_suspended(vcpu)) 957 return 1; 958 959 kvm_vcpu_wfi(vcpu); 960 961 /* 962 * The suspend state is sticky; we do not leave it until userspace 963 * explicitly marks the vCPU as runnable. Request that we suspend again 964 * later. 965 */ 966 kvm_make_request(KVM_REQ_SUSPEND, vcpu); 967 968 /* 969 * Check to make sure the vCPU is actually runnable. If so, exit to 970 * userspace informing it of the wakeup condition. 971 */ 972 if (kvm_arch_vcpu_runnable(vcpu)) { 973 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 974 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP; 975 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 976 return 0; 977 } 978 979 /* 980 * Otherwise, we were unblocked to process a different event, such as a 981 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to 982 * process the event. 983 */ 984 return 1; 985 } 986 987 /** 988 * check_vcpu_requests - check and handle pending vCPU requests 989 * @vcpu: the VCPU pointer 990 * 991 * Return: 1 if we should enter the guest 992 * 0 if we should exit to userspace 993 * < 0 if we should exit to userspace, where the return value indicates 994 * an error 995 */ 996 static int check_vcpu_requests(struct kvm_vcpu *vcpu) 997 { 998 if (kvm_request_pending(vcpu)) { 999 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 1000 kvm_vcpu_sleep(vcpu); 1001 1002 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1003 kvm_reset_vcpu(vcpu); 1004 1005 /* 1006 * Clear IRQ_PENDING requests that were made to guarantee 1007 * that a VCPU sees new virtual interrupts. 1008 */ 1009 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 1010 1011 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 1012 kvm_update_stolen_time(vcpu); 1013 1014 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 1015 /* The distributor enable bits were changed */ 1016 preempt_disable(); 1017 vgic_v4_put(vcpu); 1018 vgic_v4_load(vcpu); 1019 preempt_enable(); 1020 } 1021 1022 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 1023 kvm_vcpu_reload_pmu(vcpu); 1024 1025 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) 1026 kvm_vcpu_pmu_restore_guest(vcpu); 1027 1028 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu)) 1029 return kvm_vcpu_suspend(vcpu); 1030 1031 if (kvm_dirty_ring_check_request(vcpu)) 1032 return 0; 1033 } 1034 1035 return 1; 1036 } 1037 1038 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 1039 { 1040 if (likely(!vcpu_mode_is_32bit(vcpu))) 1041 return false; 1042 1043 if (vcpu_has_nv(vcpu)) 1044 return true; 1045 1046 return !kvm_supports_32bit_el0(); 1047 } 1048 1049 /** 1050 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest 1051 * @vcpu: The VCPU pointer 1052 * @ret: Pointer to write optional return code 1053 * 1054 * Returns: true if the VCPU needs to return to a preemptible + interruptible 1055 * and skip guest entry. 1056 * 1057 * This function disambiguates between two different types of exits: exits to a 1058 * preemptible + interruptible kernel context and exits to userspace. For an 1059 * exit to userspace, this function will write the return code to ret and return 1060 * true. For an exit to preemptible + interruptible kernel context (i.e. check 1061 * for pending work and re-enter), return true without writing to ret. 1062 */ 1063 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret) 1064 { 1065 struct kvm_run *run = vcpu->run; 1066 1067 /* 1068 * If we're using a userspace irqchip, then check if we need 1069 * to tell a userspace irqchip about timer or PMU level 1070 * changes and if so, exit to userspace (the actual level 1071 * state gets updated in kvm_timer_update_run and 1072 * kvm_pmu_update_run below). 1073 */ 1074 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 1075 if (kvm_timer_should_notify_user(vcpu) || 1076 kvm_pmu_should_notify_user(vcpu)) { 1077 *ret = -EINTR; 1078 run->exit_reason = KVM_EXIT_INTR; 1079 return true; 1080 } 1081 } 1082 1083 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) { 1084 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 1085 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED; 1086 run->fail_entry.cpu = smp_processor_id(); 1087 *ret = 0; 1088 return true; 1089 } 1090 1091 return kvm_request_pending(vcpu) || 1092 xfer_to_guest_mode_work_pending(); 1093 } 1094 1095 /* 1096 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 1097 * the vCPU is running. 1098 * 1099 * This must be noinstr as instrumentation may make use of RCU, and this is not 1100 * safe during the EQS. 1101 */ 1102 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 1103 { 1104 int ret; 1105 1106 guest_state_enter_irqoff(); 1107 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 1108 guest_state_exit_irqoff(); 1109 1110 return ret; 1111 } 1112 1113 /** 1114 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 1115 * @vcpu: The VCPU pointer 1116 * 1117 * This function is called through the VCPU_RUN ioctl called from user space. It 1118 * will execute VM code in a loop until the time slice for the process is used 1119 * or some emulation is needed from user space in which case the function will 1120 * return with return value 0 and with the kvm_run structure filled in with the 1121 * required data for the requested emulation. 1122 */ 1123 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 1124 { 1125 struct kvm_run *run = vcpu->run; 1126 int ret; 1127 1128 if (run->exit_reason == KVM_EXIT_MMIO) { 1129 ret = kvm_handle_mmio_return(vcpu); 1130 if (ret <= 0) 1131 return ret; 1132 } 1133 1134 vcpu_load(vcpu); 1135 1136 if (!vcpu->wants_to_run) { 1137 ret = -EINTR; 1138 goto out; 1139 } 1140 1141 kvm_sigset_activate(vcpu); 1142 1143 ret = 1; 1144 run->exit_reason = KVM_EXIT_UNKNOWN; 1145 run->flags = 0; 1146 while (ret > 0) { 1147 /* 1148 * Check conditions before entering the guest 1149 */ 1150 ret = xfer_to_guest_mode_handle_work(vcpu); 1151 if (!ret) 1152 ret = 1; 1153 1154 if (ret > 0) 1155 ret = check_vcpu_requests(vcpu); 1156 1157 /* 1158 * Preparing the interrupts to be injected also 1159 * involves poking the GIC, which must be done in a 1160 * non-preemptible context. 1161 */ 1162 preempt_disable(); 1163 1164 /* 1165 * The VMID allocator only tracks active VMIDs per 1166 * physical CPU, and therefore the VMID allocated may not be 1167 * preserved on VMID roll-over if the task was preempted, 1168 * making a thread's VMID inactive. So we need to call 1169 * kvm_arm_vmid_update() in non-premptible context. 1170 */ 1171 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) && 1172 has_vhe()) 1173 __load_stage2(vcpu->arch.hw_mmu, 1174 vcpu->arch.hw_mmu->arch); 1175 1176 kvm_pmu_flush_hwstate(vcpu); 1177 1178 local_irq_disable(); 1179 1180 kvm_vgic_flush_hwstate(vcpu); 1181 1182 kvm_pmu_update_vcpu_events(vcpu); 1183 1184 /* 1185 * Ensure we set mode to IN_GUEST_MODE after we disable 1186 * interrupts and before the final VCPU requests check. 1187 * See the comment in kvm_vcpu_exiting_guest_mode() and 1188 * Documentation/virt/kvm/vcpu-requests.rst 1189 */ 1190 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1191 1192 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) { 1193 vcpu->mode = OUTSIDE_GUEST_MODE; 1194 isb(); /* Ensure work in x_flush_hwstate is committed */ 1195 kvm_pmu_sync_hwstate(vcpu); 1196 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1197 kvm_timer_sync_user(vcpu); 1198 kvm_vgic_sync_hwstate(vcpu); 1199 local_irq_enable(); 1200 preempt_enable(); 1201 continue; 1202 } 1203 1204 kvm_arm_setup_debug(vcpu); 1205 kvm_arch_vcpu_ctxflush_fp(vcpu); 1206 1207 /************************************************************** 1208 * Enter the guest 1209 */ 1210 trace_kvm_entry(*vcpu_pc(vcpu)); 1211 guest_timing_enter_irqoff(); 1212 1213 ret = kvm_arm_vcpu_enter_exit(vcpu); 1214 1215 vcpu->mode = OUTSIDE_GUEST_MODE; 1216 vcpu->stat.exits++; 1217 /* 1218 * Back from guest 1219 *************************************************************/ 1220 1221 kvm_arm_clear_debug(vcpu); 1222 1223 /* 1224 * We must sync the PMU state before the vgic state so 1225 * that the vgic can properly sample the updated state of the 1226 * interrupt line. 1227 */ 1228 kvm_pmu_sync_hwstate(vcpu); 1229 1230 /* 1231 * Sync the vgic state before syncing the timer state because 1232 * the timer code needs to know if the virtual timer 1233 * interrupts are active. 1234 */ 1235 kvm_vgic_sync_hwstate(vcpu); 1236 1237 /* 1238 * Sync the timer hardware state before enabling interrupts as 1239 * we don't want vtimer interrupts to race with syncing the 1240 * timer virtual interrupt state. 1241 */ 1242 if (static_branch_unlikely(&userspace_irqchip_in_use)) 1243 kvm_timer_sync_user(vcpu); 1244 1245 kvm_arch_vcpu_ctxsync_fp(vcpu); 1246 1247 /* 1248 * We must ensure that any pending interrupts are taken before 1249 * we exit guest timing so that timer ticks are accounted as 1250 * guest time. Transiently unmask interrupts so that any 1251 * pending interrupts are taken. 1252 * 1253 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other 1254 * context synchronization event) is necessary to ensure that 1255 * pending interrupts are taken. 1256 */ 1257 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) { 1258 local_irq_enable(); 1259 isb(); 1260 local_irq_disable(); 1261 } 1262 1263 guest_timing_exit_irqoff(); 1264 1265 local_irq_enable(); 1266 1267 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 1268 1269 /* Exit types that need handling before we can be preempted */ 1270 handle_exit_early(vcpu, ret); 1271 1272 preempt_enable(); 1273 1274 /* 1275 * The ARMv8 architecture doesn't give the hypervisor 1276 * a mechanism to prevent a guest from dropping to AArch32 EL0 1277 * if implemented by the CPU. If we spot the guest in such 1278 * state and that we decided it wasn't supposed to do so (like 1279 * with the asymmetric AArch32 case), return to userspace with 1280 * a fatal error. 1281 */ 1282 if (vcpu_mode_is_bad_32bit(vcpu)) { 1283 /* 1284 * As we have caught the guest red-handed, decide that 1285 * it isn't fit for purpose anymore by making the vcpu 1286 * invalid. The VMM can try and fix it by issuing a 1287 * KVM_ARM_VCPU_INIT if it really wants to. 1288 */ 1289 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 1290 ret = ARM_EXCEPTION_IL; 1291 } 1292 1293 ret = handle_exit(vcpu, ret); 1294 } 1295 1296 /* Tell userspace about in-kernel device output levels */ 1297 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 1298 kvm_timer_update_run(vcpu); 1299 kvm_pmu_update_run(vcpu); 1300 } 1301 1302 kvm_sigset_deactivate(vcpu); 1303 1304 out: 1305 /* 1306 * In the unlikely event that we are returning to userspace 1307 * with pending exceptions or PC adjustment, commit these 1308 * adjustments in order to give userspace a consistent view of 1309 * the vcpu state. Note that this relies on __kvm_adjust_pc() 1310 * being preempt-safe on VHE. 1311 */ 1312 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) || 1313 vcpu_get_flag(vcpu, INCREMENT_PC))) 1314 kvm_call_hyp(__kvm_adjust_pc, vcpu); 1315 1316 vcpu_put(vcpu); 1317 return ret; 1318 } 1319 1320 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 1321 { 1322 int bit_index; 1323 bool set; 1324 unsigned long *hcr; 1325 1326 if (number == KVM_ARM_IRQ_CPU_IRQ) 1327 bit_index = __ffs(HCR_VI); 1328 else /* KVM_ARM_IRQ_CPU_FIQ */ 1329 bit_index = __ffs(HCR_VF); 1330 1331 hcr = vcpu_hcr(vcpu); 1332 if (level) 1333 set = test_and_set_bit(bit_index, hcr); 1334 else 1335 set = test_and_clear_bit(bit_index, hcr); 1336 1337 /* 1338 * If we didn't change anything, no need to wake up or kick other CPUs 1339 */ 1340 if (set == level) 1341 return 0; 1342 1343 /* 1344 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 1345 * trigger a world-switch round on the running physical CPU to set the 1346 * virtual IRQ/FIQ fields in the HCR appropriately. 1347 */ 1348 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1349 kvm_vcpu_kick(vcpu); 1350 1351 return 0; 1352 } 1353 1354 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1355 bool line_status) 1356 { 1357 u32 irq = irq_level->irq; 1358 unsigned int irq_type, vcpu_id, irq_num; 1359 struct kvm_vcpu *vcpu = NULL; 1360 bool level = irq_level->level; 1361 1362 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 1363 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 1364 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 1365 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 1366 1367 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level); 1368 1369 switch (irq_type) { 1370 case KVM_ARM_IRQ_TYPE_CPU: 1371 if (irqchip_in_kernel(kvm)) 1372 return -ENXIO; 1373 1374 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1375 if (!vcpu) 1376 return -EINVAL; 1377 1378 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1379 return -EINVAL; 1380 1381 return vcpu_interrupt_line(vcpu, irq_num, level); 1382 case KVM_ARM_IRQ_TYPE_PPI: 1383 if (!irqchip_in_kernel(kvm)) 1384 return -ENXIO; 1385 1386 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 1387 if (!vcpu) 1388 return -EINVAL; 1389 1390 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1391 return -EINVAL; 1392 1393 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL); 1394 case KVM_ARM_IRQ_TYPE_SPI: 1395 if (!irqchip_in_kernel(kvm)) 1396 return -ENXIO; 1397 1398 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1399 return -EINVAL; 1400 1401 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL); 1402 } 1403 1404 return -EINVAL; 1405 } 1406 1407 static unsigned long system_supported_vcpu_features(void) 1408 { 1409 unsigned long features = KVM_VCPU_VALID_FEATURES; 1410 1411 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1)) 1412 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features); 1413 1414 if (!kvm_arm_support_pmu_v3()) 1415 clear_bit(KVM_ARM_VCPU_PMU_V3, &features); 1416 1417 if (!system_supports_sve()) 1418 clear_bit(KVM_ARM_VCPU_SVE, &features); 1419 1420 if (!kvm_has_full_ptr_auth()) { 1421 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features); 1422 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features); 1423 } 1424 1425 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT)) 1426 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features); 1427 1428 return features; 1429 } 1430 1431 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu, 1432 const struct kvm_vcpu_init *init) 1433 { 1434 unsigned long features = init->features[0]; 1435 int i; 1436 1437 if (features & ~KVM_VCPU_VALID_FEATURES) 1438 return -ENOENT; 1439 1440 for (i = 1; i < ARRAY_SIZE(init->features); i++) { 1441 if (init->features[i]) 1442 return -ENOENT; 1443 } 1444 1445 if (features & ~system_supported_vcpu_features()) 1446 return -EINVAL; 1447 1448 /* 1449 * For now make sure that both address/generic pointer authentication 1450 * features are requested by the userspace together. 1451 */ 1452 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) != 1453 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features)) 1454 return -EINVAL; 1455 1456 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features)) 1457 return 0; 1458 1459 /* MTE is incompatible with AArch32 */ 1460 if (kvm_has_mte(vcpu->kvm)) 1461 return -EINVAL; 1462 1463 /* NV is incompatible with AArch32 */ 1464 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features)) 1465 return -EINVAL; 1466 1467 return 0; 1468 } 1469 1470 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, 1471 const struct kvm_vcpu_init *init) 1472 { 1473 unsigned long features = init->features[0]; 1474 1475 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features, 1476 KVM_VCPU_MAX_FEATURES); 1477 } 1478 1479 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu) 1480 { 1481 struct kvm *kvm = vcpu->kvm; 1482 int ret = 0; 1483 1484 /* 1485 * When the vCPU has a PMU, but no PMU is set for the guest 1486 * yet, set the default one. 1487 */ 1488 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu) 1489 ret = kvm_arm_set_default_pmu(kvm); 1490 1491 /* Prepare for nested if required */ 1492 if (!ret && vcpu_has_nv(vcpu)) 1493 ret = kvm_vcpu_init_nested(vcpu); 1494 1495 return ret; 1496 } 1497 1498 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1499 const struct kvm_vcpu_init *init) 1500 { 1501 unsigned long features = init->features[0]; 1502 struct kvm *kvm = vcpu->kvm; 1503 int ret = -EINVAL; 1504 1505 mutex_lock(&kvm->arch.config_lock); 1506 1507 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) && 1508 kvm_vcpu_init_changed(vcpu, init)) 1509 goto out_unlock; 1510 1511 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); 1512 1513 ret = kvm_setup_vcpu(vcpu); 1514 if (ret) 1515 goto out_unlock; 1516 1517 /* Now we know what it is, we can reset it. */ 1518 kvm_reset_vcpu(vcpu); 1519 1520 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags); 1521 vcpu_set_flag(vcpu, VCPU_INITIALIZED); 1522 ret = 0; 1523 out_unlock: 1524 mutex_unlock(&kvm->arch.config_lock); 1525 return ret; 1526 } 1527 1528 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1529 const struct kvm_vcpu_init *init) 1530 { 1531 int ret; 1532 1533 if (init->target != KVM_ARM_TARGET_GENERIC_V8 && 1534 init->target != kvm_target_cpu()) 1535 return -EINVAL; 1536 1537 ret = kvm_vcpu_init_check_features(vcpu, init); 1538 if (ret) 1539 return ret; 1540 1541 if (!kvm_vcpu_initialized(vcpu)) 1542 return __kvm_vcpu_set_target(vcpu, init); 1543 1544 if (kvm_vcpu_init_changed(vcpu, init)) 1545 return -EINVAL; 1546 1547 kvm_reset_vcpu(vcpu); 1548 return 0; 1549 } 1550 1551 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1552 struct kvm_vcpu_init *init) 1553 { 1554 bool power_off = false; 1555 int ret; 1556 1557 /* 1558 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid 1559 * reflecting it in the finalized feature set, thus limiting its scope 1560 * to a single KVM_ARM_VCPU_INIT call. 1561 */ 1562 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) { 1563 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF); 1564 power_off = true; 1565 } 1566 1567 ret = kvm_vcpu_set_target(vcpu, init); 1568 if (ret) 1569 return ret; 1570 1571 /* 1572 * Ensure a rebooted VM will fault in RAM pages and detect if the 1573 * guest MMU is turned off and flush the caches as needed. 1574 * 1575 * S2FWB enforces all memory accesses to RAM being cacheable, 1576 * ensuring that the data side is always coherent. We still 1577 * need to invalidate the I-cache though, as FWB does *not* 1578 * imply CTR_EL0.DIC. 1579 */ 1580 if (vcpu_has_run_once(vcpu)) { 1581 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1582 stage2_unmap_vm(vcpu->kvm); 1583 else 1584 icache_inval_all_pou(); 1585 } 1586 1587 vcpu_reset_hcr(vcpu); 1588 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu); 1589 1590 /* 1591 * Handle the "start in power-off" case. 1592 */ 1593 spin_lock(&vcpu->arch.mp_state_lock); 1594 1595 if (power_off) 1596 __kvm_arm_vcpu_power_off(vcpu); 1597 else 1598 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); 1599 1600 spin_unlock(&vcpu->arch.mp_state_lock); 1601 1602 return 0; 1603 } 1604 1605 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1606 struct kvm_device_attr *attr) 1607 { 1608 int ret = -ENXIO; 1609 1610 switch (attr->group) { 1611 default: 1612 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1613 break; 1614 } 1615 1616 return ret; 1617 } 1618 1619 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1620 struct kvm_device_attr *attr) 1621 { 1622 int ret = -ENXIO; 1623 1624 switch (attr->group) { 1625 default: 1626 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1627 break; 1628 } 1629 1630 return ret; 1631 } 1632 1633 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1634 struct kvm_device_attr *attr) 1635 { 1636 int ret = -ENXIO; 1637 1638 switch (attr->group) { 1639 default: 1640 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1641 break; 1642 } 1643 1644 return ret; 1645 } 1646 1647 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1648 struct kvm_vcpu_events *events) 1649 { 1650 memset(events, 0, sizeof(*events)); 1651 1652 return __kvm_arm_vcpu_get_events(vcpu, events); 1653 } 1654 1655 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1656 struct kvm_vcpu_events *events) 1657 { 1658 int i; 1659 1660 /* check whether the reserved field is zero */ 1661 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1662 if (events->reserved[i]) 1663 return -EINVAL; 1664 1665 /* check whether the pad field is zero */ 1666 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1667 if (events->exception.pad[i]) 1668 return -EINVAL; 1669 1670 return __kvm_arm_vcpu_set_events(vcpu, events); 1671 } 1672 1673 long kvm_arch_vcpu_ioctl(struct file *filp, 1674 unsigned int ioctl, unsigned long arg) 1675 { 1676 struct kvm_vcpu *vcpu = filp->private_data; 1677 void __user *argp = (void __user *)arg; 1678 struct kvm_device_attr attr; 1679 long r; 1680 1681 switch (ioctl) { 1682 case KVM_ARM_VCPU_INIT: { 1683 struct kvm_vcpu_init init; 1684 1685 r = -EFAULT; 1686 if (copy_from_user(&init, argp, sizeof(init))) 1687 break; 1688 1689 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1690 break; 1691 } 1692 case KVM_SET_ONE_REG: 1693 case KVM_GET_ONE_REG: { 1694 struct kvm_one_reg reg; 1695 1696 r = -ENOEXEC; 1697 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1698 break; 1699 1700 r = -EFAULT; 1701 if (copy_from_user(®, argp, sizeof(reg))) 1702 break; 1703 1704 /* 1705 * We could owe a reset due to PSCI. Handle the pending reset 1706 * here to ensure userspace register accesses are ordered after 1707 * the reset. 1708 */ 1709 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 1710 kvm_reset_vcpu(vcpu); 1711 1712 if (ioctl == KVM_SET_ONE_REG) 1713 r = kvm_arm_set_reg(vcpu, ®); 1714 else 1715 r = kvm_arm_get_reg(vcpu, ®); 1716 break; 1717 } 1718 case KVM_GET_REG_LIST: { 1719 struct kvm_reg_list __user *user_list = argp; 1720 struct kvm_reg_list reg_list; 1721 unsigned n; 1722 1723 r = -ENOEXEC; 1724 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1725 break; 1726 1727 r = -EPERM; 1728 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1729 break; 1730 1731 r = -EFAULT; 1732 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1733 break; 1734 n = reg_list.n; 1735 reg_list.n = kvm_arm_num_regs(vcpu); 1736 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1737 break; 1738 r = -E2BIG; 1739 if (n < reg_list.n) 1740 break; 1741 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1742 break; 1743 } 1744 case KVM_SET_DEVICE_ATTR: { 1745 r = -EFAULT; 1746 if (copy_from_user(&attr, argp, sizeof(attr))) 1747 break; 1748 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1749 break; 1750 } 1751 case KVM_GET_DEVICE_ATTR: { 1752 r = -EFAULT; 1753 if (copy_from_user(&attr, argp, sizeof(attr))) 1754 break; 1755 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1756 break; 1757 } 1758 case KVM_HAS_DEVICE_ATTR: { 1759 r = -EFAULT; 1760 if (copy_from_user(&attr, argp, sizeof(attr))) 1761 break; 1762 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1763 break; 1764 } 1765 case KVM_GET_VCPU_EVENTS: { 1766 struct kvm_vcpu_events events; 1767 1768 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1769 return -EINVAL; 1770 1771 if (copy_to_user(argp, &events, sizeof(events))) 1772 return -EFAULT; 1773 1774 return 0; 1775 } 1776 case KVM_SET_VCPU_EVENTS: { 1777 struct kvm_vcpu_events events; 1778 1779 if (copy_from_user(&events, argp, sizeof(events))) 1780 return -EFAULT; 1781 1782 return kvm_arm_vcpu_set_events(vcpu, &events); 1783 } 1784 case KVM_ARM_VCPU_FINALIZE: { 1785 int what; 1786 1787 if (!kvm_vcpu_initialized(vcpu)) 1788 return -ENOEXEC; 1789 1790 if (get_user(what, (const int __user *)argp)) 1791 return -EFAULT; 1792 1793 return kvm_arm_vcpu_finalize(vcpu, what); 1794 } 1795 default: 1796 r = -EINVAL; 1797 } 1798 1799 return r; 1800 } 1801 1802 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1803 { 1804 1805 } 1806 1807 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1808 struct kvm_arm_device_addr *dev_addr) 1809 { 1810 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) { 1811 case KVM_ARM_DEVICE_VGIC_V2: 1812 if (!vgic_present) 1813 return -ENXIO; 1814 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr); 1815 default: 1816 return -ENODEV; 1817 } 1818 } 1819 1820 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1821 { 1822 switch (attr->group) { 1823 case KVM_ARM_VM_SMCCC_CTRL: 1824 return kvm_vm_smccc_has_attr(kvm, attr); 1825 default: 1826 return -ENXIO; 1827 } 1828 } 1829 1830 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1831 { 1832 switch (attr->group) { 1833 case KVM_ARM_VM_SMCCC_CTRL: 1834 return kvm_vm_smccc_set_attr(kvm, attr); 1835 default: 1836 return -ENXIO; 1837 } 1838 } 1839 1840 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1841 { 1842 struct kvm *kvm = filp->private_data; 1843 void __user *argp = (void __user *)arg; 1844 struct kvm_device_attr attr; 1845 1846 switch (ioctl) { 1847 case KVM_CREATE_IRQCHIP: { 1848 int ret; 1849 if (!vgic_present) 1850 return -ENXIO; 1851 mutex_lock(&kvm->lock); 1852 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1853 mutex_unlock(&kvm->lock); 1854 return ret; 1855 } 1856 case KVM_ARM_SET_DEVICE_ADDR: { 1857 struct kvm_arm_device_addr dev_addr; 1858 1859 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1860 return -EFAULT; 1861 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1862 } 1863 case KVM_ARM_PREFERRED_TARGET: { 1864 struct kvm_vcpu_init init = { 1865 .target = KVM_ARM_TARGET_GENERIC_V8, 1866 }; 1867 1868 if (copy_to_user(argp, &init, sizeof(init))) 1869 return -EFAULT; 1870 1871 return 0; 1872 } 1873 case KVM_ARM_MTE_COPY_TAGS: { 1874 struct kvm_arm_copy_mte_tags copy_tags; 1875 1876 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1877 return -EFAULT; 1878 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1879 } 1880 case KVM_ARM_SET_COUNTER_OFFSET: { 1881 struct kvm_arm_counter_offset offset; 1882 1883 if (copy_from_user(&offset, argp, sizeof(offset))) 1884 return -EFAULT; 1885 return kvm_vm_ioctl_set_counter_offset(kvm, &offset); 1886 } 1887 case KVM_HAS_DEVICE_ATTR: { 1888 if (copy_from_user(&attr, argp, sizeof(attr))) 1889 return -EFAULT; 1890 1891 return kvm_vm_has_attr(kvm, &attr); 1892 } 1893 case KVM_SET_DEVICE_ATTR: { 1894 if (copy_from_user(&attr, argp, sizeof(attr))) 1895 return -EFAULT; 1896 1897 return kvm_vm_set_attr(kvm, &attr); 1898 } 1899 case KVM_ARM_GET_REG_WRITABLE_MASKS: { 1900 struct reg_mask_range range; 1901 1902 if (copy_from_user(&range, argp, sizeof(range))) 1903 return -EFAULT; 1904 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range); 1905 } 1906 default: 1907 return -EINVAL; 1908 } 1909 } 1910 1911 /* unlocks vcpus from @vcpu_lock_idx and smaller */ 1912 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) 1913 { 1914 struct kvm_vcpu *tmp_vcpu; 1915 1916 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { 1917 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); 1918 mutex_unlock(&tmp_vcpu->mutex); 1919 } 1920 } 1921 1922 void unlock_all_vcpus(struct kvm *kvm) 1923 { 1924 lockdep_assert_held(&kvm->lock); 1925 1926 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); 1927 } 1928 1929 /* Returns true if all vcpus were locked, false otherwise */ 1930 bool lock_all_vcpus(struct kvm *kvm) 1931 { 1932 struct kvm_vcpu *tmp_vcpu; 1933 unsigned long c; 1934 1935 lockdep_assert_held(&kvm->lock); 1936 1937 /* 1938 * Any time a vcpu is in an ioctl (including running), the 1939 * core KVM code tries to grab the vcpu->mutex. 1940 * 1941 * By grabbing the vcpu->mutex of all VCPUs we ensure that no 1942 * other VCPUs can fiddle with the state while we access it. 1943 */ 1944 kvm_for_each_vcpu(c, tmp_vcpu, kvm) { 1945 if (!mutex_trylock(&tmp_vcpu->mutex)) { 1946 unlock_vcpus(kvm, c - 1); 1947 return false; 1948 } 1949 } 1950 1951 return true; 1952 } 1953 1954 static unsigned long nvhe_percpu_size(void) 1955 { 1956 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1957 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1958 } 1959 1960 static unsigned long nvhe_percpu_order(void) 1961 { 1962 unsigned long size = nvhe_percpu_size(); 1963 1964 return size ? get_order(size) : 0; 1965 } 1966 1967 static size_t pkvm_host_sve_state_order(void) 1968 { 1969 return get_order(pkvm_host_sve_state_size()); 1970 } 1971 1972 /* A lookup table holding the hypervisor VA for each vector slot */ 1973 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1974 1975 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1976 { 1977 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1978 } 1979 1980 static int kvm_init_vector_slots(void) 1981 { 1982 int err; 1983 void *base; 1984 1985 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1986 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1987 1988 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1989 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1990 1991 if (kvm_system_needs_idmapped_vectors() && 1992 !is_protected_kvm_enabled()) { 1993 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1994 __BP_HARDEN_HYP_VECS_SZ, &base); 1995 if (err) 1996 return err; 1997 } 1998 1999 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 2000 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 2001 return 0; 2002 } 2003 2004 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits) 2005 { 2006 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2007 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2008 unsigned long tcr; 2009 2010 /* 2011 * Calculate the raw per-cpu offset without a translation from the 2012 * kernel's mapping to the linear mapping, and store it in tpidr_el2 2013 * so that we can use adr_l to access per-cpu variables in EL2. 2014 * Also drop the KASAN tag which gets in the way... 2015 */ 2016 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 2017 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 2018 2019 params->mair_el2 = read_sysreg(mair_el1); 2020 2021 tcr = read_sysreg(tcr_el1); 2022 if (cpus_have_final_cap(ARM64_KVM_HVHE)) { 2023 tcr |= TCR_EPD1_MASK; 2024 } else { 2025 tcr &= TCR_EL2_MASK; 2026 tcr |= TCR_EL2_RES1; 2027 } 2028 tcr &= ~TCR_T0SZ_MASK; 2029 tcr |= TCR_T0SZ(hyp_va_bits); 2030 tcr &= ~TCR_EL2_PS_MASK; 2031 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0)); 2032 if (kvm_lpa2_is_enabled()) 2033 tcr |= TCR_EL2_DS; 2034 params->tcr_el2 = tcr; 2035 2036 params->pgd_pa = kvm_mmu_get_httbr(); 2037 if (is_protected_kvm_enabled()) 2038 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 2039 else 2040 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 2041 if (cpus_have_final_cap(ARM64_KVM_HVHE)) 2042 params->hcr_el2 |= HCR_E2H; 2043 params->vttbr = params->vtcr = 0; 2044 2045 /* 2046 * Flush the init params from the data cache because the struct will 2047 * be read while the MMU is off. 2048 */ 2049 kvm_flush_dcache_to_poc(params, sizeof(*params)); 2050 } 2051 2052 static void hyp_install_host_vector(void) 2053 { 2054 struct kvm_nvhe_init_params *params; 2055 struct arm_smccc_res res; 2056 2057 /* Switch from the HYP stub to our own HYP init vector */ 2058 __hyp_set_vectors(kvm_get_idmap_vector()); 2059 2060 /* 2061 * Call initialization code, and switch to the full blown HYP code. 2062 * If the cpucaps haven't been finalized yet, something has gone very 2063 * wrong, and hyp will crash and burn when it uses any 2064 * cpus_have_*_cap() wrapper. 2065 */ 2066 BUG_ON(!system_capabilities_finalized()); 2067 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 2068 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 2069 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 2070 } 2071 2072 static void cpu_init_hyp_mode(void) 2073 { 2074 hyp_install_host_vector(); 2075 2076 /* 2077 * Disabling SSBD on a non-VHE system requires us to enable SSBS 2078 * at EL2. 2079 */ 2080 if (this_cpu_has_cap(ARM64_SSBS) && 2081 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 2082 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 2083 } 2084 } 2085 2086 static void cpu_hyp_reset(void) 2087 { 2088 if (!is_kernel_in_hyp_mode()) 2089 __hyp_reset_vectors(); 2090 } 2091 2092 /* 2093 * EL2 vectors can be mapped and rerouted in a number of ways, 2094 * depending on the kernel configuration and CPU present: 2095 * 2096 * - If the CPU is affected by Spectre-v2, the hardening sequence is 2097 * placed in one of the vector slots, which is executed before jumping 2098 * to the real vectors. 2099 * 2100 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 2101 * containing the hardening sequence is mapped next to the idmap page, 2102 * and executed before jumping to the real vectors. 2103 * 2104 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 2105 * empty slot is selected, mapped next to the idmap page, and 2106 * executed before jumping to the real vectors. 2107 * 2108 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 2109 * VHE, as we don't have hypervisor-specific mappings. If the system 2110 * is VHE and yet selects this capability, it will be ignored. 2111 */ 2112 static void cpu_set_hyp_vector(void) 2113 { 2114 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 2115 void *vector = hyp_spectre_vector_selector[data->slot]; 2116 2117 if (!is_protected_kvm_enabled()) 2118 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 2119 else 2120 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 2121 } 2122 2123 static void cpu_hyp_init_context(void) 2124 { 2125 kvm_init_host_cpu_context(host_data_ptr(host_ctxt)); 2126 2127 if (!is_kernel_in_hyp_mode()) 2128 cpu_init_hyp_mode(); 2129 } 2130 2131 static void cpu_hyp_init_features(void) 2132 { 2133 cpu_set_hyp_vector(); 2134 kvm_arm_init_debug(); 2135 2136 if (is_kernel_in_hyp_mode()) 2137 kvm_timer_init_vhe(); 2138 2139 if (vgic_present) 2140 kvm_vgic_init_cpu_hardware(); 2141 } 2142 2143 static void cpu_hyp_reinit(void) 2144 { 2145 cpu_hyp_reset(); 2146 cpu_hyp_init_context(); 2147 cpu_hyp_init_features(); 2148 } 2149 2150 static void cpu_hyp_init(void *discard) 2151 { 2152 if (!__this_cpu_read(kvm_hyp_initialized)) { 2153 cpu_hyp_reinit(); 2154 __this_cpu_write(kvm_hyp_initialized, 1); 2155 } 2156 } 2157 2158 static void cpu_hyp_uninit(void *discard) 2159 { 2160 if (__this_cpu_read(kvm_hyp_initialized)) { 2161 cpu_hyp_reset(); 2162 __this_cpu_write(kvm_hyp_initialized, 0); 2163 } 2164 } 2165 2166 int kvm_arch_hardware_enable(void) 2167 { 2168 /* 2169 * Most calls to this function are made with migration 2170 * disabled, but not with preemption disabled. The former is 2171 * enough to ensure correctness, but most of the helpers 2172 * expect the later and will throw a tantrum otherwise. 2173 */ 2174 preempt_disable(); 2175 2176 cpu_hyp_init(NULL); 2177 2178 kvm_vgic_cpu_up(); 2179 kvm_timer_cpu_up(); 2180 2181 preempt_enable(); 2182 2183 return 0; 2184 } 2185 2186 void kvm_arch_hardware_disable(void) 2187 { 2188 kvm_timer_cpu_down(); 2189 kvm_vgic_cpu_down(); 2190 2191 if (!is_protected_kvm_enabled()) 2192 cpu_hyp_uninit(NULL); 2193 } 2194 2195 #ifdef CONFIG_CPU_PM 2196 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 2197 unsigned long cmd, 2198 void *v) 2199 { 2200 /* 2201 * kvm_hyp_initialized is left with its old value over 2202 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 2203 * re-enable hyp. 2204 */ 2205 switch (cmd) { 2206 case CPU_PM_ENTER: 2207 if (__this_cpu_read(kvm_hyp_initialized)) 2208 /* 2209 * don't update kvm_hyp_initialized here 2210 * so that the hyp will be re-enabled 2211 * when we resume. See below. 2212 */ 2213 cpu_hyp_reset(); 2214 2215 return NOTIFY_OK; 2216 case CPU_PM_ENTER_FAILED: 2217 case CPU_PM_EXIT: 2218 if (__this_cpu_read(kvm_hyp_initialized)) 2219 /* The hyp was enabled before suspend. */ 2220 cpu_hyp_reinit(); 2221 2222 return NOTIFY_OK; 2223 2224 default: 2225 return NOTIFY_DONE; 2226 } 2227 } 2228 2229 static struct notifier_block hyp_init_cpu_pm_nb = { 2230 .notifier_call = hyp_init_cpu_pm_notifier, 2231 }; 2232 2233 static void __init hyp_cpu_pm_init(void) 2234 { 2235 if (!is_protected_kvm_enabled()) 2236 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 2237 } 2238 static void __init hyp_cpu_pm_exit(void) 2239 { 2240 if (!is_protected_kvm_enabled()) 2241 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 2242 } 2243 #else 2244 static inline void __init hyp_cpu_pm_init(void) 2245 { 2246 } 2247 static inline void __init hyp_cpu_pm_exit(void) 2248 { 2249 } 2250 #endif 2251 2252 static void __init init_cpu_logical_map(void) 2253 { 2254 unsigned int cpu; 2255 2256 /* 2257 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 2258 * Only copy the set of online CPUs whose features have been checked 2259 * against the finalized system capabilities. The hypervisor will not 2260 * allow any other CPUs from the `possible` set to boot. 2261 */ 2262 for_each_online_cpu(cpu) 2263 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 2264 } 2265 2266 #define init_psci_0_1_impl_state(config, what) \ 2267 config.psci_0_1_ ## what ## _implemented = psci_ops.what 2268 2269 static bool __init init_psci_relay(void) 2270 { 2271 /* 2272 * If PSCI has not been initialized, protected KVM cannot install 2273 * itself on newly booted CPUs. 2274 */ 2275 if (!psci_ops.get_version) { 2276 kvm_err("Cannot initialize protected mode without PSCI\n"); 2277 return false; 2278 } 2279 2280 kvm_host_psci_config.version = psci_ops.get_version(); 2281 kvm_host_psci_config.smccc_version = arm_smccc_get_version(); 2282 2283 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 2284 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 2285 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 2286 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 2287 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 2288 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 2289 } 2290 return true; 2291 } 2292 2293 static int __init init_subsystems(void) 2294 { 2295 int err = 0; 2296 2297 /* 2298 * Enable hardware so that subsystem initialisation can access EL2. 2299 */ 2300 on_each_cpu(cpu_hyp_init, NULL, 1); 2301 2302 /* 2303 * Register CPU lower-power notifier 2304 */ 2305 hyp_cpu_pm_init(); 2306 2307 /* 2308 * Init HYP view of VGIC 2309 */ 2310 err = kvm_vgic_hyp_init(); 2311 switch (err) { 2312 case 0: 2313 vgic_present = true; 2314 break; 2315 case -ENODEV: 2316 case -ENXIO: 2317 vgic_present = false; 2318 err = 0; 2319 break; 2320 default: 2321 goto out; 2322 } 2323 2324 /* 2325 * Init HYP architected timer support 2326 */ 2327 err = kvm_timer_hyp_init(vgic_present); 2328 if (err) 2329 goto out; 2330 2331 kvm_register_perf_callbacks(NULL); 2332 2333 out: 2334 if (err) 2335 hyp_cpu_pm_exit(); 2336 2337 if (err || !is_protected_kvm_enabled()) 2338 on_each_cpu(cpu_hyp_uninit, NULL, 1); 2339 2340 return err; 2341 } 2342 2343 static void __init teardown_subsystems(void) 2344 { 2345 kvm_unregister_perf_callbacks(); 2346 hyp_cpu_pm_exit(); 2347 } 2348 2349 static void __init teardown_hyp_mode(void) 2350 { 2351 bool free_sve = system_supports_sve() && is_protected_kvm_enabled(); 2352 int cpu; 2353 2354 free_hyp_pgds(); 2355 for_each_possible_cpu(cpu) { 2356 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 2357 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order()); 2358 2359 if (free_sve) { 2360 struct cpu_sve_state *sve_state; 2361 2362 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2363 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order()); 2364 } 2365 } 2366 } 2367 2368 static int __init do_pkvm_init(u32 hyp_va_bits) 2369 { 2370 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)); 2371 int ret; 2372 2373 preempt_disable(); 2374 cpu_hyp_init_context(); 2375 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 2376 num_possible_cpus(), kern_hyp_va(per_cpu_base), 2377 hyp_va_bits); 2378 cpu_hyp_init_features(); 2379 2380 /* 2381 * The stub hypercalls are now disabled, so set our local flag to 2382 * prevent a later re-init attempt in kvm_arch_hardware_enable(). 2383 */ 2384 __this_cpu_write(kvm_hyp_initialized, 1); 2385 preempt_enable(); 2386 2387 return ret; 2388 } 2389 2390 static u64 get_hyp_id_aa64pfr0_el1(void) 2391 { 2392 /* 2393 * Track whether the system isn't affected by spectre/meltdown in the 2394 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs. 2395 * Although this is per-CPU, we make it global for simplicity, e.g., not 2396 * to have to worry about vcpu migration. 2397 * 2398 * Unlike for non-protected VMs, userspace cannot override this for 2399 * protected VMs. 2400 */ 2401 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 2402 2403 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 2404 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 2405 2406 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), 2407 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED); 2408 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), 2409 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED); 2410 2411 return val; 2412 } 2413 2414 static void kvm_hyp_init_symbols(void) 2415 { 2416 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1(); 2417 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); 2418 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1); 2419 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1); 2420 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1); 2421 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 2422 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2423 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); 2424 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1); 2425 kvm_nvhe_sym(__icache_flags) = __icache_flags; 2426 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits; 2427 } 2428 2429 static int __init kvm_hyp_init_protection(u32 hyp_va_bits) 2430 { 2431 void *addr = phys_to_virt(hyp_mem_base); 2432 int ret; 2433 2434 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 2435 if (ret) 2436 return ret; 2437 2438 ret = do_pkvm_init(hyp_va_bits); 2439 if (ret) 2440 return ret; 2441 2442 free_hyp_pgds(); 2443 2444 return 0; 2445 } 2446 2447 static int init_pkvm_host_sve_state(void) 2448 { 2449 int cpu; 2450 2451 if (!system_supports_sve()) 2452 return 0; 2453 2454 /* Allocate pages for host sve state in protected mode. */ 2455 for_each_possible_cpu(cpu) { 2456 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order()); 2457 2458 if (!page) 2459 return -ENOMEM; 2460 2461 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page); 2462 } 2463 2464 /* 2465 * Don't map the pages in hyp since these are only used in protected 2466 * mode, which will (re)create its own mapping when initialized. 2467 */ 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * Finalizes the initialization of hyp mode, once everything else is initialized 2474 * and the initialziation process cannot fail. 2475 */ 2476 static void finalize_init_hyp_mode(void) 2477 { 2478 int cpu; 2479 2480 if (system_supports_sve() && is_protected_kvm_enabled()) { 2481 for_each_possible_cpu(cpu) { 2482 struct cpu_sve_state *sve_state; 2483 2484 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state; 2485 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = 2486 kern_hyp_va(sve_state); 2487 } 2488 } else { 2489 for_each_possible_cpu(cpu) { 2490 struct user_fpsimd_state *fpsimd_state; 2491 2492 fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs; 2493 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state = 2494 kern_hyp_va(fpsimd_state); 2495 } 2496 } 2497 } 2498 2499 static void pkvm_hyp_init_ptrauth(void) 2500 { 2501 struct kvm_cpu_context *hyp_ctxt; 2502 int cpu; 2503 2504 for_each_possible_cpu(cpu) { 2505 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu); 2506 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long(); 2507 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long(); 2508 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long(); 2509 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long(); 2510 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long(); 2511 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long(); 2512 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long(); 2513 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long(); 2514 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long(); 2515 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long(); 2516 } 2517 } 2518 2519 /* Inits Hyp-mode on all online CPUs */ 2520 static int __init init_hyp_mode(void) 2521 { 2522 u32 hyp_va_bits; 2523 int cpu; 2524 int err = -ENOMEM; 2525 2526 /* 2527 * The protected Hyp-mode cannot be initialized if the memory pool 2528 * allocation has failed. 2529 */ 2530 if (is_protected_kvm_enabled() && !hyp_mem_base) 2531 goto out_err; 2532 2533 /* 2534 * Allocate Hyp PGD and setup Hyp identity mapping 2535 */ 2536 err = kvm_mmu_init(&hyp_va_bits); 2537 if (err) 2538 goto out_err; 2539 2540 /* 2541 * Allocate stack pages for Hypervisor-mode 2542 */ 2543 for_each_possible_cpu(cpu) { 2544 unsigned long stack_page; 2545 2546 stack_page = __get_free_page(GFP_KERNEL); 2547 if (!stack_page) { 2548 err = -ENOMEM; 2549 goto out_err; 2550 } 2551 2552 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 2553 } 2554 2555 /* 2556 * Allocate and initialize pages for Hypervisor-mode percpu regions. 2557 */ 2558 for_each_possible_cpu(cpu) { 2559 struct page *page; 2560 void *page_addr; 2561 2562 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 2563 if (!page) { 2564 err = -ENOMEM; 2565 goto out_err; 2566 } 2567 2568 page_addr = page_address(page); 2569 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 2570 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr; 2571 } 2572 2573 /* 2574 * Map the Hyp-code called directly from the host 2575 */ 2576 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 2577 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 2578 if (err) { 2579 kvm_err("Cannot map world-switch code\n"); 2580 goto out_err; 2581 } 2582 2583 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 2584 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 2585 if (err) { 2586 kvm_err("Cannot map .hyp.rodata section\n"); 2587 goto out_err; 2588 } 2589 2590 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 2591 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 2592 if (err) { 2593 kvm_err("Cannot map rodata section\n"); 2594 goto out_err; 2595 } 2596 2597 /* 2598 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 2599 * section thanks to an assertion in the linker script. Map it RW and 2600 * the rest of .bss RO. 2601 */ 2602 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 2603 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 2604 if (err) { 2605 kvm_err("Cannot map hyp bss section: %d\n", err); 2606 goto out_err; 2607 } 2608 2609 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 2610 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 2611 if (err) { 2612 kvm_err("Cannot map bss section\n"); 2613 goto out_err; 2614 } 2615 2616 /* 2617 * Map the Hyp stack pages 2618 */ 2619 for_each_possible_cpu(cpu) { 2620 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 2621 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 2622 2623 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va); 2624 if (err) { 2625 kvm_err("Cannot map hyp stack\n"); 2626 goto out_err; 2627 } 2628 2629 /* 2630 * Save the stack PA in nvhe_init_params. This will be needed 2631 * to recreate the stack mapping in protected nVHE mode. 2632 * __hyp_pa() won't do the right thing there, since the stack 2633 * has been mapped in the flexible private VA space. 2634 */ 2635 params->stack_pa = __pa(stack_page); 2636 } 2637 2638 for_each_possible_cpu(cpu) { 2639 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu]; 2640 char *percpu_end = percpu_begin + nvhe_percpu_size(); 2641 2642 /* Map Hyp percpu pages */ 2643 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 2644 if (err) { 2645 kvm_err("Cannot map hyp percpu region\n"); 2646 goto out_err; 2647 } 2648 2649 /* Prepare the CPU initialization parameters */ 2650 cpu_prepare_hyp_mode(cpu, hyp_va_bits); 2651 } 2652 2653 kvm_hyp_init_symbols(); 2654 2655 if (is_protected_kvm_enabled()) { 2656 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && 2657 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH)) 2658 pkvm_hyp_init_ptrauth(); 2659 2660 init_cpu_logical_map(); 2661 2662 if (!init_psci_relay()) { 2663 err = -ENODEV; 2664 goto out_err; 2665 } 2666 2667 err = init_pkvm_host_sve_state(); 2668 if (err) 2669 goto out_err; 2670 2671 err = kvm_hyp_init_protection(hyp_va_bits); 2672 if (err) { 2673 kvm_err("Failed to init hyp memory protection\n"); 2674 goto out_err; 2675 } 2676 } 2677 2678 return 0; 2679 2680 out_err: 2681 teardown_hyp_mode(); 2682 kvm_err("error initializing Hyp mode: %d\n", err); 2683 return err; 2684 } 2685 2686 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2687 { 2688 struct kvm_vcpu *vcpu = NULL; 2689 struct kvm_mpidr_data *data; 2690 unsigned long i; 2691 2692 mpidr &= MPIDR_HWID_BITMASK; 2693 2694 rcu_read_lock(); 2695 data = rcu_dereference(kvm->arch.mpidr_data); 2696 2697 if (data) { 2698 u16 idx = kvm_mpidr_index(data, mpidr); 2699 2700 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]); 2701 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu)) 2702 vcpu = NULL; 2703 } 2704 2705 rcu_read_unlock(); 2706 2707 if (vcpu) 2708 return vcpu; 2709 2710 kvm_for_each_vcpu(i, vcpu, kvm) { 2711 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2712 return vcpu; 2713 } 2714 return NULL; 2715 } 2716 2717 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 2718 { 2719 return irqchip_in_kernel(kvm); 2720 } 2721 2722 bool kvm_arch_has_irq_bypass(void) 2723 { 2724 return true; 2725 } 2726 2727 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2728 struct irq_bypass_producer *prod) 2729 { 2730 struct kvm_kernel_irqfd *irqfd = 2731 container_of(cons, struct kvm_kernel_irqfd, consumer); 2732 2733 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2734 &irqfd->irq_entry); 2735 } 2736 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2737 struct irq_bypass_producer *prod) 2738 { 2739 struct kvm_kernel_irqfd *irqfd = 2740 container_of(cons, struct kvm_kernel_irqfd, consumer); 2741 2742 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2743 &irqfd->irq_entry); 2744 } 2745 2746 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2747 { 2748 struct kvm_kernel_irqfd *irqfd = 2749 container_of(cons, struct kvm_kernel_irqfd, consumer); 2750 2751 kvm_arm_halt_guest(irqfd->kvm); 2752 } 2753 2754 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2755 { 2756 struct kvm_kernel_irqfd *irqfd = 2757 container_of(cons, struct kvm_kernel_irqfd, consumer); 2758 2759 kvm_arm_resume_guest(irqfd->kvm); 2760 } 2761 2762 /* Initialize Hyp-mode and memory mappings on all CPUs */ 2763 static __init int kvm_arm_init(void) 2764 { 2765 int err; 2766 bool in_hyp_mode; 2767 2768 if (!is_hyp_mode_available()) { 2769 kvm_info("HYP mode not available\n"); 2770 return -ENODEV; 2771 } 2772 2773 if (kvm_get_mode() == KVM_MODE_NONE) { 2774 kvm_info("KVM disabled from command line\n"); 2775 return -ENODEV; 2776 } 2777 2778 err = kvm_sys_reg_table_init(); 2779 if (err) { 2780 kvm_info("Error initializing system register tables"); 2781 return err; 2782 } 2783 2784 in_hyp_mode = is_kernel_in_hyp_mode(); 2785 2786 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2787 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2788 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2789 "Only trusted guests should be used on this system.\n"); 2790 2791 err = kvm_set_ipa_limit(); 2792 if (err) 2793 return err; 2794 2795 err = kvm_arm_init_sve(); 2796 if (err) 2797 return err; 2798 2799 err = kvm_arm_vmid_alloc_init(); 2800 if (err) { 2801 kvm_err("Failed to initialize VMID allocator.\n"); 2802 return err; 2803 } 2804 2805 if (!in_hyp_mode) { 2806 err = init_hyp_mode(); 2807 if (err) 2808 goto out_err; 2809 } 2810 2811 err = kvm_init_vector_slots(); 2812 if (err) { 2813 kvm_err("Cannot initialise vector slots\n"); 2814 goto out_hyp; 2815 } 2816 2817 err = init_subsystems(); 2818 if (err) 2819 goto out_hyp; 2820 2821 kvm_info("%s%sVHE mode initialized successfully\n", 2822 in_hyp_mode ? "" : (is_protected_kvm_enabled() ? 2823 "Protected " : "Hyp "), 2824 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ? 2825 "h" : "n")); 2826 2827 /* 2828 * FIXME: Do something reasonable if kvm_init() fails after pKVM 2829 * hypervisor protection is finalized. 2830 */ 2831 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2832 if (err) 2833 goto out_subs; 2834 2835 /* 2836 * This should be called after initialization is done and failure isn't 2837 * possible anymore. 2838 */ 2839 if (!in_hyp_mode) 2840 finalize_init_hyp_mode(); 2841 2842 kvm_arm_initialised = true; 2843 2844 return 0; 2845 2846 out_subs: 2847 teardown_subsystems(); 2848 out_hyp: 2849 if (!in_hyp_mode) 2850 teardown_hyp_mode(); 2851 out_err: 2852 kvm_arm_vmid_alloc_free(); 2853 return err; 2854 } 2855 2856 static int __init early_kvm_mode_cfg(char *arg) 2857 { 2858 if (!arg) 2859 return -EINVAL; 2860 2861 if (strcmp(arg, "none") == 0) { 2862 kvm_mode = KVM_MODE_NONE; 2863 return 0; 2864 } 2865 2866 if (!is_hyp_mode_available()) { 2867 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n"); 2868 return 0; 2869 } 2870 2871 if (strcmp(arg, "protected") == 0) { 2872 if (!is_kernel_in_hyp_mode()) 2873 kvm_mode = KVM_MODE_PROTECTED; 2874 else 2875 pr_warn_once("Protected KVM not available with VHE\n"); 2876 2877 return 0; 2878 } 2879 2880 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) { 2881 kvm_mode = KVM_MODE_DEFAULT; 2882 return 0; 2883 } 2884 2885 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) { 2886 kvm_mode = KVM_MODE_NV; 2887 return 0; 2888 } 2889 2890 return -EINVAL; 2891 } 2892 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2893 2894 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p) 2895 { 2896 if (!arg) 2897 return -EINVAL; 2898 2899 if (strcmp(arg, "trap") == 0) { 2900 *p = KVM_WFX_TRAP; 2901 return 0; 2902 } 2903 2904 if (strcmp(arg, "notrap") == 0) { 2905 *p = KVM_WFX_NOTRAP; 2906 return 0; 2907 } 2908 2909 return -EINVAL; 2910 } 2911 2912 static int __init early_kvm_wfi_trap_policy_cfg(char *arg) 2913 { 2914 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy); 2915 } 2916 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg); 2917 2918 static int __init early_kvm_wfe_trap_policy_cfg(char *arg) 2919 { 2920 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy); 2921 } 2922 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg); 2923 2924 enum kvm_mode kvm_get_mode(void) 2925 { 2926 return kvm_mode; 2927 } 2928 2929 module_init(kvm_arm_init); 2930
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.