~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/guest.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2012,2013 - ARM Ltd
  4  * Author: Marc Zyngier <marc.zyngier@arm.com>
  5  *
  6  * Derived from arch/arm/kvm/guest.c:
  7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  9  */
 10 
 11 #include <linux/bits.h>
 12 #include <linux/errno.h>
 13 #include <linux/err.h>
 14 #include <linux/nospec.h>
 15 #include <linux/kvm_host.h>
 16 #include <linux/module.h>
 17 #include <linux/stddef.h>
 18 #include <linux/string.h>
 19 #include <linux/vmalloc.h>
 20 #include <linux/fs.h>
 21 #include <kvm/arm_hypercalls.h>
 22 #include <asm/cputype.h>
 23 #include <linux/uaccess.h>
 24 #include <asm/fpsimd.h>
 25 #include <asm/kvm.h>
 26 #include <asm/kvm_emulate.h>
 27 #include <asm/kvm_nested.h>
 28 #include <asm/sigcontext.h>
 29 
 30 #include "trace.h"
 31 
 32 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
 33         KVM_GENERIC_VM_STATS()
 34 };
 35 
 36 const struct kvm_stats_header kvm_vm_stats_header = {
 37         .name_size = KVM_STATS_NAME_SIZE,
 38         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
 39         .id_offset =  sizeof(struct kvm_stats_header),
 40         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 41         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 42                        sizeof(kvm_vm_stats_desc),
 43 };
 44 
 45 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
 46         KVM_GENERIC_VCPU_STATS(),
 47         STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
 48         STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
 49         STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
 50         STATS_DESC_COUNTER(VCPU, mmio_exit_user),
 51         STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
 52         STATS_DESC_COUNTER(VCPU, signal_exits),
 53         STATS_DESC_COUNTER(VCPU, exits)
 54 };
 55 
 56 const struct kvm_stats_header kvm_vcpu_stats_header = {
 57         .name_size = KVM_STATS_NAME_SIZE,
 58         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
 59         .id_offset = sizeof(struct kvm_stats_header),
 60         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 61         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 62                        sizeof(kvm_vcpu_stats_desc),
 63 };
 64 
 65 static bool core_reg_offset_is_vreg(u64 off)
 66 {
 67         return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
 68                 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
 69 }
 70 
 71 static u64 core_reg_offset_from_id(u64 id)
 72 {
 73         return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 74 }
 75 
 76 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
 77 {
 78         int size;
 79 
 80         switch (off) {
 81         case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 82              KVM_REG_ARM_CORE_REG(regs.regs[30]):
 83         case KVM_REG_ARM_CORE_REG(regs.sp):
 84         case KVM_REG_ARM_CORE_REG(regs.pc):
 85         case KVM_REG_ARM_CORE_REG(regs.pstate):
 86         case KVM_REG_ARM_CORE_REG(sp_el1):
 87         case KVM_REG_ARM_CORE_REG(elr_el1):
 88         case KVM_REG_ARM_CORE_REG(spsr[0]) ...
 89              KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
 90                 size = sizeof(__u64);
 91                 break;
 92 
 93         case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 94              KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 95                 size = sizeof(__uint128_t);
 96                 break;
 97 
 98         case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 99         case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
100                 size = sizeof(__u32);
101                 break;
102 
103         default:
104                 return -EINVAL;
105         }
106 
107         if (!IS_ALIGNED(off, size / sizeof(__u32)))
108                 return -EINVAL;
109 
110         /*
111          * The KVM_REG_ARM64_SVE regs must be used instead of
112          * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113          * SVE-enabled vcpus:
114          */
115         if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116                 return -EINVAL;
117 
118         return size;
119 }
120 
121 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122 {
123         u64 off = core_reg_offset_from_id(reg->id);
124         int size = core_reg_size_from_offset(vcpu, off);
125 
126         if (size < 0)
127                 return NULL;
128 
129         if (KVM_REG_SIZE(reg->id) != size)
130                 return NULL;
131 
132         switch (off) {
133         case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
134              KVM_REG_ARM_CORE_REG(regs.regs[30]):
135                 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
136                 off /= 2;
137                 return &vcpu->arch.ctxt.regs.regs[off];
138 
139         case KVM_REG_ARM_CORE_REG(regs.sp):
140                 return &vcpu->arch.ctxt.regs.sp;
141 
142         case KVM_REG_ARM_CORE_REG(regs.pc):
143                 return &vcpu->arch.ctxt.regs.pc;
144 
145         case KVM_REG_ARM_CORE_REG(regs.pstate):
146                 return &vcpu->arch.ctxt.regs.pstate;
147 
148         case KVM_REG_ARM_CORE_REG(sp_el1):
149                 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
150 
151         case KVM_REG_ARM_CORE_REG(elr_el1):
152                 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
153 
154         case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
155                 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
156 
157         case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
158                 return &vcpu->arch.ctxt.spsr_abt;
159 
160         case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
161                 return &vcpu->arch.ctxt.spsr_und;
162 
163         case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
164                 return &vcpu->arch.ctxt.spsr_irq;
165 
166         case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
167                 return &vcpu->arch.ctxt.spsr_fiq;
168 
169         case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
170              KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
171                 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
172                 off /= 4;
173                 return &vcpu->arch.ctxt.fp_regs.vregs[off];
174 
175         case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
176                 return &vcpu->arch.ctxt.fp_regs.fpsr;
177 
178         case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
179                 return &vcpu->arch.ctxt.fp_regs.fpcr;
180 
181         default:
182                 return NULL;
183         }
184 }
185 
186 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
187 {
188         /*
189          * Because the kvm_regs structure is a mix of 32, 64 and
190          * 128bit fields, we index it as if it was a 32bit
191          * array. Hence below, nr_regs is the number of entries, and
192          * off the index in the "array".
193          */
194         __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
195         int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
196         void *addr;
197         u32 off;
198 
199         /* Our ID is an index into the kvm_regs struct. */
200         off = core_reg_offset_from_id(reg->id);
201         if (off >= nr_regs ||
202             (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
203                 return -ENOENT;
204 
205         addr = core_reg_addr(vcpu, reg);
206         if (!addr)
207                 return -EINVAL;
208 
209         if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
210                 return -EFAULT;
211 
212         return 0;
213 }
214 
215 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
216 {
217         __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
218         int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
219         __uint128_t tmp;
220         void *valp = &tmp, *addr;
221         u64 off;
222         int err = 0;
223 
224         /* Our ID is an index into the kvm_regs struct. */
225         off = core_reg_offset_from_id(reg->id);
226         if (off >= nr_regs ||
227             (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
228                 return -ENOENT;
229 
230         addr = core_reg_addr(vcpu, reg);
231         if (!addr)
232                 return -EINVAL;
233 
234         if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
235                 return -EINVAL;
236 
237         if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
238                 err = -EFAULT;
239                 goto out;
240         }
241 
242         if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
243                 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
244                 switch (mode) {
245                 case PSR_AA32_MODE_USR:
246                         if (!kvm_supports_32bit_el0())
247                                 return -EINVAL;
248                         break;
249                 case PSR_AA32_MODE_FIQ:
250                 case PSR_AA32_MODE_IRQ:
251                 case PSR_AA32_MODE_SVC:
252                 case PSR_AA32_MODE_ABT:
253                 case PSR_AA32_MODE_UND:
254                 case PSR_AA32_MODE_SYS:
255                         if (!vcpu_el1_is_32bit(vcpu))
256                                 return -EINVAL;
257                         break;
258                 case PSR_MODE_EL2h:
259                 case PSR_MODE_EL2t:
260                         if (!vcpu_has_nv(vcpu))
261                                 return -EINVAL;
262                         fallthrough;
263                 case PSR_MODE_EL0t:
264                 case PSR_MODE_EL1t:
265                 case PSR_MODE_EL1h:
266                         if (vcpu_el1_is_32bit(vcpu))
267                                 return -EINVAL;
268                         break;
269                 default:
270                         err = -EINVAL;
271                         goto out;
272                 }
273         }
274 
275         memcpy(addr, valp, KVM_REG_SIZE(reg->id));
276 
277         if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
278                 int i, nr_reg;
279 
280                 switch (*vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK) {
281                 /*
282                  * Either we are dealing with user mode, and only the
283                  * first 15 registers (+ PC) must be narrowed to 32bit.
284                  * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
285                  */
286                 case PSR_AA32_MODE_USR:
287                 case PSR_AA32_MODE_SYS:
288                         nr_reg = 15;
289                         break;
290 
291                 /*
292                  * Otherwise, this is a privileged mode, and *all* the
293                  * registers must be narrowed to 32bit.
294                  */
295                 default:
296                         nr_reg = 31;
297                         break;
298                 }
299 
300                 for (i = 0; i < nr_reg; i++)
301                         vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
302 
303                 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
304         }
305 out:
306         return err;
307 }
308 
309 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
310 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
311 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
312 
313 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
314 {
315         unsigned int max_vq, vq;
316         u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
317 
318         if (!vcpu_has_sve(vcpu))
319                 return -ENOENT;
320 
321         if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
322                 return -EINVAL;
323 
324         memset(vqs, 0, sizeof(vqs));
325 
326         max_vq = vcpu_sve_max_vq(vcpu);
327         for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
328                 if (sve_vq_available(vq))
329                         vqs[vq_word(vq)] |= vq_mask(vq);
330 
331         if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
332                 return -EFAULT;
333 
334         return 0;
335 }
336 
337 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
338 {
339         unsigned int max_vq, vq;
340         u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
341 
342         if (!vcpu_has_sve(vcpu))
343                 return -ENOENT;
344 
345         if (kvm_arm_vcpu_sve_finalized(vcpu))
346                 return -EPERM; /* too late! */
347 
348         if (WARN_ON(vcpu->arch.sve_state))
349                 return -EINVAL;
350 
351         if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
352                 return -EFAULT;
353 
354         max_vq = 0;
355         for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
356                 if (vq_present(vqs, vq))
357                         max_vq = vq;
358 
359         if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
360                 return -EINVAL;
361 
362         /*
363          * Vector lengths supported by the host can't currently be
364          * hidden from the guest individually: instead we can only set a
365          * maximum via ZCR_EL2.LEN.  So, make sure the available vector
366          * lengths match the set requested exactly up to the requested
367          * maximum:
368          */
369         for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
370                 if (vq_present(vqs, vq) != sve_vq_available(vq))
371                         return -EINVAL;
372 
373         /* Can't run with no vector lengths at all: */
374         if (max_vq < SVE_VQ_MIN)
375                 return -EINVAL;
376 
377         /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
378         vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
379 
380         return 0;
381 }
382 
383 #define SVE_REG_SLICE_SHIFT     0
384 #define SVE_REG_SLICE_BITS      5
385 #define SVE_REG_ID_SHIFT        (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
386 #define SVE_REG_ID_BITS         5
387 
388 #define SVE_REG_SLICE_MASK                                      \
389         GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,   \
390                 SVE_REG_SLICE_SHIFT)
391 #define SVE_REG_ID_MASK                                                 \
392         GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
393 
394 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
395 
396 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
397 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
398 
399 /*
400  * Number of register slices required to cover each whole SVE register.
401  * NOTE: Only the first slice every exists, for now.
402  * If you are tempted to modify this, you must also rework sve_reg_to_region()
403  * to match:
404  */
405 #define vcpu_sve_slices(vcpu) 1
406 
407 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
408 struct sve_state_reg_region {
409         unsigned int koffset;   /* offset into sve_state in kernel memory */
410         unsigned int klen;      /* length in kernel memory */
411         unsigned int upad;      /* extra trailing padding in user memory */
412 };
413 
414 /*
415  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
416  * register copy
417  */
418 static int sve_reg_to_region(struct sve_state_reg_region *region,
419                              struct kvm_vcpu *vcpu,
420                              const struct kvm_one_reg *reg)
421 {
422         /* reg ID ranges for Z- registers */
423         const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
424         const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
425                                                        SVE_NUM_SLICES - 1);
426 
427         /* reg ID ranges for P- registers and FFR (which are contiguous) */
428         const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
429         const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
430 
431         unsigned int vq;
432         unsigned int reg_num;
433 
434         unsigned int reqoffset, reqlen; /* User-requested offset and length */
435         unsigned int maxlen; /* Maximum permitted length */
436 
437         size_t sve_state_size;
438 
439         const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
440                                                         SVE_NUM_SLICES - 1);
441 
442         /* Verify that the P-regs and FFR really do have contiguous IDs: */
443         BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
444 
445         /* Verify that we match the UAPI header: */
446         BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
447 
448         reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
449 
450         if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
451                 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
452                         return -ENOENT;
453 
454                 vq = vcpu_sve_max_vq(vcpu);
455 
456                 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
457                                 SVE_SIG_REGS_OFFSET;
458                 reqlen = KVM_SVE_ZREG_SIZE;
459                 maxlen = SVE_SIG_ZREG_SIZE(vq);
460         } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
461                 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
462                         return -ENOENT;
463 
464                 vq = vcpu_sve_max_vq(vcpu);
465 
466                 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
467                                 SVE_SIG_REGS_OFFSET;
468                 reqlen = KVM_SVE_PREG_SIZE;
469                 maxlen = SVE_SIG_PREG_SIZE(vq);
470         } else {
471                 return -EINVAL;
472         }
473 
474         sve_state_size = vcpu_sve_state_size(vcpu);
475         if (WARN_ON(!sve_state_size))
476                 return -EINVAL;
477 
478         region->koffset = array_index_nospec(reqoffset, sve_state_size);
479         region->klen = min(maxlen, reqlen);
480         region->upad = reqlen - region->klen;
481 
482         return 0;
483 }
484 
485 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
486 {
487         int ret;
488         struct sve_state_reg_region region;
489         char __user *uptr = (char __user *)reg->addr;
490 
491         /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
492         if (reg->id == KVM_REG_ARM64_SVE_VLS)
493                 return get_sve_vls(vcpu, reg);
494 
495         /* Try to interpret reg ID as an architectural SVE register... */
496         ret = sve_reg_to_region(&region, vcpu, reg);
497         if (ret)
498                 return ret;
499 
500         if (!kvm_arm_vcpu_sve_finalized(vcpu))
501                 return -EPERM;
502 
503         if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
504                          region.klen) ||
505             clear_user(uptr + region.klen, region.upad))
506                 return -EFAULT;
507 
508         return 0;
509 }
510 
511 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
512 {
513         int ret;
514         struct sve_state_reg_region region;
515         const char __user *uptr = (const char __user *)reg->addr;
516 
517         /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
518         if (reg->id == KVM_REG_ARM64_SVE_VLS)
519                 return set_sve_vls(vcpu, reg);
520 
521         /* Try to interpret reg ID as an architectural SVE register... */
522         ret = sve_reg_to_region(&region, vcpu, reg);
523         if (ret)
524                 return ret;
525 
526         if (!kvm_arm_vcpu_sve_finalized(vcpu))
527                 return -EPERM;
528 
529         if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
530                            region.klen))
531                 return -EFAULT;
532 
533         return 0;
534 }
535 
536 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
537 {
538         return -EINVAL;
539 }
540 
541 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
542 {
543         return -EINVAL;
544 }
545 
546 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
547                                  u64 __user *uindices)
548 {
549         unsigned int i;
550         int n = 0;
551 
552         for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
553                 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
554                 int size = core_reg_size_from_offset(vcpu, i);
555 
556                 if (size < 0)
557                         continue;
558 
559                 switch (size) {
560                 case sizeof(__u32):
561                         reg |= KVM_REG_SIZE_U32;
562                         break;
563 
564                 case sizeof(__u64):
565                         reg |= KVM_REG_SIZE_U64;
566                         break;
567 
568                 case sizeof(__uint128_t):
569                         reg |= KVM_REG_SIZE_U128;
570                         break;
571 
572                 default:
573                         WARN_ON(1);
574                         continue;
575                 }
576 
577                 if (uindices) {
578                         if (put_user(reg, uindices))
579                                 return -EFAULT;
580                         uindices++;
581                 }
582 
583                 n++;
584         }
585 
586         return n;
587 }
588 
589 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
590 {
591         return copy_core_reg_indices(vcpu, NULL);
592 }
593 
594 static const u64 timer_reg_list[] = {
595         KVM_REG_ARM_TIMER_CTL,
596         KVM_REG_ARM_TIMER_CNT,
597         KVM_REG_ARM_TIMER_CVAL,
598         KVM_REG_ARM_PTIMER_CTL,
599         KVM_REG_ARM_PTIMER_CNT,
600         KVM_REG_ARM_PTIMER_CVAL,
601 };
602 
603 #define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
604 
605 static bool is_timer_reg(u64 index)
606 {
607         switch (index) {
608         case KVM_REG_ARM_TIMER_CTL:
609         case KVM_REG_ARM_TIMER_CNT:
610         case KVM_REG_ARM_TIMER_CVAL:
611         case KVM_REG_ARM_PTIMER_CTL:
612         case KVM_REG_ARM_PTIMER_CNT:
613         case KVM_REG_ARM_PTIMER_CVAL:
614                 return true;
615         }
616         return false;
617 }
618 
619 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
620 {
621         for (int i = 0; i < NUM_TIMER_REGS; i++) {
622                 if (put_user(timer_reg_list[i], uindices))
623                         return -EFAULT;
624                 uindices++;
625         }
626 
627         return 0;
628 }
629 
630 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
631 {
632         void __user *uaddr = (void __user *)(long)reg->addr;
633         u64 val;
634         int ret;
635 
636         ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
637         if (ret != 0)
638                 return -EFAULT;
639 
640         return kvm_arm_timer_set_reg(vcpu, reg->id, val);
641 }
642 
643 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
644 {
645         void __user *uaddr = (void __user *)(long)reg->addr;
646         u64 val;
647 
648         val = kvm_arm_timer_get_reg(vcpu, reg->id);
649         return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
650 }
651 
652 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
653 {
654         const unsigned int slices = vcpu_sve_slices(vcpu);
655 
656         if (!vcpu_has_sve(vcpu))
657                 return 0;
658 
659         /* Policed by KVM_GET_REG_LIST: */
660         WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
661 
662         return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
663                 + 1; /* KVM_REG_ARM64_SVE_VLS */
664 }
665 
666 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
667                                 u64 __user *uindices)
668 {
669         const unsigned int slices = vcpu_sve_slices(vcpu);
670         u64 reg;
671         unsigned int i, n;
672         int num_regs = 0;
673 
674         if (!vcpu_has_sve(vcpu))
675                 return 0;
676 
677         /* Policed by KVM_GET_REG_LIST: */
678         WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
679 
680         /*
681          * Enumerate this first, so that userspace can save/restore in
682          * the order reported by KVM_GET_REG_LIST:
683          */
684         reg = KVM_REG_ARM64_SVE_VLS;
685         if (put_user(reg, uindices++))
686                 return -EFAULT;
687         ++num_regs;
688 
689         for (i = 0; i < slices; i++) {
690                 for (n = 0; n < SVE_NUM_ZREGS; n++) {
691                         reg = KVM_REG_ARM64_SVE_ZREG(n, i);
692                         if (put_user(reg, uindices++))
693                                 return -EFAULT;
694                         num_regs++;
695                 }
696 
697                 for (n = 0; n < SVE_NUM_PREGS; n++) {
698                         reg = KVM_REG_ARM64_SVE_PREG(n, i);
699                         if (put_user(reg, uindices++))
700                                 return -EFAULT;
701                         num_regs++;
702                 }
703 
704                 reg = KVM_REG_ARM64_SVE_FFR(i);
705                 if (put_user(reg, uindices++))
706                         return -EFAULT;
707                 num_regs++;
708         }
709 
710         return num_regs;
711 }
712 
713 /**
714  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
715  * @vcpu: the vCPU pointer
716  *
717  * This is for all registers.
718  */
719 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
720 {
721         unsigned long res = 0;
722 
723         res += num_core_regs(vcpu);
724         res += num_sve_regs(vcpu);
725         res += kvm_arm_num_sys_reg_descs(vcpu);
726         res += kvm_arm_get_fw_num_regs(vcpu);
727         res += NUM_TIMER_REGS;
728 
729         return res;
730 }
731 
732 /**
733  * kvm_arm_copy_reg_indices - get indices of all registers.
734  * @vcpu: the vCPU pointer
735  * @uindices: register list to copy
736  *
737  * We do core registers right here, then we append system regs.
738  */
739 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
740 {
741         int ret;
742 
743         ret = copy_core_reg_indices(vcpu, uindices);
744         if (ret < 0)
745                 return ret;
746         uindices += ret;
747 
748         ret = copy_sve_reg_indices(vcpu, uindices);
749         if (ret < 0)
750                 return ret;
751         uindices += ret;
752 
753         ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
754         if (ret < 0)
755                 return ret;
756         uindices += kvm_arm_get_fw_num_regs(vcpu);
757 
758         ret = copy_timer_indices(vcpu, uindices);
759         if (ret < 0)
760                 return ret;
761         uindices += NUM_TIMER_REGS;
762 
763         return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
764 }
765 
766 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
767 {
768         /* We currently use nothing arch-specific in upper 32 bits */
769         if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
770                 return -EINVAL;
771 
772         switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
773         case KVM_REG_ARM_CORE:  return get_core_reg(vcpu, reg);
774         case KVM_REG_ARM_FW:
775         case KVM_REG_ARM_FW_FEAT_BMAP:
776                 return kvm_arm_get_fw_reg(vcpu, reg);
777         case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
778         }
779 
780         if (is_timer_reg(reg->id))
781                 return get_timer_reg(vcpu, reg);
782 
783         return kvm_arm_sys_reg_get_reg(vcpu, reg);
784 }
785 
786 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
787 {
788         /* We currently use nothing arch-specific in upper 32 bits */
789         if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
790                 return -EINVAL;
791 
792         switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
793         case KVM_REG_ARM_CORE:  return set_core_reg(vcpu, reg);
794         case KVM_REG_ARM_FW:
795         case KVM_REG_ARM_FW_FEAT_BMAP:
796                 return kvm_arm_set_fw_reg(vcpu, reg);
797         case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
798         }
799 
800         if (is_timer_reg(reg->id))
801                 return set_timer_reg(vcpu, reg);
802 
803         return kvm_arm_sys_reg_set_reg(vcpu, reg);
804 }
805 
806 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
807                                   struct kvm_sregs *sregs)
808 {
809         return -EINVAL;
810 }
811 
812 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
813                                   struct kvm_sregs *sregs)
814 {
815         return -EINVAL;
816 }
817 
818 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
819                               struct kvm_vcpu_events *events)
820 {
821         events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
822         events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
823 
824         if (events->exception.serror_pending && events->exception.serror_has_esr)
825                 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
826 
827         /*
828          * We never return a pending ext_dabt here because we deliver it to
829          * the virtual CPU directly when setting the event and it's no longer
830          * 'pending' at this point.
831          */
832 
833         return 0;
834 }
835 
836 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
837                               struct kvm_vcpu_events *events)
838 {
839         bool serror_pending = events->exception.serror_pending;
840         bool has_esr = events->exception.serror_has_esr;
841         bool ext_dabt_pending = events->exception.ext_dabt_pending;
842 
843         if (serror_pending && has_esr) {
844                 if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
845                         return -EINVAL;
846 
847                 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
848                         kvm_set_sei_esr(vcpu, events->exception.serror_esr);
849                 else
850                         return -EINVAL;
851         } else if (serror_pending) {
852                 kvm_inject_vabt(vcpu);
853         }
854 
855         if (ext_dabt_pending)
856                 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
857 
858         return 0;
859 }
860 
861 u32 __attribute_const__ kvm_target_cpu(void)
862 {
863         unsigned long implementor = read_cpuid_implementor();
864         unsigned long part_number = read_cpuid_part_number();
865 
866         switch (implementor) {
867         case ARM_CPU_IMP_ARM:
868                 switch (part_number) {
869                 case ARM_CPU_PART_AEM_V8:
870                         return KVM_ARM_TARGET_AEM_V8;
871                 case ARM_CPU_PART_FOUNDATION:
872                         return KVM_ARM_TARGET_FOUNDATION_V8;
873                 case ARM_CPU_PART_CORTEX_A53:
874                         return KVM_ARM_TARGET_CORTEX_A53;
875                 case ARM_CPU_PART_CORTEX_A57:
876                         return KVM_ARM_TARGET_CORTEX_A57;
877                 }
878                 break;
879         case ARM_CPU_IMP_APM:
880                 switch (part_number) {
881                 case APM_CPU_PART_XGENE:
882                         return KVM_ARM_TARGET_XGENE_POTENZA;
883                 }
884                 break;
885         }
886 
887         /* Return a default generic target */
888         return KVM_ARM_TARGET_GENERIC_V8;
889 }
890 
891 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
892 {
893         return -EINVAL;
894 }
895 
896 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
897 {
898         return -EINVAL;
899 }
900 
901 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
902                                   struct kvm_translation *tr)
903 {
904         return -EINVAL;
905 }
906 
907 /**
908  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
909  * @vcpu: the vCPU pointer
910  * @dbg: the ioctl data buffer
911  *
912  * This sets up and enables the VM for guest debugging. Userspace
913  * passes in a control flag to enable different debug types and
914  * potentially other architecture specific information in the rest of
915  * the structure.
916  */
917 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
918                                         struct kvm_guest_debug *dbg)
919 {
920         int ret = 0;
921 
922         trace_kvm_set_guest_debug(vcpu, dbg->control);
923 
924         if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
925                 ret = -EINVAL;
926                 goto out;
927         }
928 
929         if (dbg->control & KVM_GUESTDBG_ENABLE) {
930                 vcpu->guest_debug = dbg->control;
931 
932                 /* Hardware assisted Break and Watch points */
933                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
934                         vcpu->arch.external_debug_state = dbg->arch;
935                 }
936 
937         } else {
938                 /* If not enabled clear all flags */
939                 vcpu->guest_debug = 0;
940                 vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
941         }
942 
943 out:
944         return ret;
945 }
946 
947 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
948                                struct kvm_device_attr *attr)
949 {
950         int ret;
951 
952         switch (attr->group) {
953         case KVM_ARM_VCPU_PMU_V3_CTRL:
954                 mutex_lock(&vcpu->kvm->arch.config_lock);
955                 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
956                 mutex_unlock(&vcpu->kvm->arch.config_lock);
957                 break;
958         case KVM_ARM_VCPU_TIMER_CTRL:
959                 ret = kvm_arm_timer_set_attr(vcpu, attr);
960                 break;
961         case KVM_ARM_VCPU_PVTIME_CTRL:
962                 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
963                 break;
964         default:
965                 ret = -ENXIO;
966                 break;
967         }
968 
969         return ret;
970 }
971 
972 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
973                                struct kvm_device_attr *attr)
974 {
975         int ret;
976 
977         switch (attr->group) {
978         case KVM_ARM_VCPU_PMU_V3_CTRL:
979                 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
980                 break;
981         case KVM_ARM_VCPU_TIMER_CTRL:
982                 ret = kvm_arm_timer_get_attr(vcpu, attr);
983                 break;
984         case KVM_ARM_VCPU_PVTIME_CTRL:
985                 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
986                 break;
987         default:
988                 ret = -ENXIO;
989                 break;
990         }
991 
992         return ret;
993 }
994 
995 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
996                                struct kvm_device_attr *attr)
997 {
998         int ret;
999 
1000         switch (attr->group) {
1001         case KVM_ARM_VCPU_PMU_V3_CTRL:
1002                 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1003                 break;
1004         case KVM_ARM_VCPU_TIMER_CTRL:
1005                 ret = kvm_arm_timer_has_attr(vcpu, attr);
1006                 break;
1007         case KVM_ARM_VCPU_PVTIME_CTRL:
1008                 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1009                 break;
1010         default:
1011                 ret = -ENXIO;
1012                 break;
1013         }
1014 
1015         return ret;
1016 }
1017 
1018 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1019                                struct kvm_arm_copy_mte_tags *copy_tags)
1020 {
1021         gpa_t guest_ipa = copy_tags->guest_ipa;
1022         size_t length = copy_tags->length;
1023         void __user *tags = copy_tags->addr;
1024         gpa_t gfn;
1025         bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1026         int ret = 0;
1027 
1028         if (!kvm_has_mte(kvm))
1029                 return -EINVAL;
1030 
1031         if (copy_tags->reserved[0] || copy_tags->reserved[1])
1032                 return -EINVAL;
1033 
1034         if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1035                 return -EINVAL;
1036 
1037         if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1038                 return -EINVAL;
1039 
1040         /* Lengths above INT_MAX cannot be represented in the return value */
1041         if (length > INT_MAX)
1042                 return -EINVAL;
1043 
1044         gfn = gpa_to_gfn(guest_ipa);
1045 
1046         mutex_lock(&kvm->slots_lock);
1047 
1048         while (length > 0) {
1049                 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1050                 void *maddr;
1051                 unsigned long num_tags;
1052                 struct page *page;
1053 
1054                 if (is_error_noslot_pfn(pfn)) {
1055                         ret = -EFAULT;
1056                         goto out;
1057                 }
1058 
1059                 page = pfn_to_online_page(pfn);
1060                 if (!page) {
1061                         /* Reject ZONE_DEVICE memory */
1062                         ret = -EFAULT;
1063                         goto out;
1064                 }
1065                 maddr = page_address(page);
1066 
1067                 if (!write) {
1068                         if (page_mte_tagged(page))
1069                                 num_tags = mte_copy_tags_to_user(tags, maddr,
1070                                                         MTE_GRANULES_PER_PAGE);
1071                         else
1072                                 /* No tags in memory, so write zeros */
1073                                 num_tags = MTE_GRANULES_PER_PAGE -
1074                                         clear_user(tags, MTE_GRANULES_PER_PAGE);
1075                         kvm_release_pfn_clean(pfn);
1076                 } else {
1077                         /*
1078                          * Only locking to serialise with a concurrent
1079                          * __set_ptes() in the VMM but still overriding the
1080                          * tags, hence ignoring the return value.
1081                          */
1082                         try_page_mte_tagging(page);
1083                         num_tags = mte_copy_tags_from_user(maddr, tags,
1084                                                         MTE_GRANULES_PER_PAGE);
1085 
1086                         /* uaccess failed, don't leave stale tags */
1087                         if (num_tags != MTE_GRANULES_PER_PAGE)
1088                                 mte_clear_page_tags(maddr);
1089                         set_page_mte_tagged(page);
1090 
1091                         kvm_release_pfn_dirty(pfn);
1092                 }
1093 
1094                 if (num_tags != MTE_GRANULES_PER_PAGE) {
1095                         ret = -EFAULT;
1096                         goto out;
1097                 }
1098 
1099                 gfn++;
1100                 tags += num_tags;
1101                 length -= PAGE_SIZE;
1102         }
1103 
1104 out:
1105         mutex_unlock(&kvm->slots_lock);
1106         /* If some data has been copied report the number of bytes copied */
1107         if (length != copy_tags->length)
1108                 return copy_tags->length - length;
1109         return ret;
1110 }
1111 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php