~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2020 Google LLC
  4  * Author: Quentin Perret <qperret@google.com>
  5  */
  6 
  7 #include <linux/kvm_host.h>
  8 #include <asm/kvm_emulate.h>
  9 #include <asm/kvm_hyp.h>
 10 #include <asm/kvm_mmu.h>
 11 #include <asm/kvm_pgtable.h>
 12 #include <asm/kvm_pkvm.h>
 13 #include <asm/stage2_pgtable.h>
 14 
 15 #include <hyp/fault.h>
 16 
 17 #include <nvhe/gfp.h>
 18 #include <nvhe/memory.h>
 19 #include <nvhe/mem_protect.h>
 20 #include <nvhe/mm.h>
 21 
 22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
 23 
 24 struct host_mmu host_mmu;
 25 
 26 static struct hyp_pool host_s2_pool;
 27 
 28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
 29 #define current_vm (*this_cpu_ptr(&__current_vm))
 30 
 31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
 32 {
 33         hyp_spin_lock(&vm->lock);
 34         current_vm = vm;
 35 }
 36 
 37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
 38 {
 39         current_vm = NULL;
 40         hyp_spin_unlock(&vm->lock);
 41 }
 42 
 43 static void host_lock_component(void)
 44 {
 45         hyp_spin_lock(&host_mmu.lock);
 46 }
 47 
 48 static void host_unlock_component(void)
 49 {
 50         hyp_spin_unlock(&host_mmu.lock);
 51 }
 52 
 53 static void hyp_lock_component(void)
 54 {
 55         hyp_spin_lock(&pkvm_pgd_lock);
 56 }
 57 
 58 static void hyp_unlock_component(void)
 59 {
 60         hyp_spin_unlock(&pkvm_pgd_lock);
 61 }
 62 
 63 static void *host_s2_zalloc_pages_exact(size_t size)
 64 {
 65         void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
 66 
 67         hyp_split_page(hyp_virt_to_page(addr));
 68 
 69         /*
 70          * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
 71          * so there should be no need to free any of the tail pages to make the
 72          * allocation exact.
 73          */
 74         WARN_ON(size != (PAGE_SIZE << get_order(size)));
 75 
 76         return addr;
 77 }
 78 
 79 static void *host_s2_zalloc_page(void *pool)
 80 {
 81         return hyp_alloc_pages(pool, 0);
 82 }
 83 
 84 static void host_s2_get_page(void *addr)
 85 {
 86         hyp_get_page(&host_s2_pool, addr);
 87 }
 88 
 89 static void host_s2_put_page(void *addr)
 90 {
 91         hyp_put_page(&host_s2_pool, addr);
 92 }
 93 
 94 static void host_s2_free_unlinked_table(void *addr, s8 level)
 95 {
 96         kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
 97 }
 98 
 99 static int prepare_s2_pool(void *pgt_pool_base)
100 {
101         unsigned long nr_pages, pfn;
102         int ret;
103 
104         pfn = hyp_virt_to_pfn(pgt_pool_base);
105         nr_pages = host_s2_pgtable_pages();
106         ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
107         if (ret)
108                 return ret;
109 
110         host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
111                 .zalloc_pages_exact = host_s2_zalloc_pages_exact,
112                 .zalloc_page = host_s2_zalloc_page,
113                 .free_unlinked_table = host_s2_free_unlinked_table,
114                 .phys_to_virt = hyp_phys_to_virt,
115                 .virt_to_phys = hyp_virt_to_phys,
116                 .page_count = hyp_page_count,
117                 .get_page = host_s2_get_page,
118                 .put_page = host_s2_put_page,
119         };
120 
121         return 0;
122 }
123 
124 static void prepare_host_vtcr(void)
125 {
126         u32 parange, phys_shift;
127 
128         /* The host stage 2 is id-mapped, so use parange for T0SZ */
129         parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
130         phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
131 
132         host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
133                                               id_aa64mmfr1_el1_sys_val, phys_shift);
134 }
135 
136 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
137 
138 int kvm_host_prepare_stage2(void *pgt_pool_base)
139 {
140         struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
141         int ret;
142 
143         prepare_host_vtcr();
144         hyp_spin_lock_init(&host_mmu.lock);
145         mmu->arch = &host_mmu.arch;
146 
147         ret = prepare_s2_pool(pgt_pool_base);
148         if (ret)
149                 return ret;
150 
151         ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
152                                         &host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
153                                         host_stage2_force_pte_cb);
154         if (ret)
155                 return ret;
156 
157         mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
158         mmu->pgt = &host_mmu.pgt;
159         atomic64_set(&mmu->vmid.id, 0);
160 
161         return 0;
162 }
163 
164 static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
165                                       enum kvm_pgtable_prot prot)
166 {
167         return true;
168 }
169 
170 static void *guest_s2_zalloc_pages_exact(size_t size)
171 {
172         void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
173 
174         WARN_ON(size != (PAGE_SIZE << get_order(size)));
175         hyp_split_page(hyp_virt_to_page(addr));
176 
177         return addr;
178 }
179 
180 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
181 {
182         u8 order = get_order(size);
183         unsigned int i;
184 
185         for (i = 0; i < (1 << order); i++)
186                 hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
187 }
188 
189 static void *guest_s2_zalloc_page(void *mc)
190 {
191         struct hyp_page *p;
192         void *addr;
193 
194         addr = hyp_alloc_pages(&current_vm->pool, 0);
195         if (addr)
196                 return addr;
197 
198         addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
199         if (!addr)
200                 return addr;
201 
202         memset(addr, 0, PAGE_SIZE);
203         p = hyp_virt_to_page(addr);
204         memset(p, 0, sizeof(*p));
205         p->refcount = 1;
206 
207         return addr;
208 }
209 
210 static void guest_s2_get_page(void *addr)
211 {
212         hyp_get_page(&current_vm->pool, addr);
213 }
214 
215 static void guest_s2_put_page(void *addr)
216 {
217         hyp_put_page(&current_vm->pool, addr);
218 }
219 
220 static void clean_dcache_guest_page(void *va, size_t size)
221 {
222         __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
223         hyp_fixmap_unmap();
224 }
225 
226 static void invalidate_icache_guest_page(void *va, size_t size)
227 {
228         __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
229         hyp_fixmap_unmap();
230 }
231 
232 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
233 {
234         struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
235         unsigned long nr_pages;
236         int ret;
237 
238         nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT;
239         ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
240         if (ret)
241                 return ret;
242 
243         hyp_spin_lock_init(&vm->lock);
244         vm->mm_ops = (struct kvm_pgtable_mm_ops) {
245                 .zalloc_pages_exact     = guest_s2_zalloc_pages_exact,
246                 .free_pages_exact       = guest_s2_free_pages_exact,
247                 .zalloc_page            = guest_s2_zalloc_page,
248                 .phys_to_virt           = hyp_phys_to_virt,
249                 .virt_to_phys           = hyp_virt_to_phys,
250                 .page_count             = hyp_page_count,
251                 .get_page               = guest_s2_get_page,
252                 .put_page               = guest_s2_put_page,
253                 .dcache_clean_inval_poc = clean_dcache_guest_page,
254                 .icache_inval_pou       = invalidate_icache_guest_page,
255         };
256 
257         guest_lock_component(vm);
258         ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
259                                         guest_stage2_force_pte_cb);
260         guest_unlock_component(vm);
261         if (ret)
262                 return ret;
263 
264         vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
265 
266         return 0;
267 }
268 
269 void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
270 {
271         void *addr;
272 
273         /* Dump all pgtable pages in the hyp_pool */
274         guest_lock_component(vm);
275         kvm_pgtable_stage2_destroy(&vm->pgt);
276         vm->kvm.arch.mmu.pgd_phys = 0ULL;
277         guest_unlock_component(vm);
278 
279         /* Drain the hyp_pool into the memcache */
280         addr = hyp_alloc_pages(&vm->pool, 0);
281         while (addr) {
282                 memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
283                 push_hyp_memcache(mc, addr, hyp_virt_to_phys);
284                 WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
285                 addr = hyp_alloc_pages(&vm->pool, 0);
286         }
287 }
288 
289 int __pkvm_prot_finalize(void)
290 {
291         struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
292         struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
293 
294         if (params->hcr_el2 & HCR_VM)
295                 return -EPERM;
296 
297         params->vttbr = kvm_get_vttbr(mmu);
298         params->vtcr = mmu->vtcr;
299         params->hcr_el2 |= HCR_VM;
300 
301         /*
302          * The CMO below not only cleans the updated params to the
303          * PoC, but also provides the DSB that ensures ongoing
304          * page-table walks that have started before we trapped to EL2
305          * have completed.
306          */
307         kvm_flush_dcache_to_poc(params, sizeof(*params));
308 
309         write_sysreg(params->hcr_el2, hcr_el2);
310         __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
311 
312         /*
313          * Make sure to have an ISB before the TLB maintenance below but only
314          * when __load_stage2() doesn't include one already.
315          */
316         asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
317 
318         /* Invalidate stale HCR bits that may be cached in TLBs */
319         __tlbi(vmalls12e1);
320         dsb(nsh);
321         isb();
322 
323         return 0;
324 }
325 
326 static int host_stage2_unmap_dev_all(void)
327 {
328         struct kvm_pgtable *pgt = &host_mmu.pgt;
329         struct memblock_region *reg;
330         u64 addr = 0;
331         int i, ret;
332 
333         /* Unmap all non-memory regions to recycle the pages */
334         for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
335                 reg = &hyp_memory[i];
336                 ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
337                 if (ret)
338                         return ret;
339         }
340         return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
341 }
342 
343 struct kvm_mem_range {
344         u64 start;
345         u64 end;
346 };
347 
348 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
349 {
350         int cur, left = 0, right = hyp_memblock_nr;
351         struct memblock_region *reg;
352         phys_addr_t end;
353 
354         range->start = 0;
355         range->end = ULONG_MAX;
356 
357         /* The list of memblock regions is sorted, binary search it */
358         while (left < right) {
359                 cur = (left + right) >> 1;
360                 reg = &hyp_memory[cur];
361                 end = reg->base + reg->size;
362                 if (addr < reg->base) {
363                         right = cur;
364                         range->end = reg->base;
365                 } else if (addr >= end) {
366                         left = cur + 1;
367                         range->start = end;
368                 } else {
369                         range->start = reg->base;
370                         range->end = end;
371                         return reg;
372                 }
373         }
374 
375         return NULL;
376 }
377 
378 bool addr_is_memory(phys_addr_t phys)
379 {
380         struct kvm_mem_range range;
381 
382         return !!find_mem_range(phys, &range);
383 }
384 
385 static bool addr_is_allowed_memory(phys_addr_t phys)
386 {
387         struct memblock_region *reg;
388         struct kvm_mem_range range;
389 
390         reg = find_mem_range(phys, &range);
391 
392         return reg && !(reg->flags & MEMBLOCK_NOMAP);
393 }
394 
395 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
396 {
397         return range->start <= addr && addr < range->end;
398 }
399 
400 static bool range_is_memory(u64 start, u64 end)
401 {
402         struct kvm_mem_range r;
403 
404         if (!find_mem_range(start, &r))
405                 return false;
406 
407         return is_in_mem_range(end - 1, &r);
408 }
409 
410 static inline int __host_stage2_idmap(u64 start, u64 end,
411                                       enum kvm_pgtable_prot prot)
412 {
413         return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
414                                       prot, &host_s2_pool, 0);
415 }
416 
417 /*
418  * The pool has been provided with enough pages to cover all of memory with
419  * page granularity, but it is difficult to know how much of the MMIO range
420  * we will need to cover upfront, so we may need to 'recycle' the pages if we
421  * run out.
422  */
423 #define host_stage2_try(fn, ...)                                        \
424         ({                                                              \
425                 int __ret;                                              \
426                 hyp_assert_lock_held(&host_mmu.lock);                   \
427                 __ret = fn(__VA_ARGS__);                                \
428                 if (__ret == -ENOMEM) {                                 \
429                         __ret = host_stage2_unmap_dev_all();            \
430                         if (!__ret)                                     \
431                                 __ret = fn(__VA_ARGS__);                \
432                 }                                                       \
433                 __ret;                                                  \
434          })
435 
436 static inline bool range_included(struct kvm_mem_range *child,
437                                   struct kvm_mem_range *parent)
438 {
439         return parent->start <= child->start && child->end <= parent->end;
440 }
441 
442 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
443 {
444         struct kvm_mem_range cur;
445         kvm_pte_t pte;
446         s8 level;
447         int ret;
448 
449         hyp_assert_lock_held(&host_mmu.lock);
450         ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
451         if (ret)
452                 return ret;
453 
454         if (kvm_pte_valid(pte))
455                 return -EAGAIN;
456 
457         if (pte)
458                 return -EPERM;
459 
460         do {
461                 u64 granule = kvm_granule_size(level);
462                 cur.start = ALIGN_DOWN(addr, granule);
463                 cur.end = cur.start + granule;
464                 level++;
465         } while ((level <= KVM_PGTABLE_LAST_LEVEL) &&
466                         !(kvm_level_supports_block_mapping(level) &&
467                           range_included(&cur, range)));
468 
469         *range = cur;
470 
471         return 0;
472 }
473 
474 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
475                              enum kvm_pgtable_prot prot)
476 {
477         return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
478 }
479 
480 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
481 {
482         return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
483                                addr, size, &host_s2_pool, owner_id);
484 }
485 
486 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
487 {
488         /*
489          * Block mappings must be used with care in the host stage-2 as a
490          * kvm_pgtable_stage2_map() operation targeting a page in the range of
491          * an existing block will delete the block under the assumption that
492          * mappings in the rest of the block range can always be rebuilt lazily.
493          * That assumption is correct for the host stage-2 with RWX mappings
494          * targeting memory or RW mappings targeting MMIO ranges (see
495          * host_stage2_idmap() below which implements some of the host memory
496          * abort logic). However, this is not safe for any other mappings where
497          * the host stage-2 page-table is in fact the only place where this
498          * state is stored. In all those cases, it is safer to use page-level
499          * mappings, hence avoiding to lose the state because of side-effects in
500          * kvm_pgtable_stage2_map().
501          */
502         if (range_is_memory(addr, end))
503                 return prot != PKVM_HOST_MEM_PROT;
504         else
505                 return prot != PKVM_HOST_MMIO_PROT;
506 }
507 
508 static int host_stage2_idmap(u64 addr)
509 {
510         struct kvm_mem_range range;
511         bool is_memory = !!find_mem_range(addr, &range);
512         enum kvm_pgtable_prot prot;
513         int ret;
514 
515         prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
516 
517         host_lock_component();
518         ret = host_stage2_adjust_range(addr, &range);
519         if (ret)
520                 goto unlock;
521 
522         ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
523 unlock:
524         host_unlock_component();
525 
526         return ret;
527 }
528 
529 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
530 {
531         struct kvm_vcpu_fault_info fault;
532         u64 esr, addr;
533         int ret = 0;
534 
535         esr = read_sysreg_el2(SYS_ESR);
536         if (!__get_fault_info(esr, &fault)) {
537                 /*
538                  * We've presumably raced with a page-table change which caused
539                  * AT to fail, try again.
540                  */
541                 return;
542         }
543 
544         addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
545         ret = host_stage2_idmap(addr);
546         BUG_ON(ret && ret != -EAGAIN);
547 }
548 
549 struct pkvm_mem_transition {
550         u64                             nr_pages;
551 
552         struct {
553                 enum pkvm_component_id  id;
554                 /* Address in the initiator's address space */
555                 u64                     addr;
556 
557                 union {
558                         struct {
559                                 /* Address in the completer's address space */
560                                 u64     completer_addr;
561                         } host;
562                         struct {
563                                 u64     completer_addr;
564                         } hyp;
565                 };
566         } initiator;
567 
568         struct {
569                 enum pkvm_component_id  id;
570         } completer;
571 };
572 
573 struct pkvm_mem_share {
574         const struct pkvm_mem_transition        tx;
575         const enum kvm_pgtable_prot             completer_prot;
576 };
577 
578 struct pkvm_mem_donation {
579         const struct pkvm_mem_transition        tx;
580 };
581 
582 struct check_walk_data {
583         enum pkvm_page_state    desired;
584         enum pkvm_page_state    (*get_page_state)(kvm_pte_t pte, u64 addr);
585 };
586 
587 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
588                                       enum kvm_pgtable_walk_flags visit)
589 {
590         struct check_walk_data *d = ctx->arg;
591 
592         return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
593 }
594 
595 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
596                                   struct check_walk_data *data)
597 {
598         struct kvm_pgtable_walker walker = {
599                 .cb     = __check_page_state_visitor,
600                 .arg    = data,
601                 .flags  = KVM_PGTABLE_WALK_LEAF,
602         };
603 
604         return kvm_pgtable_walk(pgt, addr, size, &walker);
605 }
606 
607 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr)
608 {
609         if (!addr_is_allowed_memory(addr))
610                 return PKVM_NOPAGE;
611 
612         if (!kvm_pte_valid(pte) && pte)
613                 return PKVM_NOPAGE;
614 
615         return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
616 }
617 
618 static int __host_check_page_state_range(u64 addr, u64 size,
619                                          enum pkvm_page_state state)
620 {
621         struct check_walk_data d = {
622                 .desired        = state,
623                 .get_page_state = host_get_page_state,
624         };
625 
626         hyp_assert_lock_held(&host_mmu.lock);
627         return check_page_state_range(&host_mmu.pgt, addr, size, &d);
628 }
629 
630 static int __host_set_page_state_range(u64 addr, u64 size,
631                                        enum pkvm_page_state state)
632 {
633         enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
634 
635         return host_stage2_idmap_locked(addr, size, prot);
636 }
637 
638 static int host_request_owned_transition(u64 *completer_addr,
639                                          const struct pkvm_mem_transition *tx)
640 {
641         u64 size = tx->nr_pages * PAGE_SIZE;
642         u64 addr = tx->initiator.addr;
643 
644         *completer_addr = tx->initiator.host.completer_addr;
645         return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
646 }
647 
648 static int host_request_unshare(u64 *completer_addr,
649                                 const struct pkvm_mem_transition *tx)
650 {
651         u64 size = tx->nr_pages * PAGE_SIZE;
652         u64 addr = tx->initiator.addr;
653 
654         *completer_addr = tx->initiator.host.completer_addr;
655         return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
656 }
657 
658 static int host_initiate_share(u64 *completer_addr,
659                                const struct pkvm_mem_transition *tx)
660 {
661         u64 size = tx->nr_pages * PAGE_SIZE;
662         u64 addr = tx->initiator.addr;
663 
664         *completer_addr = tx->initiator.host.completer_addr;
665         return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
666 }
667 
668 static int host_initiate_unshare(u64 *completer_addr,
669                                  const struct pkvm_mem_transition *tx)
670 {
671         u64 size = tx->nr_pages * PAGE_SIZE;
672         u64 addr = tx->initiator.addr;
673 
674         *completer_addr = tx->initiator.host.completer_addr;
675         return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
676 }
677 
678 static int host_initiate_donation(u64 *completer_addr,
679                                   const struct pkvm_mem_transition *tx)
680 {
681         u8 owner_id = tx->completer.id;
682         u64 size = tx->nr_pages * PAGE_SIZE;
683 
684         *completer_addr = tx->initiator.host.completer_addr;
685         return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id);
686 }
687 
688 static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
689 {
690         return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
691                  tx->initiator.id != PKVM_ID_HYP);
692 }
693 
694 static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx,
695                                  enum pkvm_page_state state)
696 {
697         u64 size = tx->nr_pages * PAGE_SIZE;
698 
699         if (__host_ack_skip_pgtable_check(tx))
700                 return 0;
701 
702         return __host_check_page_state_range(addr, size, state);
703 }
704 
705 static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
706 {
707         return __host_ack_transition(addr, tx, PKVM_NOPAGE);
708 }
709 
710 static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
711 {
712         u64 size = tx->nr_pages * PAGE_SIZE;
713         u8 host_id = tx->completer.id;
714 
715         return host_stage2_set_owner_locked(addr, size, host_id);
716 }
717 
718 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr)
719 {
720         if (!kvm_pte_valid(pte))
721                 return PKVM_NOPAGE;
722 
723         return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
724 }
725 
726 static int __hyp_check_page_state_range(u64 addr, u64 size,
727                                         enum pkvm_page_state state)
728 {
729         struct check_walk_data d = {
730                 .desired        = state,
731                 .get_page_state = hyp_get_page_state,
732         };
733 
734         hyp_assert_lock_held(&pkvm_pgd_lock);
735         return check_page_state_range(&pkvm_pgtable, addr, size, &d);
736 }
737 
738 static int hyp_request_donation(u64 *completer_addr,
739                                 const struct pkvm_mem_transition *tx)
740 {
741         u64 size = tx->nr_pages * PAGE_SIZE;
742         u64 addr = tx->initiator.addr;
743 
744         *completer_addr = tx->initiator.hyp.completer_addr;
745         return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
746 }
747 
748 static int hyp_initiate_donation(u64 *completer_addr,
749                                  const struct pkvm_mem_transition *tx)
750 {
751         u64 size = tx->nr_pages * PAGE_SIZE;
752         int ret;
753 
754         *completer_addr = tx->initiator.hyp.completer_addr;
755         ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size);
756         return (ret != size) ? -EFAULT : 0;
757 }
758 
759 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
760 {
761         return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
762                  tx->initiator.id != PKVM_ID_HOST);
763 }
764 
765 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
766                          enum kvm_pgtable_prot perms)
767 {
768         u64 size = tx->nr_pages * PAGE_SIZE;
769 
770         if (perms != PAGE_HYP)
771                 return -EPERM;
772 
773         if (__hyp_ack_skip_pgtable_check(tx))
774                 return 0;
775 
776         return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
777 }
778 
779 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
780 {
781         u64 size = tx->nr_pages * PAGE_SIZE;
782 
783         if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
784                 return -EBUSY;
785 
786         if (__hyp_ack_skip_pgtable_check(tx))
787                 return 0;
788 
789         return __hyp_check_page_state_range(addr, size,
790                                             PKVM_PAGE_SHARED_BORROWED);
791 }
792 
793 static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
794 {
795         u64 size = tx->nr_pages * PAGE_SIZE;
796 
797         if (__hyp_ack_skip_pgtable_check(tx))
798                 return 0;
799 
800         return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
801 }
802 
803 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
804                               enum kvm_pgtable_prot perms)
805 {
806         void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
807         enum kvm_pgtable_prot prot;
808 
809         prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
810         return pkvm_create_mappings_locked(start, end, prot);
811 }
812 
813 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
814 {
815         u64 size = tx->nr_pages * PAGE_SIZE;
816         int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
817 
818         return (ret != size) ? -EFAULT : 0;
819 }
820 
821 static int hyp_complete_donation(u64 addr,
822                                  const struct pkvm_mem_transition *tx)
823 {
824         void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
825         enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED);
826 
827         return pkvm_create_mappings_locked(start, end, prot);
828 }
829 
830 static int check_share(struct pkvm_mem_share *share)
831 {
832         const struct pkvm_mem_transition *tx = &share->tx;
833         u64 completer_addr;
834         int ret;
835 
836         switch (tx->initiator.id) {
837         case PKVM_ID_HOST:
838                 ret = host_request_owned_transition(&completer_addr, tx);
839                 break;
840         default:
841                 ret = -EINVAL;
842         }
843 
844         if (ret)
845                 return ret;
846 
847         switch (tx->completer.id) {
848         case PKVM_ID_HYP:
849                 ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
850                 break;
851         case PKVM_ID_FFA:
852                 /*
853                  * We only check the host; the secure side will check the other
854                  * end when we forward the FFA call.
855                  */
856                 ret = 0;
857                 break;
858         default:
859                 ret = -EINVAL;
860         }
861 
862         return ret;
863 }
864 
865 static int __do_share(struct pkvm_mem_share *share)
866 {
867         const struct pkvm_mem_transition *tx = &share->tx;
868         u64 completer_addr;
869         int ret;
870 
871         switch (tx->initiator.id) {
872         case PKVM_ID_HOST:
873                 ret = host_initiate_share(&completer_addr, tx);
874                 break;
875         default:
876                 ret = -EINVAL;
877         }
878 
879         if (ret)
880                 return ret;
881 
882         switch (tx->completer.id) {
883         case PKVM_ID_HYP:
884                 ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
885                 break;
886         case PKVM_ID_FFA:
887                 /*
888                  * We're not responsible for any secure page-tables, so there's
889                  * nothing to do here.
890                  */
891                 ret = 0;
892                 break;
893         default:
894                 ret = -EINVAL;
895         }
896 
897         return ret;
898 }
899 
900 /*
901  * do_share():
902  *
903  * The page owner grants access to another component with a given set
904  * of permissions.
905  *
906  * Initiator: OWNED     => SHARED_OWNED
907  * Completer: NOPAGE    => SHARED_BORROWED
908  */
909 static int do_share(struct pkvm_mem_share *share)
910 {
911         int ret;
912 
913         ret = check_share(share);
914         if (ret)
915                 return ret;
916 
917         return WARN_ON(__do_share(share));
918 }
919 
920 static int check_unshare(struct pkvm_mem_share *share)
921 {
922         const struct pkvm_mem_transition *tx = &share->tx;
923         u64 completer_addr;
924         int ret;
925 
926         switch (tx->initiator.id) {
927         case PKVM_ID_HOST:
928                 ret = host_request_unshare(&completer_addr, tx);
929                 break;
930         default:
931                 ret = -EINVAL;
932         }
933 
934         if (ret)
935                 return ret;
936 
937         switch (tx->completer.id) {
938         case PKVM_ID_HYP:
939                 ret = hyp_ack_unshare(completer_addr, tx);
940                 break;
941         case PKVM_ID_FFA:
942                 /* See check_share() */
943                 ret = 0;
944                 break;
945         default:
946                 ret = -EINVAL;
947         }
948 
949         return ret;
950 }
951 
952 static int __do_unshare(struct pkvm_mem_share *share)
953 {
954         const struct pkvm_mem_transition *tx = &share->tx;
955         u64 completer_addr;
956         int ret;
957 
958         switch (tx->initiator.id) {
959         case PKVM_ID_HOST:
960                 ret = host_initiate_unshare(&completer_addr, tx);
961                 break;
962         default:
963                 ret = -EINVAL;
964         }
965 
966         if (ret)
967                 return ret;
968 
969         switch (tx->completer.id) {
970         case PKVM_ID_HYP:
971                 ret = hyp_complete_unshare(completer_addr, tx);
972                 break;
973         case PKVM_ID_FFA:
974                 /* See __do_share() */
975                 ret = 0;
976                 break;
977         default:
978                 ret = -EINVAL;
979         }
980 
981         return ret;
982 }
983 
984 /*
985  * do_unshare():
986  *
987  * The page owner revokes access from another component for a range of
988  * pages which were previously shared using do_share().
989  *
990  * Initiator: SHARED_OWNED      => OWNED
991  * Completer: SHARED_BORROWED   => NOPAGE
992  */
993 static int do_unshare(struct pkvm_mem_share *share)
994 {
995         int ret;
996 
997         ret = check_unshare(share);
998         if (ret)
999                 return ret;
1000 
1001         return WARN_ON(__do_unshare(share));
1002 }
1003 
1004 static int check_donation(struct pkvm_mem_donation *donation)
1005 {
1006         const struct pkvm_mem_transition *tx = &donation->tx;
1007         u64 completer_addr;
1008         int ret;
1009 
1010         switch (tx->initiator.id) {
1011         case PKVM_ID_HOST:
1012                 ret = host_request_owned_transition(&completer_addr, tx);
1013                 break;
1014         case PKVM_ID_HYP:
1015                 ret = hyp_request_donation(&completer_addr, tx);
1016                 break;
1017         default:
1018                 ret = -EINVAL;
1019         }
1020 
1021         if (ret)
1022                 return ret;
1023 
1024         switch (tx->completer.id) {
1025         case PKVM_ID_HOST:
1026                 ret = host_ack_donation(completer_addr, tx);
1027                 break;
1028         case PKVM_ID_HYP:
1029                 ret = hyp_ack_donation(completer_addr, tx);
1030                 break;
1031         default:
1032                 ret = -EINVAL;
1033         }
1034 
1035         return ret;
1036 }
1037 
1038 static int __do_donate(struct pkvm_mem_donation *donation)
1039 {
1040         const struct pkvm_mem_transition *tx = &donation->tx;
1041         u64 completer_addr;
1042         int ret;
1043 
1044         switch (tx->initiator.id) {
1045         case PKVM_ID_HOST:
1046                 ret = host_initiate_donation(&completer_addr, tx);
1047                 break;
1048         case PKVM_ID_HYP:
1049                 ret = hyp_initiate_donation(&completer_addr, tx);
1050                 break;
1051         default:
1052                 ret = -EINVAL;
1053         }
1054 
1055         if (ret)
1056                 return ret;
1057 
1058         switch (tx->completer.id) {
1059         case PKVM_ID_HOST:
1060                 ret = host_complete_donation(completer_addr, tx);
1061                 break;
1062         case PKVM_ID_HYP:
1063                 ret = hyp_complete_donation(completer_addr, tx);
1064                 break;
1065         default:
1066                 ret = -EINVAL;
1067         }
1068 
1069         return ret;
1070 }
1071 
1072 /*
1073  * do_donate():
1074  *
1075  * The page owner transfers ownership to another component, losing access
1076  * as a consequence.
1077  *
1078  * Initiator: OWNED     => NOPAGE
1079  * Completer: NOPAGE    => OWNED
1080  */
1081 static int do_donate(struct pkvm_mem_donation *donation)
1082 {
1083         int ret;
1084 
1085         ret = check_donation(donation);
1086         if (ret)
1087                 return ret;
1088 
1089         return WARN_ON(__do_donate(donation));
1090 }
1091 
1092 int __pkvm_host_share_hyp(u64 pfn)
1093 {
1094         int ret;
1095         u64 host_addr = hyp_pfn_to_phys(pfn);
1096         u64 hyp_addr = (u64)__hyp_va(host_addr);
1097         struct pkvm_mem_share share = {
1098                 .tx     = {
1099                         .nr_pages       = 1,
1100                         .initiator      = {
1101                                 .id     = PKVM_ID_HOST,
1102                                 .addr   = host_addr,
1103                                 .host   = {
1104                                         .completer_addr = hyp_addr,
1105                                 },
1106                         },
1107                         .completer      = {
1108                                 .id     = PKVM_ID_HYP,
1109                         },
1110                 },
1111                 .completer_prot = PAGE_HYP,
1112         };
1113 
1114         host_lock_component();
1115         hyp_lock_component();
1116 
1117         ret = do_share(&share);
1118 
1119         hyp_unlock_component();
1120         host_unlock_component();
1121 
1122         return ret;
1123 }
1124 
1125 int __pkvm_host_unshare_hyp(u64 pfn)
1126 {
1127         int ret;
1128         u64 host_addr = hyp_pfn_to_phys(pfn);
1129         u64 hyp_addr = (u64)__hyp_va(host_addr);
1130         struct pkvm_mem_share share = {
1131                 .tx     = {
1132                         .nr_pages       = 1,
1133                         .initiator      = {
1134                                 .id     = PKVM_ID_HOST,
1135                                 .addr   = host_addr,
1136                                 .host   = {
1137                                         .completer_addr = hyp_addr,
1138                                 },
1139                         },
1140                         .completer      = {
1141                                 .id     = PKVM_ID_HYP,
1142                         },
1143                 },
1144                 .completer_prot = PAGE_HYP,
1145         };
1146 
1147         host_lock_component();
1148         hyp_lock_component();
1149 
1150         ret = do_unshare(&share);
1151 
1152         hyp_unlock_component();
1153         host_unlock_component();
1154 
1155         return ret;
1156 }
1157 
1158 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
1159 {
1160         int ret;
1161         u64 host_addr = hyp_pfn_to_phys(pfn);
1162         u64 hyp_addr = (u64)__hyp_va(host_addr);
1163         struct pkvm_mem_donation donation = {
1164                 .tx     = {
1165                         .nr_pages       = nr_pages,
1166                         .initiator      = {
1167                                 .id     = PKVM_ID_HOST,
1168                                 .addr   = host_addr,
1169                                 .host   = {
1170                                         .completer_addr = hyp_addr,
1171                                 },
1172                         },
1173                         .completer      = {
1174                                 .id     = PKVM_ID_HYP,
1175                         },
1176                 },
1177         };
1178 
1179         host_lock_component();
1180         hyp_lock_component();
1181 
1182         ret = do_donate(&donation);
1183 
1184         hyp_unlock_component();
1185         host_unlock_component();
1186 
1187         return ret;
1188 }
1189 
1190 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
1191 {
1192         int ret;
1193         u64 host_addr = hyp_pfn_to_phys(pfn);
1194         u64 hyp_addr = (u64)__hyp_va(host_addr);
1195         struct pkvm_mem_donation donation = {
1196                 .tx     = {
1197                         .nr_pages       = nr_pages,
1198                         .initiator      = {
1199                                 .id     = PKVM_ID_HYP,
1200                                 .addr   = hyp_addr,
1201                                 .hyp    = {
1202                                         .completer_addr = host_addr,
1203                                 },
1204                         },
1205                         .completer      = {
1206                                 .id     = PKVM_ID_HOST,
1207                         },
1208                 },
1209         };
1210 
1211         host_lock_component();
1212         hyp_lock_component();
1213 
1214         ret = do_donate(&donation);
1215 
1216         hyp_unlock_component();
1217         host_unlock_component();
1218 
1219         return ret;
1220 }
1221 
1222 int hyp_pin_shared_mem(void *from, void *to)
1223 {
1224         u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1225         u64 end = PAGE_ALIGN((u64)to);
1226         u64 size = end - start;
1227         int ret;
1228 
1229         host_lock_component();
1230         hyp_lock_component();
1231 
1232         ret = __host_check_page_state_range(__hyp_pa(start), size,
1233                                             PKVM_PAGE_SHARED_OWNED);
1234         if (ret)
1235                 goto unlock;
1236 
1237         ret = __hyp_check_page_state_range(start, size,
1238                                            PKVM_PAGE_SHARED_BORROWED);
1239         if (ret)
1240                 goto unlock;
1241 
1242         for (cur = start; cur < end; cur += PAGE_SIZE)
1243                 hyp_page_ref_inc(hyp_virt_to_page(cur));
1244 
1245 unlock:
1246         hyp_unlock_component();
1247         host_unlock_component();
1248 
1249         return ret;
1250 }
1251 
1252 void hyp_unpin_shared_mem(void *from, void *to)
1253 {
1254         u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1255         u64 end = PAGE_ALIGN((u64)to);
1256 
1257         host_lock_component();
1258         hyp_lock_component();
1259 
1260         for (cur = start; cur < end; cur += PAGE_SIZE)
1261                 hyp_page_ref_dec(hyp_virt_to_page(cur));
1262 
1263         hyp_unlock_component();
1264         host_unlock_component();
1265 }
1266 
1267 int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
1268 {
1269         int ret;
1270         struct pkvm_mem_share share = {
1271                 .tx     = {
1272                         .nr_pages       = nr_pages,
1273                         .initiator      = {
1274                                 .id     = PKVM_ID_HOST,
1275                                 .addr   = hyp_pfn_to_phys(pfn),
1276                         },
1277                         .completer      = {
1278                                 .id     = PKVM_ID_FFA,
1279                         },
1280                 },
1281         };
1282 
1283         host_lock_component();
1284         ret = do_share(&share);
1285         host_unlock_component();
1286 
1287         return ret;
1288 }
1289 
1290 int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
1291 {
1292         int ret;
1293         struct pkvm_mem_share share = {
1294                 .tx     = {
1295                         .nr_pages       = nr_pages,
1296                         .initiator      = {
1297                                 .id     = PKVM_ID_HOST,
1298                                 .addr   = hyp_pfn_to_phys(pfn),
1299                         },
1300                         .completer      = {
1301                                 .id     = PKVM_ID_FFA,
1302                         },
1303                 },
1304         };
1305 
1306         host_lock_component();
1307         ret = do_unshare(&share);
1308         host_unlock_component();
1309 
1310         return ret;
1311 }
1312 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php