1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/switch.h> 8 #include <hyp/sysreg-sr.h> 9 10 #include <linux/arm-smccc.h> 11 #include <linux/kvm_host.h> 12 #include <linux/types.h> 13 #include <linux/jump_label.h> 14 #include <uapi/linux/psci.h> 15 16 #include <kvm/arm_psci.h> 17 18 #include <asm/barrier.h> 19 #include <asm/cpufeature.h> 20 #include <asm/kprobes.h> 21 #include <asm/kvm_asm.h> 22 #include <asm/kvm_emulate.h> 23 #include <asm/kvm_hyp.h> 24 #include <asm/kvm_mmu.h> 25 #include <asm/fpsimd.h> 26 #include <asm/debug-monitors.h> 27 #include <asm/processor.h> 28 29 #include <nvhe/fixed_config.h> 30 #include <nvhe/mem_protect.h> 31 32 /* Non-VHE specific context */ 33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); 34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); 36 37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc); 38 39 static void __activate_traps(struct kvm_vcpu *vcpu) 40 { 41 u64 val; 42 43 ___activate_traps(vcpu, vcpu->arch.hcr_el2); 44 __activate_traps_common(vcpu); 45 46 val = vcpu->arch.cptr_el2; 47 val |= CPTR_EL2_TAM; /* Same bit irrespective of E2H */ 48 val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA; 49 if (cpus_have_final_cap(ARM64_SME)) { 50 if (has_hvhe()) 51 val &= ~CPACR_ELx_SMEN; 52 else 53 val |= CPTR_EL2_TSM; 54 } 55 56 if (!guest_owns_fp_regs()) { 57 if (has_hvhe()) 58 val &= ~(CPACR_ELx_FPEN | CPACR_ELx_ZEN); 59 else 60 val |= CPTR_EL2_TFP | CPTR_EL2_TZ; 61 62 __activate_traps_fpsimd32(vcpu); 63 } 64 65 kvm_write_cptr_el2(val); 66 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2); 67 68 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 69 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; 70 71 isb(); 72 /* 73 * At this stage, and thanks to the above isb(), S2 is 74 * configured and enabled. We can now restore the guest's S1 75 * configuration: SCTLR, and only then TCR. 76 */ 77 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); 78 isb(); 79 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); 80 } 81 } 82 83 static void __deactivate_traps(struct kvm_vcpu *vcpu) 84 { 85 extern char __kvm_hyp_host_vector[]; 86 87 ___deactivate_traps(vcpu); 88 89 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { 90 u64 val; 91 92 /* 93 * Set the TCR and SCTLR registers in the exact opposite 94 * sequence as __activate_traps (first prevent walks, 95 * then force the MMU on). A generous sprinkling of isb() 96 * ensure that things happen in this exact order. 97 */ 98 val = read_sysreg_el1(SYS_TCR); 99 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR); 100 isb(); 101 val = read_sysreg_el1(SYS_SCTLR); 102 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR); 103 isb(); 104 } 105 106 __deactivate_traps_common(vcpu); 107 108 write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2); 109 110 kvm_reset_cptr_el2(vcpu); 111 write_sysreg(__kvm_hyp_host_vector, vbar_el2); 112 } 113 114 /* Save VGICv3 state on non-VHE systems */ 115 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu) 116 { 117 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 118 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); 119 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 120 } 121 } 122 123 /* Restore VGICv3 state on non-VHE systems */ 124 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu) 125 { 126 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) { 127 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3); 128 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); 129 } 130 } 131 132 /* 133 * Disable host events, enable guest events 134 */ 135 #ifdef CONFIG_HW_PERF_EVENTS 136 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu) 137 { 138 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 139 140 if (pmu->events_host) 141 write_sysreg(pmu->events_host, pmcntenclr_el0); 142 143 if (pmu->events_guest) 144 write_sysreg(pmu->events_guest, pmcntenset_el0); 145 146 return (pmu->events_host || pmu->events_guest); 147 } 148 149 /* 150 * Disable guest events, enable host events 151 */ 152 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu) 153 { 154 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events; 155 156 if (pmu->events_guest) 157 write_sysreg(pmu->events_guest, pmcntenclr_el0); 158 159 if (pmu->events_host) 160 write_sysreg(pmu->events_host, pmcntenset_el0); 161 } 162 #else 163 #define __pmu_switch_to_guest(v) ({ false; }) 164 #define __pmu_switch_to_host(v) do {} while (0) 165 #endif 166 167 /* 168 * Handler for protected VM MSR, MRS or System instruction execution in AArch64. 169 * 170 * Returns true if the hypervisor has handled the exit, and control should go 171 * back to the guest, or false if it hasn't. 172 */ 173 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code) 174 { 175 /* 176 * Make sure we handle the exit for workarounds before the pKVM 177 * handling, as the latter could decide to UNDEF. 178 */ 179 return (kvm_hyp_handle_sysreg(vcpu, exit_code) || 180 kvm_handle_pvm_sysreg(vcpu, exit_code)); 181 } 182 183 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu) 184 { 185 /* 186 * Non-protected kvm relies on the host restoring its sve state. 187 * Protected kvm restores the host's sve state as not to reveal that 188 * fpsimd was used by a guest nor leak upper sve bits. 189 */ 190 if (unlikely(is_protected_kvm_enabled() && system_supports_sve())) { 191 __hyp_sve_save_host(); 192 193 /* Re-enable SVE traps if not supported for the guest vcpu. */ 194 if (!vcpu_has_sve(vcpu)) 195 cpacr_clear_set(CPACR_ELx_ZEN, 0); 196 197 } else { 198 __fpsimd_save_state(*host_data_ptr(fpsimd_state)); 199 } 200 } 201 202 static const exit_handler_fn hyp_exit_handlers[] = { 203 [0 ... ESR_ELx_EC_MAX] = NULL, 204 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, 205 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg, 206 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, 207 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 208 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 209 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 210 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 211 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 212 }; 213 214 static const exit_handler_fn pvm_exit_handlers[] = { 215 [0 ... ESR_ELx_EC_MAX] = NULL, 216 [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64, 217 [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted, 218 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 219 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 220 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 221 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 222 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 223 }; 224 225 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) 226 { 227 if (unlikely(vcpu_is_protected(vcpu))) 228 return pvm_exit_handlers; 229 230 return hyp_exit_handlers; 231 } 232 233 /* 234 * Some guests (e.g., protected VMs) are not be allowed to run in AArch32. 235 * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a 236 * guest from dropping to AArch32 EL0 if implemented by the CPU. If the 237 * hypervisor spots a guest in such a state ensure it is handled, and don't 238 * trust the host to spot or fix it. The check below is based on the one in 239 * kvm_arch_vcpu_ioctl_run(). 240 * 241 * Returns false if the guest ran in AArch32 when it shouldn't have, and 242 * thus should exit to the host, or true if a the guest run loop can continue. 243 */ 244 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) 245 { 246 if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) { 247 /* 248 * As we have caught the guest red-handed, decide that it isn't 249 * fit for purpose anymore by making the vcpu invalid. The VMM 250 * can try and fix it by re-initializing the vcpu with 251 * KVM_ARM_VCPU_INIT, however, this is likely not possible for 252 * protected VMs. 253 */ 254 vcpu_clear_flag(vcpu, VCPU_INITIALIZED); 255 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT); 256 *exit_code |= ARM_EXCEPTION_IL; 257 } 258 } 259 260 /* Switch to the guest for legacy non-VHE systems */ 261 int __kvm_vcpu_run(struct kvm_vcpu *vcpu) 262 { 263 struct kvm_cpu_context *host_ctxt; 264 struct kvm_cpu_context *guest_ctxt; 265 struct kvm_s2_mmu *mmu; 266 bool pmu_switch_needed; 267 u64 exit_code; 268 269 /* 270 * Having IRQs masked via PMR when entering the guest means the GIC 271 * will not signal the CPU of interrupts of lower priority, and the 272 * only way to get out will be via guest exceptions. 273 * Naturally, we want to avoid this. 274 */ 275 if (system_uses_irq_prio_masking()) { 276 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 277 pmr_sync(); 278 } 279 280 host_ctxt = host_data_ptr(host_ctxt); 281 host_ctxt->__hyp_running_vcpu = vcpu; 282 guest_ctxt = &vcpu->arch.ctxt; 283 284 pmu_switch_needed = __pmu_switch_to_guest(vcpu); 285 286 __sysreg_save_state_nvhe(host_ctxt); 287 /* 288 * We must flush and disable the SPE buffer for nVHE, as 289 * the translation regime(EL1&0) is going to be loaded with 290 * that of the guest. And we must do this before we change the 291 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and 292 * before we load guest Stage1. 293 */ 294 __debug_save_host_buffers_nvhe(vcpu); 295 296 /* 297 * We're about to restore some new MMU state. Make sure 298 * ongoing page-table walks that have started before we 299 * trapped to EL2 have completed. This also synchronises the 300 * above disabling of SPE and TRBE. 301 * 302 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes", 303 * rule R_LFHQG and subsequent information statements. 304 */ 305 dsb(nsh); 306 307 __kvm_adjust_pc(vcpu); 308 309 /* 310 * We must restore the 32-bit state before the sysregs, thanks 311 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). 312 * 313 * Also, and in order to be able to deal with erratum #1319537 (A57) 314 * and #1319367 (A72), we must ensure that all VM-related sysreg are 315 * restored before we enable S2 translation. 316 */ 317 __sysreg32_restore_state(vcpu); 318 __sysreg_restore_state_nvhe(guest_ctxt); 319 320 mmu = kern_hyp_va(vcpu->arch.hw_mmu); 321 __load_stage2(mmu, kern_hyp_va(mmu->arch)); 322 __activate_traps(vcpu); 323 324 __hyp_vgic_restore_state(vcpu); 325 __timer_enable_traps(vcpu); 326 327 __debug_switch_to_guest(vcpu); 328 329 do { 330 /* Jump in the fire! */ 331 exit_code = __guest_enter(vcpu); 332 333 /* And we're baaack! */ 334 } while (fixup_guest_exit(vcpu, &exit_code)); 335 336 __sysreg_save_state_nvhe(guest_ctxt); 337 __sysreg32_save_state(vcpu); 338 __timer_disable_traps(vcpu); 339 __hyp_vgic_save_state(vcpu); 340 341 /* 342 * Same thing as before the guest run: we're about to switch 343 * the MMU context, so let's make sure we don't have any 344 * ongoing EL1&0 translations. 345 */ 346 dsb(nsh); 347 348 __deactivate_traps(vcpu); 349 __load_host_stage2(); 350 351 __sysreg_restore_state_nvhe(host_ctxt); 352 353 if (guest_owns_fp_regs()) 354 __fpsimd_save_fpexc32(vcpu); 355 356 __debug_switch_to_host(vcpu); 357 /* 358 * This must come after restoring the host sysregs, since a non-VHE 359 * system may enable SPE here and make use of the TTBRs. 360 */ 361 __debug_restore_host_buffers_nvhe(vcpu); 362 363 if (pmu_switch_needed) 364 __pmu_switch_to_host(vcpu); 365 366 /* Returning to host will clear PSR.I, remask PMR if needed */ 367 if (system_uses_irq_prio_masking()) 368 gic_write_pmr(GIC_PRIO_IRQOFF); 369 370 host_ctxt->__hyp_running_vcpu = NULL; 371 372 return exit_code; 373 } 374 375 asmlinkage void __noreturn hyp_panic(void) 376 { 377 u64 spsr = read_sysreg_el2(SYS_SPSR); 378 u64 elr = read_sysreg_el2(SYS_ELR); 379 u64 par = read_sysreg_par(); 380 struct kvm_cpu_context *host_ctxt; 381 struct kvm_vcpu *vcpu; 382 383 host_ctxt = host_data_ptr(host_ctxt); 384 vcpu = host_ctxt->__hyp_running_vcpu; 385 386 if (vcpu) { 387 __timer_disable_traps(vcpu); 388 __deactivate_traps(vcpu); 389 __load_host_stage2(); 390 __sysreg_restore_state_nvhe(host_ctxt); 391 } 392 393 /* Prepare to dump kvm nvhe hyp stacktrace */ 394 kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0), 395 _THIS_IP_); 396 397 __hyp_do_panic(host_ctxt, spsr, elr, par); 398 unreachable(); 399 } 400 401 asmlinkage void __noreturn hyp_panic_bad_stack(void) 402 { 403 hyp_panic(); 404 } 405 406 asmlinkage void kvm_unexpected_el2_exception(void) 407 { 408 __kvm_unexpected_el2_exception(); 409 } 410
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.