1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <hyp/switch.h> 8 9 #include <linux/arm-smccc.h> 10 #include <linux/kvm_host.h> 11 #include <linux/types.h> 12 #include <linux/jump_label.h> 13 #include <linux/percpu.h> 14 #include <uapi/linux/psci.h> 15 16 #include <kvm/arm_psci.h> 17 18 #include <asm/barrier.h> 19 #include <asm/cpufeature.h> 20 #include <asm/kprobes.h> 21 #include <asm/kvm_asm.h> 22 #include <asm/kvm_emulate.h> 23 #include <asm/kvm_hyp.h> 24 #include <asm/kvm_mmu.h> 25 #include <asm/fpsimd.h> 26 #include <asm/debug-monitors.h> 27 #include <asm/processor.h> 28 #include <asm/thread_info.h> 29 #include <asm/vectors.h> 30 31 /* VHE specific context */ 32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data); 33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector); 35 36 /* 37 * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1 38 * semantics, irrespective of the configuration), but that cannot be 39 * applied to the actual HW as things would otherwise break badly. 40 * 41 * - TGE: we want the guest to use EL1, which is incompatible with 42 * this bit being set 43 * 44 * - API/APK: they are already accounted for by vcpu_load(), and can 45 * only take effect across a load/put cycle (such as ERET) 46 */ 47 #define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK) 48 49 static u64 __compute_hcr(struct kvm_vcpu *vcpu) 50 { 51 u64 hcr = vcpu->arch.hcr_el2; 52 53 if (!vcpu_has_nv(vcpu)) 54 return hcr; 55 56 if (is_hyp_ctxt(vcpu)) { 57 hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB; 58 59 if (!vcpu_el2_e2h_is_set(vcpu)) 60 hcr |= HCR_NV1; 61 62 write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2); 63 } 64 65 return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE); 66 } 67 68 static void __activate_cptr_traps(struct kvm_vcpu *vcpu) 69 { 70 u64 cptr; 71 72 /* 73 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to 74 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2, 75 * except for some missing controls, such as TAM. 76 * In this case, CPTR_EL2.TAM has the same position with or without 77 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM 78 * shift value for trapping the AMU accesses. 79 */ 80 u64 val = CPACR_ELx_TTA | CPTR_EL2_TAM; 81 82 if (guest_owns_fp_regs()) { 83 val |= CPACR_ELx_FPEN; 84 if (vcpu_has_sve(vcpu)) 85 val |= CPACR_ELx_ZEN; 86 } else { 87 __activate_traps_fpsimd32(vcpu); 88 } 89 90 if (!vcpu_has_nv(vcpu)) 91 goto write; 92 93 /* 94 * The architecture is a bit crap (what a surprise): an EL2 guest 95 * writing to CPTR_EL2 via CPACR_EL1 can't set any of TCPAC or TTA, 96 * as they are RES0 in the guest's view. To work around it, trap the 97 * sucker using the very same bit it can't set... 98 */ 99 if (vcpu_el2_e2h_is_set(vcpu) && is_hyp_ctxt(vcpu)) 100 val |= CPTR_EL2_TCPAC; 101 102 /* 103 * Layer the guest hypervisor's trap configuration on top of our own if 104 * we're in a nested context. 105 */ 106 if (is_hyp_ctxt(vcpu)) 107 goto write; 108 109 cptr = vcpu_sanitised_cptr_el2(vcpu); 110 111 /* 112 * Pay attention, there's some interesting detail here. 113 * 114 * The CPTR_EL2.xEN fields are 2 bits wide, although there are only two 115 * meaningful trap states when HCR_EL2.TGE = 0 (running a nested guest): 116 * 117 * - CPTR_EL2.xEN = x0, traps are enabled 118 * - CPTR_EL2.xEN = x1, traps are disabled 119 * 120 * In other words, bit[0] determines if guest accesses trap or not. In 121 * the interest of simplicity, clear the entire field if the guest 122 * hypervisor has traps enabled to dispel any illusion of something more 123 * complicated taking place. 124 */ 125 if (!(SYS_FIELD_GET(CPACR_ELx, FPEN, cptr) & BIT(0))) 126 val &= ~CPACR_ELx_FPEN; 127 if (!(SYS_FIELD_GET(CPACR_ELx, ZEN, cptr) & BIT(0))) 128 val &= ~CPACR_ELx_ZEN; 129 130 if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S2POE, IMP)) 131 val |= cptr & CPACR_ELx_E0POE; 132 133 val |= cptr & CPTR_EL2_TCPAC; 134 135 write: 136 write_sysreg(val, cpacr_el1); 137 } 138 139 static void __activate_traps(struct kvm_vcpu *vcpu) 140 { 141 u64 val; 142 143 ___activate_traps(vcpu, __compute_hcr(vcpu)); 144 145 if (has_cntpoff()) { 146 struct timer_map map; 147 148 get_timer_map(vcpu, &map); 149 150 /* 151 * We're entrering the guest. Reload the correct 152 * values from memory now that TGE is clear. 153 */ 154 if (map.direct_ptimer == vcpu_ptimer(vcpu)) 155 val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); 156 if (map.direct_ptimer == vcpu_hptimer(vcpu)) 157 val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); 158 159 if (map.direct_ptimer) { 160 write_sysreg_el0(val, SYS_CNTP_CVAL); 161 isb(); 162 } 163 } 164 165 __activate_cptr_traps(vcpu); 166 167 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1); 168 } 169 NOKPROBE_SYMBOL(__activate_traps); 170 171 static void __deactivate_traps(struct kvm_vcpu *vcpu) 172 { 173 const char *host_vectors = vectors; 174 175 ___deactivate_traps(vcpu); 176 177 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); 178 179 if (has_cntpoff()) { 180 struct timer_map map; 181 u64 val, offset; 182 183 get_timer_map(vcpu, &map); 184 185 /* 186 * We're exiting the guest. Save the latest CVAL value 187 * to memory and apply the offset now that TGE is set. 188 */ 189 val = read_sysreg_el0(SYS_CNTP_CVAL); 190 if (map.direct_ptimer == vcpu_ptimer(vcpu)) 191 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val; 192 if (map.direct_ptimer == vcpu_hptimer(vcpu)) 193 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val; 194 195 offset = read_sysreg_s(SYS_CNTPOFF_EL2); 196 197 if (map.direct_ptimer && offset) { 198 write_sysreg_el0(val + offset, SYS_CNTP_CVAL); 199 isb(); 200 } 201 } 202 203 /* 204 * ARM errata 1165522 and 1530923 require the actual execution of the 205 * above before we can switch to the EL2/EL0 translation regime used by 206 * the host. 207 */ 208 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); 209 210 kvm_reset_cptr_el2(vcpu); 211 212 if (!arm64_kernel_unmapped_at_el0()) 213 host_vectors = __this_cpu_read(this_cpu_vector); 214 write_sysreg(host_vectors, vbar_el1); 215 } 216 NOKPROBE_SYMBOL(__deactivate_traps); 217 218 /* 219 * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to 220 * prevent a race condition between context switching of PMUSERENR_EL0 221 * in __{activate,deactivate}_traps_common() and IPIs that attempts to 222 * update PMUSERENR_EL0. See also kvm_set_pmuserenr(). 223 */ 224 static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu) 225 { 226 unsigned long flags; 227 228 local_irq_save(flags); 229 __activate_traps_common(vcpu); 230 local_irq_restore(flags); 231 } 232 233 static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu) 234 { 235 unsigned long flags; 236 237 local_irq_save(flags); 238 __deactivate_traps_common(vcpu); 239 local_irq_restore(flags); 240 } 241 242 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu) 243 { 244 host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu; 245 246 __vcpu_load_switch_sysregs(vcpu); 247 __vcpu_load_activate_traps(vcpu); 248 __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch); 249 } 250 251 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu) 252 { 253 __vcpu_put_deactivate_traps(vcpu); 254 __vcpu_put_switch_sysregs(vcpu); 255 256 host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL; 257 } 258 259 static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code) 260 { 261 u64 esr = kvm_vcpu_get_esr(vcpu); 262 u64 spsr, elr, mode; 263 264 /* 265 * Going through the whole put/load motions is a waste of time 266 * if this is a VHE guest hypervisor returning to its own 267 * userspace, or the hypervisor performing a local exception 268 * return. No need to save/restore registers, no need to 269 * switch S2 MMU. Just do the canonical ERET. 270 * 271 * Unless the trap has to be forwarded further down the line, 272 * of course... 273 */ 274 if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) || 275 (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET)) 276 return false; 277 278 spsr = read_sysreg_el1(SYS_SPSR); 279 mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT); 280 281 switch (mode) { 282 case PSR_MODE_EL0t: 283 if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))) 284 return false; 285 break; 286 case PSR_MODE_EL2t: 287 mode = PSR_MODE_EL1t; 288 break; 289 case PSR_MODE_EL2h: 290 mode = PSR_MODE_EL1h; 291 break; 292 default: 293 return false; 294 } 295 296 /* If ERETAx fails, take the slow path */ 297 if (esr_iss_is_eretax(esr)) { 298 if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr))) 299 return false; 300 } else { 301 elr = read_sysreg_el1(SYS_ELR); 302 } 303 304 spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode; 305 306 write_sysreg_el2(spsr, SYS_SPSR); 307 write_sysreg_el2(elr, SYS_ELR); 308 309 return true; 310 } 311 312 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu) 313 { 314 __fpsimd_save_state(*host_data_ptr(fpsimd_state)); 315 } 316 317 static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code) 318 { 319 int ret = -EINVAL; 320 u32 instr; 321 u64 val; 322 323 /* 324 * Ideally, we would never trap on EL2 S1 TLB invalidations using 325 * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}. 326 * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2, 327 * meaning that we can't track changes to the virtual TGE bit. So we 328 * have to leave HCR_EL2.TTLB set on the host. Oopsie... 329 * 330 * Try and handle these invalidation as quickly as possible, without 331 * fully exiting. Note that we don't need to consider any forwarding 332 * here, as having E2H+TGE set is the very definition of being 333 * InHost. 334 * 335 * For the lesser hypervisors out there that have failed to get on 336 * with the VHE program, we can also handle the nVHE style of EL2 337 * invalidation. 338 */ 339 if (!(is_hyp_ctxt(vcpu))) 340 return false; 341 342 instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 343 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); 344 345 if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) && 346 vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) || 347 kvm_supported_tlbi_s1e2_op (vcpu, instr)) 348 ret = __kvm_tlbi_s1e2(NULL, val, instr); 349 350 if (ret) 351 return false; 352 353 __kvm_skip_instr(vcpu); 354 355 return true; 356 } 357 358 static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code) 359 { 360 u64 esr = kvm_vcpu_get_esr(vcpu); 361 int rt; 362 363 if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1) 364 return false; 365 366 rt = kvm_vcpu_sys_get_rt(vcpu); 367 368 if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) { 369 vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2)); 370 } else { 371 vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2); 372 __activate_cptr_traps(vcpu); 373 } 374 375 __kvm_skip_instr(vcpu); 376 377 return true; 378 } 379 380 static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code) 381 { 382 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 383 384 if (!vcpu_has_nv(vcpu)) 385 return false; 386 387 if (sysreg != SYS_ZCR_EL2) 388 return false; 389 390 if (guest_owns_fp_regs()) 391 return false; 392 393 /* 394 * ZCR_EL2 traps are handled in the slow path, with the expectation 395 * that the guest's FP context has already been loaded onto the CPU. 396 * 397 * Load the guest's FP context and unconditionally forward to the 398 * slow path for handling (i.e. return false). 399 */ 400 kvm_hyp_handle_fpsimd(vcpu, exit_code); 401 return false; 402 } 403 404 static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code) 405 { 406 if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code)) 407 return true; 408 409 if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code)) 410 return true; 411 412 if (kvm_hyp_handle_zcr_el2(vcpu, exit_code)) 413 return true; 414 415 return kvm_hyp_handle_sysreg(vcpu, exit_code); 416 } 417 418 static const exit_handler_fn hyp_exit_handlers[] = { 419 [0 ... ESR_ELx_EC_MAX] = NULL, 420 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32, 421 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe, 422 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd, 423 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd, 424 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low, 425 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low, 426 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low, 427 [ESR_ELx_EC_ERET] = kvm_hyp_handle_eret, 428 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops, 429 }; 430 431 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu) 432 { 433 return hyp_exit_handlers; 434 } 435 436 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code) 437 { 438 /* 439 * If we were in HYP context on entry, adjust the PSTATE view 440 * so that the usual helpers work correctly. 441 */ 442 if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) { 443 u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT); 444 445 switch (mode) { 446 case PSR_MODE_EL1t: 447 mode = PSR_MODE_EL2t; 448 break; 449 case PSR_MODE_EL1h: 450 mode = PSR_MODE_EL2h; 451 break; 452 } 453 454 *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT); 455 *vcpu_cpsr(vcpu) |= mode; 456 } 457 } 458 459 /* Switch to the guest for VHE systems running in EL2 */ 460 static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu) 461 { 462 struct kvm_cpu_context *host_ctxt; 463 struct kvm_cpu_context *guest_ctxt; 464 u64 exit_code; 465 466 host_ctxt = host_data_ptr(host_ctxt); 467 guest_ctxt = &vcpu->arch.ctxt; 468 469 sysreg_save_host_state_vhe(host_ctxt); 470 471 /* 472 * Note that ARM erratum 1165522 requires us to configure both stage 1 473 * and stage 2 translation for the guest context before we clear 474 * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been 475 * loaded on the CPU in kvm_vcpu_load_vhe(). 476 */ 477 __activate_traps(vcpu); 478 479 __kvm_adjust_pc(vcpu); 480 481 sysreg_restore_guest_state_vhe(guest_ctxt); 482 __debug_switch_to_guest(vcpu); 483 484 do { 485 /* Jump in the fire! */ 486 exit_code = __guest_enter(vcpu); 487 488 /* And we're baaack! */ 489 } while (fixup_guest_exit(vcpu, &exit_code)); 490 491 sysreg_save_guest_state_vhe(guest_ctxt); 492 493 __deactivate_traps(vcpu); 494 495 sysreg_restore_host_state_vhe(host_ctxt); 496 497 if (guest_owns_fp_regs()) 498 __fpsimd_save_fpexc32(vcpu); 499 500 __debug_switch_to_host(vcpu); 501 502 return exit_code; 503 } 504 NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe); 505 506 int __kvm_vcpu_run(struct kvm_vcpu *vcpu) 507 { 508 int ret; 509 510 local_daif_mask(); 511 512 /* 513 * Having IRQs masked via PMR when entering the guest means the GIC 514 * will not signal the CPU of interrupts of lower priority, and the 515 * only way to get out will be via guest exceptions. 516 * Naturally, we want to avoid this. 517 * 518 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a 519 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU. 520 */ 521 pmr_sync(); 522 523 ret = __kvm_vcpu_run_vhe(vcpu); 524 525 /* 526 * local_daif_restore() takes care to properly restore PSTATE.DAIF 527 * and the GIC PMR if the host is using IRQ priorities. 528 */ 529 local_daif_restore(DAIF_PROCCTX_NOIRQ); 530 531 /* 532 * When we exit from the guest we change a number of CPU configuration 533 * parameters, such as traps. We rely on the isb() in kvm_call_hyp*() 534 * to make sure these changes take effect before running the host or 535 * additional guests. 536 */ 537 return ret; 538 } 539 540 static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par) 541 { 542 struct kvm_cpu_context *host_ctxt; 543 struct kvm_vcpu *vcpu; 544 545 host_ctxt = host_data_ptr(host_ctxt); 546 vcpu = host_ctxt->__hyp_running_vcpu; 547 548 __deactivate_traps(vcpu); 549 sysreg_restore_host_state_vhe(host_ctxt); 550 551 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n", 552 spsr, elr, 553 read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR), 554 read_sysreg(hpfar_el2), par, vcpu); 555 } 556 NOKPROBE_SYMBOL(__hyp_call_panic); 557 558 void __noreturn hyp_panic(void) 559 { 560 u64 spsr = read_sysreg_el2(SYS_SPSR); 561 u64 elr = read_sysreg_el2(SYS_ELR); 562 u64 par = read_sysreg_par(); 563 564 __hyp_call_panic(spsr, elr, par); 565 } 566 567 asmlinkage void kvm_unexpected_el2_exception(void) 568 { 569 __kvm_unexpected_el2_exception(); 570 } 571
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.