~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/hyp/vhe/switch.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2015 - ARM Ltd
  4  * Author: Marc Zyngier <marc.zyngier@arm.com>
  5  */
  6 
  7 #include <hyp/switch.h>
  8 
  9 #include <linux/arm-smccc.h>
 10 #include <linux/kvm_host.h>
 11 #include <linux/types.h>
 12 #include <linux/jump_label.h>
 13 #include <linux/percpu.h>
 14 #include <uapi/linux/psci.h>
 15 
 16 #include <kvm/arm_psci.h>
 17 
 18 #include <asm/barrier.h>
 19 #include <asm/cpufeature.h>
 20 #include <asm/kprobes.h>
 21 #include <asm/kvm_asm.h>
 22 #include <asm/kvm_emulate.h>
 23 #include <asm/kvm_hyp.h>
 24 #include <asm/kvm_mmu.h>
 25 #include <asm/fpsimd.h>
 26 #include <asm/debug-monitors.h>
 27 #include <asm/processor.h>
 28 #include <asm/thread_info.h>
 29 #include <asm/vectors.h>
 30 
 31 /* VHE specific context */
 32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
 33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
 34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
 35 
 36 /*
 37  * HCR_EL2 bits that the NV guest can freely change (no RES0/RES1
 38  * semantics, irrespective of the configuration), but that cannot be
 39  * applied to the actual HW as things would otherwise break badly.
 40  *
 41  * - TGE: we want the guest to use EL1, which is incompatible with
 42  *   this bit being set
 43  *
 44  * - API/APK: they are already accounted for by vcpu_load(), and can
 45  *   only take effect across a load/put cycle (such as ERET)
 46  */
 47 #define NV_HCR_GUEST_EXCLUDE    (HCR_TGE | HCR_API | HCR_APK)
 48 
 49 static u64 __compute_hcr(struct kvm_vcpu *vcpu)
 50 {
 51         u64 hcr = vcpu->arch.hcr_el2;
 52 
 53         if (!vcpu_has_nv(vcpu))
 54                 return hcr;
 55 
 56         if (is_hyp_ctxt(vcpu)) {
 57                 hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB;
 58 
 59                 if (!vcpu_el2_e2h_is_set(vcpu))
 60                         hcr |= HCR_NV1;
 61 
 62                 write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2);
 63         }
 64 
 65         return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE);
 66 }
 67 
 68 static void __activate_cptr_traps(struct kvm_vcpu *vcpu)
 69 {
 70         u64 cptr;
 71 
 72         /*
 73          * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
 74          * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
 75          * except for some missing controls, such as TAM.
 76          * In this case, CPTR_EL2.TAM has the same position with or without
 77          * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
 78          * shift value for trapping the AMU accesses.
 79          */
 80         u64 val = CPACR_ELx_TTA | CPTR_EL2_TAM;
 81 
 82         if (guest_owns_fp_regs()) {
 83                 val |= CPACR_ELx_FPEN;
 84                 if (vcpu_has_sve(vcpu))
 85                         val |= CPACR_ELx_ZEN;
 86         } else {
 87                 __activate_traps_fpsimd32(vcpu);
 88         }
 89 
 90         if (!vcpu_has_nv(vcpu))
 91                 goto write;
 92 
 93         /*
 94          * The architecture is a bit crap (what a surprise): an EL2 guest
 95          * writing to CPTR_EL2 via CPACR_EL1 can't set any of TCPAC or TTA,
 96          * as they are RES0 in the guest's view. To work around it, trap the
 97          * sucker using the very same bit it can't set...
 98          */
 99         if (vcpu_el2_e2h_is_set(vcpu) && is_hyp_ctxt(vcpu))
100                 val |= CPTR_EL2_TCPAC;
101 
102         /*
103          * Layer the guest hypervisor's trap configuration on top of our own if
104          * we're in a nested context.
105          */
106         if (is_hyp_ctxt(vcpu))
107                 goto write;
108 
109         cptr = vcpu_sanitised_cptr_el2(vcpu);
110 
111         /*
112          * Pay attention, there's some interesting detail here.
113          *
114          * The CPTR_EL2.xEN fields are 2 bits wide, although there are only two
115          * meaningful trap states when HCR_EL2.TGE = 0 (running a nested guest):
116          *
117          *  - CPTR_EL2.xEN = x0, traps are enabled
118          *  - CPTR_EL2.xEN = x1, traps are disabled
119          *
120          * In other words, bit[0] determines if guest accesses trap or not. In
121          * the interest of simplicity, clear the entire field if the guest
122          * hypervisor has traps enabled to dispel any illusion of something more
123          * complicated taking place.
124          */
125         if (!(SYS_FIELD_GET(CPACR_ELx, FPEN, cptr) & BIT(0)))
126                 val &= ~CPACR_ELx_FPEN;
127         if (!(SYS_FIELD_GET(CPACR_ELx, ZEN, cptr) & BIT(0)))
128                 val &= ~CPACR_ELx_ZEN;
129 
130         if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
131                 val |= cptr & CPACR_ELx_E0POE;
132 
133         val |= cptr & CPTR_EL2_TCPAC;
134 
135 write:
136         write_sysreg(val, cpacr_el1);
137 }
138 
139 static void __activate_traps(struct kvm_vcpu *vcpu)
140 {
141         u64 val;
142 
143         ___activate_traps(vcpu, __compute_hcr(vcpu));
144 
145         if (has_cntpoff()) {
146                 struct timer_map map;
147 
148                 get_timer_map(vcpu, &map);
149 
150                 /*
151                  * We're entrering the guest. Reload the correct
152                  * values from memory now that TGE is clear.
153                  */
154                 if (map.direct_ptimer == vcpu_ptimer(vcpu))
155                         val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
156                 if (map.direct_ptimer == vcpu_hptimer(vcpu))
157                         val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
158 
159                 if (map.direct_ptimer) {
160                         write_sysreg_el0(val, SYS_CNTP_CVAL);
161                         isb();
162                 }
163         }
164 
165         __activate_cptr_traps(vcpu);
166 
167         write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
168 }
169 NOKPROBE_SYMBOL(__activate_traps);
170 
171 static void __deactivate_traps(struct kvm_vcpu *vcpu)
172 {
173         const char *host_vectors = vectors;
174 
175         ___deactivate_traps(vcpu);
176 
177         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
178 
179         if (has_cntpoff()) {
180                 struct timer_map map;
181                 u64 val, offset;
182 
183                 get_timer_map(vcpu, &map);
184 
185                 /*
186                  * We're exiting the guest. Save the latest CVAL value
187                  * to memory and apply the offset now that TGE is set.
188                  */
189                 val = read_sysreg_el0(SYS_CNTP_CVAL);
190                 if (map.direct_ptimer == vcpu_ptimer(vcpu))
191                         __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val;
192                 if (map.direct_ptimer == vcpu_hptimer(vcpu))
193                         __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val;
194 
195                 offset = read_sysreg_s(SYS_CNTPOFF_EL2);
196 
197                 if (map.direct_ptimer && offset) {
198                         write_sysreg_el0(val + offset, SYS_CNTP_CVAL);
199                         isb();
200                 }
201         }
202 
203         /*
204          * ARM errata 1165522 and 1530923 require the actual execution of the
205          * above before we can switch to the EL2/EL0 translation regime used by
206          * the host.
207          */
208         asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
209 
210         kvm_reset_cptr_el2(vcpu);
211 
212         if (!arm64_kernel_unmapped_at_el0())
213                 host_vectors = __this_cpu_read(this_cpu_vector);
214         write_sysreg(host_vectors, vbar_el1);
215 }
216 NOKPROBE_SYMBOL(__deactivate_traps);
217 
218 /*
219  * Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to
220  * prevent a race condition between context switching of PMUSERENR_EL0
221  * in __{activate,deactivate}_traps_common() and IPIs that attempts to
222  * update PMUSERENR_EL0. See also kvm_set_pmuserenr().
223  */
224 static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu)
225 {
226         unsigned long flags;
227 
228         local_irq_save(flags);
229         __activate_traps_common(vcpu);
230         local_irq_restore(flags);
231 }
232 
233 static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu)
234 {
235         unsigned long flags;
236 
237         local_irq_save(flags);
238         __deactivate_traps_common(vcpu);
239         local_irq_restore(flags);
240 }
241 
242 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu)
243 {
244         host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu;
245 
246         __vcpu_load_switch_sysregs(vcpu);
247         __vcpu_load_activate_traps(vcpu);
248         __load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch);
249 }
250 
251 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu)
252 {
253         __vcpu_put_deactivate_traps(vcpu);
254         __vcpu_put_switch_sysregs(vcpu);
255 
256         host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL;
257 }
258 
259 static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code)
260 {
261         u64 esr = kvm_vcpu_get_esr(vcpu);
262         u64 spsr, elr, mode;
263 
264         /*
265          * Going through the whole put/load motions is a waste of time
266          * if this is a VHE guest hypervisor returning to its own
267          * userspace, or the hypervisor performing a local exception
268          * return. No need to save/restore registers, no need to
269          * switch S2 MMU. Just do the canonical ERET.
270          *
271          * Unless the trap has to be forwarded further down the line,
272          * of course...
273          */
274         if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) ||
275             (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET))
276                 return false;
277 
278         spsr = read_sysreg_el1(SYS_SPSR);
279         mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT);
280 
281         switch (mode) {
282         case PSR_MODE_EL0t:
283                 if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
284                         return false;
285                 break;
286         case PSR_MODE_EL2t:
287                 mode = PSR_MODE_EL1t;
288                 break;
289         case PSR_MODE_EL2h:
290                 mode = PSR_MODE_EL1h;
291                 break;
292         default:
293                 return false;
294         }
295 
296         /* If ERETAx fails, take the slow path */
297         if (esr_iss_is_eretax(esr)) {
298                 if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr)))
299                         return false;
300         } else {
301                 elr = read_sysreg_el1(SYS_ELR);
302         }
303 
304         spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode;
305 
306         write_sysreg_el2(spsr, SYS_SPSR);
307         write_sysreg_el2(elr, SYS_ELR);
308 
309         return true;
310 }
311 
312 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
313 {
314         __fpsimd_save_state(*host_data_ptr(fpsimd_state));
315 }
316 
317 static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
318 {
319         int ret = -EINVAL;
320         u32 instr;
321         u64 val;
322 
323         /*
324          * Ideally, we would never trap on EL2 S1 TLB invalidations using
325          * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}.
326          * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2,
327          * meaning that we can't track changes to the virtual TGE bit. So we
328          * have to leave HCR_EL2.TTLB set on the host. Oopsie...
329          *
330          * Try and handle these invalidation as quickly as possible, without
331          * fully exiting. Note that we don't need to consider any forwarding
332          * here, as having E2H+TGE set is the very definition of being
333          * InHost.
334          *
335          * For the lesser hypervisors out there that have failed to get on
336          * with the VHE program, we can also handle the nVHE style of EL2
337          * invalidation.
338          */
339         if (!(is_hyp_ctxt(vcpu)))
340                 return false;
341 
342         instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
343         val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
344 
345         if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) &&
346              vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) ||
347             kvm_supported_tlbi_s1e2_op (vcpu, instr))
348                 ret = __kvm_tlbi_s1e2(NULL, val, instr);
349 
350         if (ret)
351                 return false;
352 
353         __kvm_skip_instr(vcpu);
354 
355         return true;
356 }
357 
358 static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code)
359 {
360         u64 esr = kvm_vcpu_get_esr(vcpu);
361         int rt;
362 
363         if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1)
364                 return false;
365 
366         rt = kvm_vcpu_sys_get_rt(vcpu);
367 
368         if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) {
369                 vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2));
370         } else {
371                 vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2);
372                 __activate_cptr_traps(vcpu);
373         }
374 
375         __kvm_skip_instr(vcpu);
376 
377         return true;
378 }
379 
380 static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
381 {
382         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
383 
384         if (!vcpu_has_nv(vcpu))
385                 return false;
386 
387         if (sysreg != SYS_ZCR_EL2)
388                 return false;
389 
390         if (guest_owns_fp_regs())
391                 return false;
392 
393         /*
394          * ZCR_EL2 traps are handled in the slow path, with the expectation
395          * that the guest's FP context has already been loaded onto the CPU.
396          *
397          * Load the guest's FP context and unconditionally forward to the
398          * slow path for handling (i.e. return false).
399          */
400         kvm_hyp_handle_fpsimd(vcpu, exit_code);
401         return false;
402 }
403 
404 static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code)
405 {
406         if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code))
407                 return true;
408 
409         if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code))
410                 return true;
411 
412         if (kvm_hyp_handle_zcr_el2(vcpu, exit_code))
413                 return true;
414 
415         return kvm_hyp_handle_sysreg(vcpu, exit_code);
416 }
417 
418 static const exit_handler_fn hyp_exit_handlers[] = {
419         [0 ... ESR_ELx_EC_MAX]          = NULL,
420         [ESR_ELx_EC_CP15_32]            = kvm_hyp_handle_cp15_32,
421         [ESR_ELx_EC_SYS64]              = kvm_hyp_handle_sysreg_vhe,
422         [ESR_ELx_EC_SVE]                = kvm_hyp_handle_fpsimd,
423         [ESR_ELx_EC_FP_ASIMD]           = kvm_hyp_handle_fpsimd,
424         [ESR_ELx_EC_IABT_LOW]           = kvm_hyp_handle_iabt_low,
425         [ESR_ELx_EC_DABT_LOW]           = kvm_hyp_handle_dabt_low,
426         [ESR_ELx_EC_WATCHPT_LOW]        = kvm_hyp_handle_watchpt_low,
427         [ESR_ELx_EC_ERET]               = kvm_hyp_handle_eret,
428         [ESR_ELx_EC_MOPS]               = kvm_hyp_handle_mops,
429 };
430 
431 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
432 {
433         return hyp_exit_handlers;
434 }
435 
436 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
437 {
438         /*
439          * If we were in HYP context on entry, adjust the PSTATE view
440          * so that the usual helpers work correctly.
441          */
442         if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) {
443                 u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
444 
445                 switch (mode) {
446                 case PSR_MODE_EL1t:
447                         mode = PSR_MODE_EL2t;
448                         break;
449                 case PSR_MODE_EL1h:
450                         mode = PSR_MODE_EL2h;
451                         break;
452                 }
453 
454                 *vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT);
455                 *vcpu_cpsr(vcpu) |= mode;
456         }
457 }
458 
459 /* Switch to the guest for VHE systems running in EL2 */
460 static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
461 {
462         struct kvm_cpu_context *host_ctxt;
463         struct kvm_cpu_context *guest_ctxt;
464         u64 exit_code;
465 
466         host_ctxt = host_data_ptr(host_ctxt);
467         guest_ctxt = &vcpu->arch.ctxt;
468 
469         sysreg_save_host_state_vhe(host_ctxt);
470 
471         /*
472          * Note that ARM erratum 1165522 requires us to configure both stage 1
473          * and stage 2 translation for the guest context before we clear
474          * HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been
475          * loaded on the CPU in kvm_vcpu_load_vhe().
476          */
477         __activate_traps(vcpu);
478 
479         __kvm_adjust_pc(vcpu);
480 
481         sysreg_restore_guest_state_vhe(guest_ctxt);
482         __debug_switch_to_guest(vcpu);
483 
484         do {
485                 /* Jump in the fire! */
486                 exit_code = __guest_enter(vcpu);
487 
488                 /* And we're baaack! */
489         } while (fixup_guest_exit(vcpu, &exit_code));
490 
491         sysreg_save_guest_state_vhe(guest_ctxt);
492 
493         __deactivate_traps(vcpu);
494 
495         sysreg_restore_host_state_vhe(host_ctxt);
496 
497         if (guest_owns_fp_regs())
498                 __fpsimd_save_fpexc32(vcpu);
499 
500         __debug_switch_to_host(vcpu);
501 
502         return exit_code;
503 }
504 NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
505 
506 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
507 {
508         int ret;
509 
510         local_daif_mask();
511 
512         /*
513          * Having IRQs masked via PMR when entering the guest means the GIC
514          * will not signal the CPU of interrupts of lower priority, and the
515          * only way to get out will be via guest exceptions.
516          * Naturally, we want to avoid this.
517          *
518          * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
519          * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
520          */
521         pmr_sync();
522 
523         ret = __kvm_vcpu_run_vhe(vcpu);
524 
525         /*
526          * local_daif_restore() takes care to properly restore PSTATE.DAIF
527          * and the GIC PMR if the host is using IRQ priorities.
528          */
529         local_daif_restore(DAIF_PROCCTX_NOIRQ);
530 
531         /*
532          * When we exit from the guest we change a number of CPU configuration
533          * parameters, such as traps.  We rely on the isb() in kvm_call_hyp*()
534          * to make sure these changes take effect before running the host or
535          * additional guests.
536          */
537         return ret;
538 }
539 
540 static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par)
541 {
542         struct kvm_cpu_context *host_ctxt;
543         struct kvm_vcpu *vcpu;
544 
545         host_ctxt = host_data_ptr(host_ctxt);
546         vcpu = host_ctxt->__hyp_running_vcpu;
547 
548         __deactivate_traps(vcpu);
549         sysreg_restore_host_state_vhe(host_ctxt);
550 
551         panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n",
552               spsr, elr,
553               read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
554               read_sysreg(hpfar_el2), par, vcpu);
555 }
556 NOKPROBE_SYMBOL(__hyp_call_panic);
557 
558 void __noreturn hyp_panic(void)
559 {
560         u64 spsr = read_sysreg_el2(SYS_SPSR);
561         u64 elr = read_sysreg_el2(SYS_ELR);
562         u64 par = read_sysreg_par();
563 
564         __hyp_call_panic(spsr, elr, par);
565 }
566 
567 asmlinkage void kvm_unexpected_el2_exception(void)
568 {
569         __kvm_unexpected_el2_exception();
570 }
571 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php