~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/nested.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2017 - Columbia University and Linaro Ltd.
  4  * Author: Jintack Lim <jintack.lim@linaro.org>
  5  */
  6 
  7 #include <linux/bitfield.h>
  8 #include <linux/kvm.h>
  9 #include <linux/kvm_host.h>
 10 
 11 #include <asm/kvm_arm.h>
 12 #include <asm/kvm_emulate.h>
 13 #include <asm/kvm_mmu.h>
 14 #include <asm/kvm_nested.h>
 15 #include <asm/sysreg.h>
 16 
 17 #include "sys_regs.h"
 18 
 19 /* Protection against the sysreg repainting madness... */
 20 #define NV_FTR(r, f)            ID_AA64##r##_EL1_##f
 21 
 22 /*
 23  * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
 24  * memory usage and potential number of different sets of S2 PTs in
 25  * the guests. Running out of S2 MMUs only affects performance (we
 26  * will invalidate them more often).
 27  */
 28 #define S2_MMU_PER_VCPU         2
 29 
 30 void kvm_init_nested(struct kvm *kvm)
 31 {
 32         kvm->arch.nested_mmus = NULL;
 33         kvm->arch.nested_mmus_size = 0;
 34 }
 35 
 36 static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
 37 {
 38         /*
 39          * We only initialise the IPA range on the canonical MMU, which
 40          * defines the contract between KVM and userspace on where the
 41          * "hardware" is in the IPA space. This affects the validity of MMIO
 42          * exits forwarded to userspace, for example.
 43          *
 44          * For nested S2s, we use the PARange as exposed to the guest, as it
 45          * is allowed to use it at will to expose whatever memory map it
 46          * wants to its own guests as it would be on real HW.
 47          */
 48         return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
 49 }
 50 
 51 int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
 52 {
 53         struct kvm *kvm = vcpu->kvm;
 54         struct kvm_s2_mmu *tmp;
 55         int num_mmus, ret = 0;
 56 
 57         /*
 58          * Let's treat memory allocation failures as benign: If we fail to
 59          * allocate anything, return an error and keep the allocated array
 60          * alive. Userspace may try to recover by intializing the vcpu
 61          * again, and there is no reason to affect the whole VM for this.
 62          */
 63         num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
 64         tmp = kvrealloc(kvm->arch.nested_mmus,
 65                         size_mul(sizeof(*kvm->arch.nested_mmus), kvm->arch.nested_mmus_size),
 66                         size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
 67                         GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 68         if (!tmp)
 69                 return -ENOMEM;
 70 
 71         /*
 72          * If we went through a realocation, adjust the MMU back-pointers in
 73          * the previously initialised kvm_pgtable structures.
 74          */
 75         if (kvm->arch.nested_mmus != tmp)
 76                 for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
 77                         tmp[i].pgt->mmu = &tmp[i];
 78 
 79         for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
 80                 ret = init_nested_s2_mmu(kvm, &tmp[i]);
 81 
 82         if (ret) {
 83                 for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
 84                         kvm_free_stage2_pgd(&tmp[i]);
 85 
 86                 return ret;
 87         }
 88 
 89         kvm->arch.nested_mmus_size = num_mmus;
 90         kvm->arch.nested_mmus = tmp;
 91 
 92         return 0;
 93 }
 94 
 95 struct s2_walk_info {
 96         int          (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
 97         void         *data;
 98         u64          baddr;
 99         unsigned int max_oa_bits;
100         unsigned int pgshift;
101         unsigned int sl;
102         unsigned int t0sz;
103         bool         be;
104 };
105 
106 static unsigned int ps_to_output_size(unsigned int ps)
107 {
108         switch (ps) {
109         case 0: return 32;
110         case 1: return 36;
111         case 2: return 40;
112         case 3: return 42;
113         case 4: return 44;
114         case 5:
115         default:
116                 return 48;
117         }
118 }
119 
120 static u32 compute_fsc(int level, u32 fsc)
121 {
122         return fsc | (level & 0x3);
123 }
124 
125 static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
126 {
127         u32 esr;
128 
129         esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
130         esr |= compute_fsc(level, fsc);
131         return esr;
132 }
133 
134 static int get_ia_size(struct s2_walk_info *wi)
135 {
136         return 64 - wi->t0sz;
137 }
138 
139 static int check_base_s2_limits(struct s2_walk_info *wi,
140                                 int level, int input_size, int stride)
141 {
142         int start_size, ia_size;
143 
144         ia_size = get_ia_size(wi);
145 
146         /* Check translation limits */
147         switch (BIT(wi->pgshift)) {
148         case SZ_64K:
149                 if (level == 0 || (level == 1 && ia_size <= 42))
150                         return -EFAULT;
151                 break;
152         case SZ_16K:
153                 if (level == 0 || (level == 1 && ia_size <= 40))
154                         return -EFAULT;
155                 break;
156         case SZ_4K:
157                 if (level < 0 || (level == 0 && ia_size <= 42))
158                         return -EFAULT;
159                 break;
160         }
161 
162         /* Check input size limits */
163         if (input_size > ia_size)
164                 return -EFAULT;
165 
166         /* Check number of entries in starting level table */
167         start_size = input_size - ((3 - level) * stride + wi->pgshift);
168         if (start_size < 1 || start_size > stride + 4)
169                 return -EFAULT;
170 
171         return 0;
172 }
173 
174 /* Check if output is within boundaries */
175 static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
176 {
177         unsigned int output_size = wi->max_oa_bits;
178 
179         if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
180                 return -1;
181 
182         return 0;
183 }
184 
185 /*
186  * This is essentially a C-version of the pseudo code from the ARM ARM
187  * AArch64.TranslationTableWalk  function.  I strongly recommend looking at
188  * that pseudocode in trying to understand this.
189  *
190  * Must be called with the kvm->srcu read lock held
191  */
192 static int walk_nested_s2_pgd(phys_addr_t ipa,
193                               struct s2_walk_info *wi, struct kvm_s2_trans *out)
194 {
195         int first_block_level, level, stride, input_size, base_lower_bound;
196         phys_addr_t base_addr;
197         unsigned int addr_top, addr_bottom;
198         u64 desc;  /* page table entry */
199         int ret;
200         phys_addr_t paddr;
201 
202         switch (BIT(wi->pgshift)) {
203         default:
204         case SZ_64K:
205         case SZ_16K:
206                 level = 3 - wi->sl;
207                 first_block_level = 2;
208                 break;
209         case SZ_4K:
210                 level = 2 - wi->sl;
211                 first_block_level = 1;
212                 break;
213         }
214 
215         stride = wi->pgshift - 3;
216         input_size = get_ia_size(wi);
217         if (input_size > 48 || input_size < 25)
218                 return -EFAULT;
219 
220         ret = check_base_s2_limits(wi, level, input_size, stride);
221         if (WARN_ON(ret))
222                 return ret;
223 
224         base_lower_bound = 3 + input_size - ((3 - level) * stride +
225                            wi->pgshift);
226         base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
227 
228         if (check_output_size(wi, base_addr)) {
229                 out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
230                 return 1;
231         }
232 
233         addr_top = input_size - 1;
234 
235         while (1) {
236                 phys_addr_t index;
237 
238                 addr_bottom = (3 - level) * stride + wi->pgshift;
239                 index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
240                         >> (addr_bottom - 3);
241 
242                 paddr = base_addr | index;
243                 ret = wi->read_desc(paddr, &desc, wi->data);
244                 if (ret < 0)
245                         return ret;
246 
247                 /*
248                  * Handle reversedescriptors if endianness differs between the
249                  * host and the guest hypervisor.
250                  */
251                 if (wi->be)
252                         desc = be64_to_cpu((__force __be64)desc);
253                 else
254                         desc = le64_to_cpu((__force __le64)desc);
255 
256                 /* Check for valid descriptor at this point */
257                 if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
258                         out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
259                         out->upper_attr = desc;
260                         return 1;
261                 }
262 
263                 /* We're at the final level or block translation level */
264                 if ((desc & 3) == 1 || level == 3)
265                         break;
266 
267                 if (check_output_size(wi, desc)) {
268                         out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
269                         out->upper_attr = desc;
270                         return 1;
271                 }
272 
273                 base_addr = desc & GENMASK_ULL(47, wi->pgshift);
274 
275                 level += 1;
276                 addr_top = addr_bottom - 1;
277         }
278 
279         if (level < first_block_level) {
280                 out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
281                 out->upper_attr = desc;
282                 return 1;
283         }
284 
285         /*
286          * We don't use the contiguous bit in the stage-2 ptes, so skip check
287          * for misprogramming of the contiguous bit.
288          */
289 
290         if (check_output_size(wi, desc)) {
291                 out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
292                 out->upper_attr = desc;
293                 return 1;
294         }
295 
296         if (!(desc & BIT(10))) {
297                 out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
298                 out->upper_attr = desc;
299                 return 1;
300         }
301 
302         /* Calculate and return the result */
303         paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
304                 (ipa & GENMASK_ULL(addr_bottom - 1, 0));
305         out->output = paddr;
306         out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
307         out->readable = desc & (0b01 << 6);
308         out->writable = desc & (0b10 << 6);
309         out->level = level;
310         out->upper_attr = desc & GENMASK_ULL(63, 52);
311         return 0;
312 }
313 
314 static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
315 {
316         struct kvm_vcpu *vcpu = data;
317 
318         return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
319 }
320 
321 static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
322 {
323         wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
324 
325         switch (vtcr & VTCR_EL2_TG0_MASK) {
326         case VTCR_EL2_TG0_4K:
327                 wi->pgshift = 12;        break;
328         case VTCR_EL2_TG0_16K:
329                 wi->pgshift = 14;        break;
330         case VTCR_EL2_TG0_64K:
331         default:            /* IMPDEF: treat any other value as 64k */
332                 wi->pgshift = 16;        break;
333         }
334 
335         wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
336         /* Global limit for now, should eventually be per-VM */
337         wi->max_oa_bits = min(get_kvm_ipa_limit(),
338                               ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
339 }
340 
341 int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
342                        struct kvm_s2_trans *result)
343 {
344         u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
345         struct s2_walk_info wi;
346         int ret;
347 
348         result->esr = 0;
349 
350         if (!vcpu_has_nv(vcpu))
351                 return 0;
352 
353         wi.read_desc = read_guest_s2_desc;
354         wi.data = vcpu;
355         wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
356 
357         vtcr_to_walk_info(vtcr, &wi);
358 
359         wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
360 
361         ret = walk_nested_s2_pgd(gipa, &wi, result);
362         if (ret)
363                 result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
364 
365         return ret;
366 }
367 
368 static unsigned int ttl_to_size(u8 ttl)
369 {
370         int level = ttl & 3;
371         int gran = (ttl >> 2) & 3;
372         unsigned int max_size = 0;
373 
374         switch (gran) {
375         case TLBI_TTL_TG_4K:
376                 switch (level) {
377                 case 0:
378                         break;
379                 case 1:
380                         max_size = SZ_1G;
381                         break;
382                 case 2:
383                         max_size = SZ_2M;
384                         break;
385                 case 3:
386                         max_size = SZ_4K;
387                         break;
388                 }
389                 break;
390         case TLBI_TTL_TG_16K:
391                 switch (level) {
392                 case 0:
393                 case 1:
394                         break;
395                 case 2:
396                         max_size = SZ_32M;
397                         break;
398                 case 3:
399                         max_size = SZ_16K;
400                         break;
401                 }
402                 break;
403         case TLBI_TTL_TG_64K:
404                 switch (level) {
405                 case 0:
406                 case 1:
407                         /* No 52bit IPA support */
408                         break;
409                 case 2:
410                         max_size = SZ_512M;
411                         break;
412                 case 3:
413                         max_size = SZ_64K;
414                         break;
415                 }
416                 break;
417         default:                        /* No size information */
418                 break;
419         }
420 
421         return max_size;
422 }
423 
424 /*
425  * Compute the equivalent of the TTL field by parsing the shadow PT.  The
426  * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
427  * retrieved from first entry carrying the level as a tag.
428  */
429 static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
430 {
431         u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
432         kvm_pte_t pte;
433         u8 ttl, level;
434 
435         lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
436 
437         switch (vtcr & VTCR_EL2_TG0_MASK) {
438         case VTCR_EL2_TG0_4K:
439                 ttl = (TLBI_TTL_TG_4K << 2);
440                 break;
441         case VTCR_EL2_TG0_16K:
442                 ttl = (TLBI_TTL_TG_16K << 2);
443                 break;
444         case VTCR_EL2_TG0_64K:
445         default:            /* IMPDEF: treat any other value as 64k */
446                 ttl = (TLBI_TTL_TG_64K << 2);
447                 break;
448         }
449 
450         tmp = addr;
451 
452 again:
453         /* Iteratively compute the block sizes for a particular granule size */
454         switch (vtcr & VTCR_EL2_TG0_MASK) {
455         case VTCR_EL2_TG0_4K:
456                 if      (sz < SZ_4K)    sz = SZ_4K;
457                 else if (sz < SZ_2M)    sz = SZ_2M;
458                 else if (sz < SZ_1G)    sz = SZ_1G;
459                 else                    sz = 0;
460                 break;
461         case VTCR_EL2_TG0_16K:
462                 if      (sz < SZ_16K)   sz = SZ_16K;
463                 else if (sz < SZ_32M)   sz = SZ_32M;
464                 else                    sz = 0;
465                 break;
466         case VTCR_EL2_TG0_64K:
467         default:            /* IMPDEF: treat any other value as 64k */
468                 if      (sz < SZ_64K)   sz = SZ_64K;
469                 else if (sz < SZ_512M)  sz = SZ_512M;
470                 else                    sz = 0;
471                 break;
472         }
473 
474         if (sz == 0)
475                 return 0;
476 
477         tmp &= ~(sz - 1);
478         if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
479                 goto again;
480         if (!(pte & PTE_VALID))
481                 goto again;
482         level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
483         if (!level)
484                 goto again;
485 
486         ttl |= level;
487 
488         /*
489          * We now have found some level information in the shadow S2. Check
490          * that the resulting range is actually including the original IPA.
491          */
492         sz = ttl_to_size(ttl);
493         if (addr < (tmp + sz))
494                 return ttl;
495 
496         return 0;
497 }
498 
499 unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
500 {
501         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
502         unsigned long max_size;
503         u8 ttl;
504 
505         ttl = FIELD_GET(TLBI_TTL_MASK, val);
506 
507         if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
508                 /* No TTL, check the shadow S2 for a hint */
509                 u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
510                 ttl = get_guest_mapping_ttl(mmu, addr);
511         }
512 
513         max_size = ttl_to_size(ttl);
514 
515         if (!max_size) {
516                 /* Compute the maximum extent of the invalidation */
517                 switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
518                 case VTCR_EL2_TG0_4K:
519                         max_size = SZ_1G;
520                         break;
521                 case VTCR_EL2_TG0_16K:
522                         max_size = SZ_32M;
523                         break;
524                 case VTCR_EL2_TG0_64K:
525                 default:    /* IMPDEF: treat any other value as 64k */
526                         /*
527                          * No, we do not support 52bit IPA in nested yet. Once
528                          * we do, this should be 4TB.
529                          */
530                         max_size = SZ_512M;
531                         break;
532                 }
533         }
534 
535         WARN_ON(!max_size);
536         return max_size;
537 }
538 
539 /*
540  * We can have multiple *different* MMU contexts with the same VMID:
541  *
542  * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
543  *
544  * - Multiple vcpus using private S2s (huh huh...), hence differing by the
545  *   VBBTR_EL2.BADDR address
546  *
547  * - A combination of the above...
548  *
549  * We can always identify which MMU context to pick at run-time.  However,
550  * TLB invalidation involving a VMID must take action on all the TLBs using
551  * this particular VMID. This translates into applying the same invalidation
552  * operation to all the contexts that are using this VMID. Moar phun!
553  */
554 void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
555                                 const union tlbi_info *info,
556                                 void (*tlbi_callback)(struct kvm_s2_mmu *,
557                                                       const union tlbi_info *))
558 {
559         write_lock(&kvm->mmu_lock);
560 
561         for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
562                 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
563 
564                 if (!kvm_s2_mmu_valid(mmu))
565                         continue;
566 
567                 if (vmid == get_vmid(mmu->tlb_vttbr))
568                         tlbi_callback(mmu, info);
569         }
570 
571         write_unlock(&kvm->mmu_lock);
572 }
573 
574 struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
575 {
576         struct kvm *kvm = vcpu->kvm;
577         bool nested_stage2_enabled;
578         u64 vttbr, vtcr, hcr;
579 
580         lockdep_assert_held_write(&kvm->mmu_lock);
581 
582         vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
583         vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
584         hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
585 
586         nested_stage2_enabled = hcr & HCR_VM;
587 
588         /* Don't consider the CnP bit for the vttbr match */
589         vttbr &= ~VTTBR_CNP_BIT;
590 
591         /*
592          * Two possibilities when looking up a S2 MMU context:
593          *
594          * - either S2 is enabled in the guest, and we need a context that is
595          *   S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
596          *   which makes it safe from a TLB conflict perspective (a broken
597          *   guest won't be able to generate them),
598          *
599          * - or S2 is disabled, and we need a context that is S2-disabled
600          *   and matches the VMID only, as all TLBs are tagged by VMID even
601          *   if S2 translation is disabled.
602          */
603         for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
604                 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
605 
606                 if (!kvm_s2_mmu_valid(mmu))
607                         continue;
608 
609                 if (nested_stage2_enabled &&
610                     mmu->nested_stage2_enabled &&
611                     vttbr == mmu->tlb_vttbr &&
612                     vtcr == mmu->tlb_vtcr)
613                         return mmu;
614 
615                 if (!nested_stage2_enabled &&
616                     !mmu->nested_stage2_enabled &&
617                     get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
618                         return mmu;
619         }
620         return NULL;
621 }
622 
623 static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
624 {
625         struct kvm *kvm = vcpu->kvm;
626         struct kvm_s2_mmu *s2_mmu;
627         int i;
628 
629         lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
630 
631         s2_mmu = lookup_s2_mmu(vcpu);
632         if (s2_mmu)
633                 goto out;
634 
635         /*
636          * Make sure we don't always search from the same point, or we
637          * will always reuse a potentially active context, leaving
638          * free contexts unused.
639          */
640         for (i = kvm->arch.nested_mmus_next;
641              i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
642              i++) {
643                 s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
644 
645                 if (atomic_read(&s2_mmu->refcnt) == 0)
646                         break;
647         }
648         BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
649 
650         /* Set the scene for the next search */
651         kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
652 
653         /* Clear the old state */
654         if (kvm_s2_mmu_valid(s2_mmu))
655                 kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu));
656 
657         /*
658          * The virtual VMID (modulo CnP) will be used as a key when matching
659          * an existing kvm_s2_mmu.
660          *
661          * We cache VTCR at allocation time, once and for all. It'd be great
662          * if the guest didn't screw that one up, as this is not very
663          * forgiving...
664          */
665         s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
666         s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
667         s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
668 
669 out:
670         atomic_inc(&s2_mmu->refcnt);
671         return s2_mmu;
672 }
673 
674 void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
675 {
676         /* CnP being set denotes an invalid entry */
677         mmu->tlb_vttbr = VTTBR_CNP_BIT;
678         mmu->nested_stage2_enabled = false;
679         atomic_set(&mmu->refcnt, 0);
680 }
681 
682 void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
683 {
684         if (is_hyp_ctxt(vcpu)) {
685                 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
686         } else {
687                 write_lock(&vcpu->kvm->mmu_lock);
688                 vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
689                 write_unlock(&vcpu->kvm->mmu_lock);
690         }
691 }
692 
693 void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
694 {
695         if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) {
696                 atomic_dec(&vcpu->arch.hw_mmu->refcnt);
697                 vcpu->arch.hw_mmu = NULL;
698         }
699 }
700 
701 /*
702  * Returns non-zero if permission fault is handled by injecting it to the next
703  * level hypervisor.
704  */
705 int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
706 {
707         bool forward_fault = false;
708 
709         trans->esr = 0;
710 
711         if (!kvm_vcpu_trap_is_permission_fault(vcpu))
712                 return 0;
713 
714         if (kvm_vcpu_trap_is_iabt(vcpu)) {
715                 forward_fault = !kvm_s2_trans_executable(trans);
716         } else {
717                 bool write_fault = kvm_is_write_fault(vcpu);
718 
719                 forward_fault = ((write_fault && !trans->writable) ||
720                                  (!write_fault && !trans->readable));
721         }
722 
723         if (forward_fault)
724                 trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
725 
726         return forward_fault;
727 }
728 
729 int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
730 {
731         vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
732         vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
733 
734         return kvm_inject_nested_sync(vcpu, esr_el2);
735 }
736 
737 void kvm_nested_s2_wp(struct kvm *kvm)
738 {
739         int i;
740 
741         lockdep_assert_held_write(&kvm->mmu_lock);
742 
743         for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
744                 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
745 
746                 if (kvm_s2_mmu_valid(mmu))
747                         kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
748         }
749 }
750 
751 void kvm_nested_s2_unmap(struct kvm *kvm)
752 {
753         int i;
754 
755         lockdep_assert_held_write(&kvm->mmu_lock);
756 
757         for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
758                 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
759 
760                 if (kvm_s2_mmu_valid(mmu))
761                         kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu));
762         }
763 }
764 
765 void kvm_nested_s2_flush(struct kvm *kvm)
766 {
767         int i;
768 
769         lockdep_assert_held_write(&kvm->mmu_lock);
770 
771         for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
772                 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
773 
774                 if (kvm_s2_mmu_valid(mmu))
775                         kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
776         }
777 }
778 
779 void kvm_arch_flush_shadow_all(struct kvm *kvm)
780 {
781         int i;
782 
783         for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
784                 struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
785 
786                 if (!WARN_ON(atomic_read(&mmu->refcnt)))
787                         kvm_free_stage2_pgd(mmu);
788         }
789         kfree(kvm->arch.nested_mmus);
790         kvm->arch.nested_mmus = NULL;
791         kvm->arch.nested_mmus_size = 0;
792         kvm_uninit_stage2_mmu(kvm);
793 }
794 
795 /*
796  * Our emulated CPU doesn't support all the possible features. For the
797  * sake of simplicity (and probably mental sanity), wipe out a number
798  * of feature bits we don't intend to support for the time being.
799  * This list should get updated as new features get added to the NV
800  * support, and new extension to the architecture.
801  */
802 static void limit_nv_id_regs(struct kvm *kvm)
803 {
804         u64 val, tmp;
805 
806         /* Support everything but TME */
807         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1);
808         val &= ~NV_FTR(ISAR0, TME);
809         kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val);
810 
811         /* Support everything but Spec Invalidation and LS64 */
812         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1);
813         val &= ~(NV_FTR(ISAR1, LS64)    |
814                  NV_FTR(ISAR1, SPECRES));
815         kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val);
816 
817         /* No AMU, MPAM, S-EL2, or RAS */
818         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1);
819         val &= ~(GENMASK_ULL(55, 52)    |
820                  NV_FTR(PFR0, AMU)      |
821                  NV_FTR(PFR0, MPAM)     |
822                  NV_FTR(PFR0, SEL2)     |
823                  NV_FTR(PFR0, RAS)      |
824                  NV_FTR(PFR0, EL3)      |
825                  NV_FTR(PFR0, EL2)      |
826                  NV_FTR(PFR0, EL1));
827         /* 64bit EL1/EL2/EL3 only */
828         val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
829         val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
830         val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
831         kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val);
832 
833         /* Only support BTI, SSBS, CSV2_frac */
834         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1);
835         val &= (NV_FTR(PFR1, BT)        |
836                 NV_FTR(PFR1, SSBS)      |
837                 NV_FTR(PFR1, CSV2_frac));
838         kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val);
839 
840         /* Hide ECV, ExS, Secure Memory */
841         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1);
842         val &= ~(NV_FTR(MMFR0, ECV)             |
843                  NV_FTR(MMFR0, EXS)             |
844                  NV_FTR(MMFR0, TGRAN4_2)        |
845                  NV_FTR(MMFR0, TGRAN16_2)       |
846                  NV_FTR(MMFR0, TGRAN64_2)       |
847                  NV_FTR(MMFR0, SNSMEM));
848 
849         /* Disallow unsupported S2 page sizes */
850         switch (PAGE_SIZE) {
851         case SZ_64K:
852                 val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
853                 fallthrough;
854         case SZ_16K:
855                 val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
856                 fallthrough;
857         case SZ_4K:
858                 /* Support everything */
859                 break;
860         }
861         /*
862          * Since we can't support a guest S2 page size smaller than
863          * the host's own page size (due to KVM only populating its
864          * own S2 using the kernel's page size), advertise the
865          * limitation using FEAT_GTG.
866          */
867         switch (PAGE_SIZE) {
868         case SZ_4K:
869                 val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
870                 fallthrough;
871         case SZ_16K:
872                 val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
873                 fallthrough;
874         case SZ_64K:
875                 val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
876                 break;
877         }
878         /* Cap PARange to 48bits */
879         tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
880         if (tmp > 0b0101) {
881                 val &= ~NV_FTR(MMFR0, PARANGE);
882                 val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
883         }
884         kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val);
885 
886         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1);
887         val &= (NV_FTR(MMFR1, HCX)      |
888                 NV_FTR(MMFR1, PAN)      |
889                 NV_FTR(MMFR1, LO)       |
890                 NV_FTR(MMFR1, HPDS)     |
891                 NV_FTR(MMFR1, VH)       |
892                 NV_FTR(MMFR1, VMIDBits));
893         kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val);
894 
895         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1);
896         val &= ~(NV_FTR(MMFR2, BBM)     |
897                  NV_FTR(MMFR2, TTL)     |
898                  GENMASK_ULL(47, 44)    |
899                  NV_FTR(MMFR2, ST)      |
900                  NV_FTR(MMFR2, CCIDX)   |
901                  NV_FTR(MMFR2, VARange));
902 
903         /* Force TTL support */
904         val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
905         kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val);
906 
907         val = 0;
908         if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
909                 val |= FIELD_PREP(NV_FTR(MMFR4, E2H0),
910                                   ID_AA64MMFR4_EL1_E2H0_NI_NV1);
911         kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val);
912 
913         /* Only limited support for PMU, Debug, BPs and WPs */
914         val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
915         val &= (NV_FTR(DFR0, PMUVer)    |
916                 NV_FTR(DFR0, WRPs)      |
917                 NV_FTR(DFR0, BRPs)      |
918                 NV_FTR(DFR0, DebugVer));
919 
920         /* Cap Debug to ARMv8.1 */
921         tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
922         if (tmp > 0b0111) {
923                 val &= ~NV_FTR(DFR0, DebugVer);
924                 val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
925         }
926         kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val);
927 }
928 
929 u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr)
930 {
931         u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr);
932         struct kvm_sysreg_masks *masks;
933 
934         masks = vcpu->kvm->arch.sysreg_masks;
935 
936         if (masks) {
937                 sr -= __VNCR_START__;
938 
939                 v &= ~masks->mask[sr].res0;
940                 v |= masks->mask[sr].res1;
941         }
942 
943         return v;
944 }
945 
946 static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
947 {
948         int i = sr - __VNCR_START__;
949 
950         kvm->arch.sysreg_masks->mask[i].res0 = res0;
951         kvm->arch.sysreg_masks->mask[i].res1 = res1;
952 }
953 
954 int kvm_init_nv_sysregs(struct kvm *kvm)
955 {
956         u64 res0, res1;
957         int ret = 0;
958 
959         mutex_lock(&kvm->arch.config_lock);
960 
961         if (kvm->arch.sysreg_masks)
962                 goto out;
963 
964         kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
965                                          GFP_KERNEL_ACCOUNT);
966         if (!kvm->arch.sysreg_masks) {
967                 ret = -ENOMEM;
968                 goto out;
969         }
970 
971         limit_nv_id_regs(kvm);
972 
973         /* VTTBR_EL2 */
974         res0 = res1 = 0;
975         if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
976                 res0 |= GENMASK(63, 56);
977         if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
978                 res0 |= VTTBR_CNP_BIT;
979         set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
980 
981         /* VTCR_EL2 */
982         res0 = GENMASK(63, 32) | GENMASK(30, 20);
983         res1 = BIT(31);
984         set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
985 
986         /* VMPIDR_EL2 */
987         res0 = GENMASK(63, 40) | GENMASK(30, 24);
988         res1 = BIT(31);
989         set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
990 
991         /* HCR_EL2 */
992         res0 = BIT(48);
993         res1 = HCR_RW;
994         if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
995                 res0 |= GENMASK(63, 59);
996         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
997                 res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
998         if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
999                 res0 |= (HCR_TTLBIS | HCR_TTLBOS);
1000         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1001             !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1002                 res0 |= HCR_ENSCXT;
1003         if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
1004                 res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
1005         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1006                 res0 |= HCR_AMVOFFEN;
1007         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
1008                 res0 |= HCR_FIEN;
1009         if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
1010                 res0 |= HCR_FWB;
1011         if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2))
1012                 res0 |= HCR_NV2;
1013         if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP))
1014                 res0 |= (HCR_AT | HCR_NV1 | HCR_NV);
1015         if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1016               __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1017                 res0 |= (HCR_API | HCR_APK);
1018         if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
1019                 res0 |= BIT(39);
1020         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1021                 res0 |= (HCR_TEA | HCR_TERR);
1022         if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1023                 res0 |= HCR_TLOR;
1024         if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
1025                 res1 |= HCR_E2H;
1026         set_sysreg_masks(kvm, HCR_EL2, res0, res1);
1027 
1028         /* HCRX_EL2 */
1029         res0 = HCRX_EL2_RES0;
1030         res1 = HCRX_EL2_RES1;
1031         if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
1032                 res0 |= HCRX_EL2_PACMEn;
1033         if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
1034                 res0 |= HCRX_EL2_EnFPM;
1035         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1036                 res0 |= HCRX_EL2_GCSEn;
1037         if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
1038                 res0 |= HCRX_EL2_EnIDCP128;
1039         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
1040                 res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
1041         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
1042                 res0 |= HCRX_EL2_TMEA;
1043         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
1044                 res0 |= HCRX_EL2_D128En;
1045         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1046                 res0 |= HCRX_EL2_PTTWI;
1047         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
1048                 res0 |= HCRX_EL2_SCTLR2En;
1049         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
1050                 res0 |= HCRX_EL2_TCR2En;
1051         if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
1052                 res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
1053         if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
1054                 res0 |= HCRX_EL2_CMOW;
1055         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
1056                 res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
1057         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
1058             !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
1059                 res0 |= HCRX_EL2_SMPME;
1060         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
1061                 res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
1062         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
1063                 res0 |= HCRX_EL2_EnASR;
1064         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
1065                 res0 |= HCRX_EL2_EnALS;
1066         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1067                 res0 |= HCRX_EL2_EnAS0;
1068         set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
1069 
1070         /* HFG[RW]TR_EL2 */
1071         res0 = res1 = 0;
1072         if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
1073               __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
1074                 res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
1075                          HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
1076                          HFGxTR_EL2_APIBKey);
1077         if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
1078                 res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
1079                          HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
1080                          HFGxTR_EL2_LORSA_EL1);
1081         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
1082             !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
1083                 res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
1084         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
1085                 res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
1086         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
1087                 res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
1088                          HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
1089                          HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
1090                          HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
1091                          HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
1092         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
1093                 res0 |= HFGxTR_EL2_nACCDATA_EL1;
1094         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1095                 res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
1096         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
1097                 res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
1098         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
1099                 res0 |= HFGxTR_EL2_nRCWMASK_EL1;
1100         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
1101                 res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
1102         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
1103                 res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
1104         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
1105                 res0 |= HFGxTR_EL2_nS2POR_EL1;
1106         if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
1107                 res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
1108         set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
1109         set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
1110 
1111         /* HDFG[RW]TR_EL2 */
1112         res0 = res1 = 0;
1113         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
1114                 res0 |= HDFGRTR_EL2_OSDLR_EL1;
1115         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1116                 res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
1117                          HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
1118                          HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
1119                          HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
1120                          HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
1121                          HDFGRTR_EL2_PMCEIDn_EL0);
1122         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
1123                 res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
1124                          HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
1125                          HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
1126                          HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
1127                          HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
1128                          HDFGRTR_EL2_PMBIDR_EL1);
1129         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1130                 res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
1131                          HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
1132                          HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
1133                          HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
1134                          HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
1135                          HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
1136                          HDFGRTR_EL2_TRCVICTLR);
1137         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
1138                 res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
1139                          HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
1140                          HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
1141                          HDFGRTR_EL2_TRBTRG_EL1);
1142         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1143                 res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
1144                          HDFGRTR_EL2_nBRBDATA);
1145         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
1146                 res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
1147         set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
1148 
1149         /* Reuse the bits from the read-side and add the write-specific stuff */
1150         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
1151                 res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
1152         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
1153                 res0 |= HDFGWTR_EL2_TRCOSLAR;
1154         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
1155                 res0 |= HDFGWTR_EL2_TRFCR_EL1;
1156         set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
1157 
1158         /* HFGITR_EL2 */
1159         res0 = HFGITR_EL2_RES0;
1160         res1 = HFGITR_EL2_RES1;
1161         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
1162                 res0 |= HFGITR_EL2_DCCVADP;
1163         if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
1164                 res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
1165         if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
1166                 res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1167                          HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
1168                          HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
1169                          HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
1170                          HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
1171         if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
1172                 res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
1173                          HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
1174                          HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
1175                          HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
1176                          HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
1177                          HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
1178         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
1179                 res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
1180                          HFGITR_EL2_CPPRCTX);
1181         if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
1182                 res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
1183         if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
1184                 res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
1185                          HFGITR_EL2_nGCSEPP);
1186         if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
1187                 res0 |= HFGITR_EL2_COSPRCTX;
1188         if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
1189                 res0 |= HFGITR_EL2_ATS1E1A;
1190         set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
1191 
1192         /* HAFGRTR_EL2 - not a lot to see here */
1193         res0 = HAFGRTR_EL2_RES0;
1194         res1 = HAFGRTR_EL2_RES1;
1195         if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
1196                 res0 |= ~(res0 | res1);
1197         set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
1198 out:
1199         mutex_unlock(&kvm->arch.config_lock);
1200 
1201         return ret;
1202 }
1203 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php