~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/vgic/vgic-mmio.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * VGIC MMIO handling functions
  4  */
  5 
  6 #include <linux/bitops.h>
  7 #include <linux/bsearch.h>
  8 #include <linux/interrupt.h>
  9 #include <linux/irq.h>
 10 #include <linux/kvm.h>
 11 #include <linux/kvm_host.h>
 12 #include <kvm/iodev.h>
 13 #include <kvm/arm_arch_timer.h>
 14 #include <kvm/arm_vgic.h>
 15 
 16 #include "vgic.h"
 17 #include "vgic-mmio.h"
 18 
 19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
 20                                  gpa_t addr, unsigned int len)
 21 {
 22         return 0;
 23 }
 24 
 25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
 26                                  gpa_t addr, unsigned int len)
 27 {
 28         return -1UL;
 29 }
 30 
 31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
 32                         unsigned int len, unsigned long val)
 33 {
 34         /* Ignore */
 35 }
 36 
 37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
 38                                unsigned int len, unsigned long val)
 39 {
 40         /* Ignore */
 41         return 0;
 42 }
 43 
 44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
 45                                    gpa_t addr, unsigned int len)
 46 {
 47         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 48         u32 value = 0;
 49         int i;
 50 
 51         /* Loop over all IRQs affected by this read */
 52         for (i = 0; i < len * 8; i++) {
 53                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 54 
 55                 if (irq->group)
 56                         value |= BIT(i);
 57 
 58                 vgic_put_irq(vcpu->kvm, irq);
 59         }
 60 
 61         return value;
 62 }
 63 
 64 static void vgic_update_vsgi(struct vgic_irq *irq)
 65 {
 66         WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
 67 }
 68 
 69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
 70                            unsigned int len, unsigned long val)
 71 {
 72         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 73         int i;
 74         unsigned long flags;
 75 
 76         for (i = 0; i < len * 8; i++) {
 77                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 78 
 79                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
 80                 irq->group = !!(val & BIT(i));
 81                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
 82                         vgic_update_vsgi(irq);
 83                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 84                 } else {
 85                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 86                 }
 87 
 88                 vgic_put_irq(vcpu->kvm, irq);
 89         }
 90 }
 91 
 92 /*
 93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
 94  * of the enabled bit, so there is only one function for both here.
 95  */
 96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
 97                                     gpa_t addr, unsigned int len)
 98 {
 99         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100         u32 value = 0;
101         int i;
102 
103         /* Loop over all IRQs affected by this read */
104         for (i = 0; i < len * 8; i++) {
105                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106 
107                 if (irq->enabled)
108                         value |= (1U << i);
109 
110                 vgic_put_irq(vcpu->kvm, irq);
111         }
112 
113         return value;
114 }
115 
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117                              gpa_t addr, unsigned int len,
118                              unsigned long val)
119 {
120         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121         int i;
122         unsigned long flags;
123 
124         for_each_set_bit(i, &val, len * 8) {
125                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126 
127                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
128                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129                         if (!irq->enabled) {
130                                 struct irq_data *data;
131 
132                                 irq->enabled = true;
133                                 data = &irq_to_desc(irq->host_irq)->irq_data;
134                                 while (irqd_irq_disabled(data))
135                                         enable_irq(irq->host_irq);
136                         }
137 
138                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139                         vgic_put_irq(vcpu->kvm, irq);
140 
141                         continue;
142                 } else if (vgic_irq_is_mapped_level(irq)) {
143                         bool was_high = irq->line_level;
144 
145                         /*
146                          * We need to update the state of the interrupt because
147                          * the guest might have changed the state of the device
148                          * while the interrupt was disabled at the VGIC level.
149                          */
150                         irq->line_level = vgic_get_phys_line_level(irq);
151                         /*
152                          * Deactivate the physical interrupt so the GIC will let
153                          * us know when it is asserted again.
154                          */
155                         if (!irq->active && was_high && !irq->line_level)
156                                 vgic_irq_set_phys_active(irq, false);
157                 }
158                 irq->enabled = true;
159                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160 
161                 vgic_put_irq(vcpu->kvm, irq);
162         }
163 }
164 
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166                              gpa_t addr, unsigned int len,
167                              unsigned long val)
168 {
169         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170         int i;
171         unsigned long flags;
172 
173         for_each_set_bit(i, &val, len * 8) {
174                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175 
176                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
177                 if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178                         disable_irq_nosync(irq->host_irq);
179 
180                 irq->enabled = false;
181 
182                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183                 vgic_put_irq(vcpu->kvm, irq);
184         }
185 }
186 
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188                                gpa_t addr, unsigned int len,
189                                unsigned long val)
190 {
191         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192         int i;
193         unsigned long flags;
194 
195         for_each_set_bit(i, &val, len * 8) {
196                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197 
198                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
199                 irq->enabled = true;
200                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201 
202                 vgic_put_irq(vcpu->kvm, irq);
203         }
204 
205         return 0;
206 }
207 
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209                                gpa_t addr, unsigned int len,
210                                unsigned long val)
211 {
212         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213         int i;
214         unsigned long flags;
215 
216         for_each_set_bit(i, &val, len * 8) {
217                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218 
219                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
220                 irq->enabled = false;
221                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222 
223                 vgic_put_irq(vcpu->kvm, irq);
224         }
225 
226         return 0;
227 }
228 
229 static unsigned long __read_pending(struct kvm_vcpu *vcpu,
230                                     gpa_t addr, unsigned int len,
231                                     bool is_user)
232 {
233         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
234         u32 value = 0;
235         int i;
236 
237         /* Loop over all IRQs affected by this read */
238         for (i = 0; i < len * 8; i++) {
239                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
240                 unsigned long flags;
241                 bool val;
242 
243                 /*
244                  * When used from userspace with a GICv3 model:
245                  *
246                  * Pending state of interrupt is latched in pending_latch
247                  * variable.  Userspace will save and restore pending state
248                  * and line_level separately.
249                  * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
250                  * for handling of ISPENDR and ICPENDR.
251                  */
252                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
253                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
254                         int err;
255 
256                         val = false;
257                         err = irq_get_irqchip_state(irq->host_irq,
258                                                     IRQCHIP_STATE_PENDING,
259                                                     &val);
260                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
261                 } else if (!is_user && vgic_irq_is_mapped_level(irq)) {
262                         val = vgic_get_phys_line_level(irq);
263                 } else {
264                         switch (vcpu->kvm->arch.vgic.vgic_model) {
265                         case KVM_DEV_TYPE_ARM_VGIC_V3:
266                                 if (is_user) {
267                                         val = irq->pending_latch;
268                                         break;
269                                 }
270                                 fallthrough;
271                         default:
272                                 val = irq_is_pending(irq);
273                                 break;
274                         }
275                 }
276 
277                 value |= ((u32)val << i);
278                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
279 
280                 vgic_put_irq(vcpu->kvm, irq);
281         }
282 
283         return value;
284 }
285 
286 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
287                                      gpa_t addr, unsigned int len)
288 {
289         return __read_pending(vcpu, addr, len, false);
290 }
291 
292 unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
293                                         gpa_t addr, unsigned int len)
294 {
295         return __read_pending(vcpu, addr, len, true);
296 }
297 
298 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
299 {
300         return (vgic_irq_is_sgi(irq->intid) &&
301                 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
302 }
303 
304 static void __set_pending(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len,
305                           unsigned long val, bool is_user)
306 {
307         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
308         int i;
309         unsigned long flags;
310 
311         for_each_set_bit(i, &val, len * 8) {
312                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
313 
314                 /* GICD_ISPENDR0 SGI bits are WI when written from the guest. */
315                 if (is_vgic_v2_sgi(vcpu, irq) && !is_user) {
316                         vgic_put_irq(vcpu->kvm, irq);
317                         continue;
318                 }
319 
320                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
321 
322                 /*
323                  * GICv2 SGIs are terribly broken. We can't restore
324                  * the source of the interrupt, so just pick the vcpu
325                  * itself as the source...
326                  */
327                 if (is_vgic_v2_sgi(vcpu, irq))
328                         irq->source |= BIT(vcpu->vcpu_id);
329 
330                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
331                         /* HW SGI? Ask the GIC to inject it */
332                         int err;
333                         err = irq_set_irqchip_state(irq->host_irq,
334                                                     IRQCHIP_STATE_PENDING,
335                                                     true);
336                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
337 
338                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
339                         vgic_put_irq(vcpu->kvm, irq);
340 
341                         continue;
342                 }
343 
344                 irq->pending_latch = true;
345                 if (irq->hw && !is_user)
346                         vgic_irq_set_phys_active(irq, true);
347 
348                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
349                 vgic_put_irq(vcpu->kvm, irq);
350         }
351 }
352 
353 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
354                               gpa_t addr, unsigned int len,
355                               unsigned long val)
356 {
357         __set_pending(vcpu, addr, len, val, false);
358 }
359 
360 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
361                                 gpa_t addr, unsigned int len,
362                                 unsigned long val)
363 {
364         __set_pending(vcpu, addr, len, val, true);
365         return 0;
366 }
367 
368 /* Must be called with irq->irq_lock held */
369 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
370 {
371         irq->pending_latch = false;
372 
373         /*
374          * We don't want the guest to effectively mask the physical
375          * interrupt by doing a write to SPENDR followed by a write to
376          * CPENDR for HW interrupts, so we clear the active state on
377          * the physical side if the virtual interrupt is not active.
378          * This may lead to taking an additional interrupt on the
379          * host, but that should not be a problem as the worst that
380          * can happen is an additional vgic injection.  We also clear
381          * the pending state to maintain proper semantics for edge HW
382          * interrupts.
383          */
384         vgic_irq_set_phys_pending(irq, false);
385         if (!irq->active)
386                 vgic_irq_set_phys_active(irq, false);
387 }
388 
389 static void __clear_pending(struct kvm_vcpu *vcpu,
390                             gpa_t addr, unsigned int len,
391                             unsigned long val, bool is_user)
392 {
393         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
394         int i;
395         unsigned long flags;
396 
397         for_each_set_bit(i, &val, len * 8) {
398                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
399 
400                 /* GICD_ICPENDR0 SGI bits are WI when written from the guest. */
401                 if (is_vgic_v2_sgi(vcpu, irq) && !is_user) {
402                         vgic_put_irq(vcpu->kvm, irq);
403                         continue;
404                 }
405 
406                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
407 
408                 /*
409                  * More fun with GICv2 SGIs! If we're clearing one of them
410                  * from userspace, which source vcpu to clear? Let's not
411                  * even think of it, and blow the whole set.
412                  */
413                 if (is_vgic_v2_sgi(vcpu, irq))
414                         irq->source = 0;
415 
416                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
417                         /* HW SGI? Ask the GIC to clear its pending bit */
418                         int err;
419                         err = irq_set_irqchip_state(irq->host_irq,
420                                                     IRQCHIP_STATE_PENDING,
421                                                     false);
422                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
423 
424                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
425                         vgic_put_irq(vcpu->kvm, irq);
426 
427                         continue;
428                 }
429 
430                 if (irq->hw && !is_user)
431                         vgic_hw_irq_cpending(vcpu, irq);
432                 else
433                         irq->pending_latch = false;
434 
435                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
436                 vgic_put_irq(vcpu->kvm, irq);
437         }
438 }
439 
440 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
441                               gpa_t addr, unsigned int len,
442                               unsigned long val)
443 {
444         __clear_pending(vcpu, addr, len, val, false);
445 }
446 
447 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
448                                 gpa_t addr, unsigned int len,
449                                 unsigned long val)
450 {
451         __clear_pending(vcpu, addr, len, val, true);
452         return 0;
453 }
454 
455 /*
456  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
457  * is not queued on some running VCPU's LRs, because then the change to the
458  * active state can be overwritten when the VCPU's state is synced coming back
459  * from the guest.
460  *
461  * For shared interrupts as well as GICv3 private interrupts accessed from the
462  * non-owning CPU, we have to stop all the VCPUs because interrupts can be
463  * migrated while we don't hold the IRQ locks and we don't want to be chasing
464  * moving targets.
465  *
466  * For GICv2 private interrupts we don't have to do anything because
467  * userspace accesses to the VGIC state already require all VCPUs to be
468  * stopped, and only the VCPU itself can modify its private interrupts
469  * active state, which guarantees that the VCPU is not running.
470  */
471 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
472 {
473         if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
474              vcpu != kvm_get_running_vcpu()) ||
475             intid >= VGIC_NR_PRIVATE_IRQS)
476                 kvm_arm_halt_guest(vcpu->kvm);
477 }
478 
479 /* See vgic_access_active_prepare */
480 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
481 {
482         if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
483              vcpu != kvm_get_running_vcpu()) ||
484             intid >= VGIC_NR_PRIVATE_IRQS)
485                 kvm_arm_resume_guest(vcpu->kvm);
486 }
487 
488 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
489                                              gpa_t addr, unsigned int len)
490 {
491         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
492         u32 value = 0;
493         int i;
494 
495         /* Loop over all IRQs affected by this read */
496         for (i = 0; i < len * 8; i++) {
497                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
498 
499                 /*
500                  * Even for HW interrupts, don't evaluate the HW state as
501                  * all the guest is interested in is the virtual state.
502                  */
503                 if (irq->active)
504                         value |= (1U << i);
505 
506                 vgic_put_irq(vcpu->kvm, irq);
507         }
508 
509         return value;
510 }
511 
512 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
513                                     gpa_t addr, unsigned int len)
514 {
515         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
516         u32 val;
517 
518         mutex_lock(&vcpu->kvm->arch.config_lock);
519         vgic_access_active_prepare(vcpu, intid);
520 
521         val = __vgic_mmio_read_active(vcpu, addr, len);
522 
523         vgic_access_active_finish(vcpu, intid);
524         mutex_unlock(&vcpu->kvm->arch.config_lock);
525 
526         return val;
527 }
528 
529 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
530                                     gpa_t addr, unsigned int len)
531 {
532         return __vgic_mmio_read_active(vcpu, addr, len);
533 }
534 
535 /* Must be called with irq->irq_lock held */
536 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
537                                       bool active, bool is_uaccess)
538 {
539         if (is_uaccess)
540                 return;
541 
542         irq->active = active;
543         vgic_irq_set_phys_active(irq, active);
544 }
545 
546 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
547                                     bool active)
548 {
549         unsigned long flags;
550         struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
551 
552         raw_spin_lock_irqsave(&irq->irq_lock, flags);
553 
554         if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
555                 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
556         } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
557                 /*
558                  * GICv4.1 VSGI feature doesn't track an active state,
559                  * so let's not kid ourselves, there is nothing we can
560                  * do here.
561                  */
562                 irq->active = false;
563         } else {
564                 u32 model = vcpu->kvm->arch.vgic.vgic_model;
565                 u8 active_source;
566 
567                 irq->active = active;
568 
569                 /*
570                  * The GICv2 architecture indicates that the source CPUID for
571                  * an SGI should be provided during an EOI which implies that
572                  * the active state is stored somewhere, but at the same time
573                  * this state is not architecturally exposed anywhere and we
574                  * have no way of knowing the right source.
575                  *
576                  * This may lead to a VCPU not being able to receive
577                  * additional instances of a particular SGI after migration
578                  * for a GICv2 VM on some GIC implementations.  Oh well.
579                  */
580                 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
581 
582                 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
583                     active && vgic_irq_is_sgi(irq->intid))
584                         irq->active_source = active_source;
585         }
586 
587         if (irq->active)
588                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
589         else
590                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
591 }
592 
593 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
594                                       gpa_t addr, unsigned int len,
595                                       unsigned long val)
596 {
597         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
598         int i;
599 
600         for_each_set_bit(i, &val, len * 8) {
601                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
602                 vgic_mmio_change_active(vcpu, irq, false);
603                 vgic_put_irq(vcpu->kvm, irq);
604         }
605 }
606 
607 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
608                              gpa_t addr, unsigned int len,
609                              unsigned long val)
610 {
611         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
612 
613         mutex_lock(&vcpu->kvm->arch.config_lock);
614         vgic_access_active_prepare(vcpu, intid);
615 
616         __vgic_mmio_write_cactive(vcpu, addr, len, val);
617 
618         vgic_access_active_finish(vcpu, intid);
619         mutex_unlock(&vcpu->kvm->arch.config_lock);
620 }
621 
622 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
623                                      gpa_t addr, unsigned int len,
624                                      unsigned long val)
625 {
626         __vgic_mmio_write_cactive(vcpu, addr, len, val);
627         return 0;
628 }
629 
630 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
631                                       gpa_t addr, unsigned int len,
632                                       unsigned long val)
633 {
634         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
635         int i;
636 
637         for_each_set_bit(i, &val, len * 8) {
638                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
639                 vgic_mmio_change_active(vcpu, irq, true);
640                 vgic_put_irq(vcpu->kvm, irq);
641         }
642 }
643 
644 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
645                              gpa_t addr, unsigned int len,
646                              unsigned long val)
647 {
648         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
649 
650         mutex_lock(&vcpu->kvm->arch.config_lock);
651         vgic_access_active_prepare(vcpu, intid);
652 
653         __vgic_mmio_write_sactive(vcpu, addr, len, val);
654 
655         vgic_access_active_finish(vcpu, intid);
656         mutex_unlock(&vcpu->kvm->arch.config_lock);
657 }
658 
659 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
660                                      gpa_t addr, unsigned int len,
661                                      unsigned long val)
662 {
663         __vgic_mmio_write_sactive(vcpu, addr, len, val);
664         return 0;
665 }
666 
667 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
668                                       gpa_t addr, unsigned int len)
669 {
670         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
671         int i;
672         u64 val = 0;
673 
674         for (i = 0; i < len; i++) {
675                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
676 
677                 val |= (u64)irq->priority << (i * 8);
678 
679                 vgic_put_irq(vcpu->kvm, irq);
680         }
681 
682         return val;
683 }
684 
685 /*
686  * We currently don't handle changing the priority of an interrupt that
687  * is already pending on a VCPU. If there is a need for this, we would
688  * need to make this VCPU exit and re-evaluate the priorities, potentially
689  * leading to this interrupt getting presented now to the guest (if it has
690  * been masked by the priority mask before).
691  */
692 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
693                               gpa_t addr, unsigned int len,
694                               unsigned long val)
695 {
696         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
697         int i;
698         unsigned long flags;
699 
700         for (i = 0; i < len; i++) {
701                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
702 
703                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
704                 /* Narrow the priority range to what we actually support */
705                 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
706                 if (irq->hw && vgic_irq_is_sgi(irq->intid))
707                         vgic_update_vsgi(irq);
708                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
709 
710                 vgic_put_irq(vcpu->kvm, irq);
711         }
712 }
713 
714 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
715                                     gpa_t addr, unsigned int len)
716 {
717         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
718         u32 value = 0;
719         int i;
720 
721         for (i = 0; i < len * 4; i++) {
722                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
723 
724                 if (irq->config == VGIC_CONFIG_EDGE)
725                         value |= (2U << (i * 2));
726 
727                 vgic_put_irq(vcpu->kvm, irq);
728         }
729 
730         return value;
731 }
732 
733 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
734                             gpa_t addr, unsigned int len,
735                             unsigned long val)
736 {
737         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
738         int i;
739         unsigned long flags;
740 
741         for (i = 0; i < len * 4; i++) {
742                 struct vgic_irq *irq;
743 
744                 /*
745                  * The configuration cannot be changed for SGIs in general,
746                  * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
747                  * code relies on PPIs being level triggered, so we also
748                  * make them read-only here.
749                  */
750                 if (intid + i < VGIC_NR_PRIVATE_IRQS)
751                         continue;
752 
753                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
754                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
755 
756                 if (test_bit(i * 2 + 1, &val))
757                         irq->config = VGIC_CONFIG_EDGE;
758                 else
759                         irq->config = VGIC_CONFIG_LEVEL;
760 
761                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
762                 vgic_put_irq(vcpu->kvm, irq);
763         }
764 }
765 
766 u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
767 {
768         int i;
769         u32 val = 0;
770         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
771 
772         for (i = 0; i < 32; i++) {
773                 struct vgic_irq *irq;
774 
775                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
776                         continue;
777 
778                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
779                 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
780                         val |= (1U << i);
781 
782                 vgic_put_irq(vcpu->kvm, irq);
783         }
784 
785         return val;
786 }
787 
788 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
789                                     const u32 val)
790 {
791         int i;
792         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
793         unsigned long flags;
794 
795         for (i = 0; i < 32; i++) {
796                 struct vgic_irq *irq;
797                 bool new_level;
798 
799                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
800                         continue;
801 
802                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
803 
804                 /*
805                  * Line level is set irrespective of irq type
806                  * (level or edge) to avoid dependency that VM should
807                  * restore irq config before line level.
808                  */
809                 new_level = !!(val & (1U << i));
810                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
811                 irq->line_level = new_level;
812                 if (new_level)
813                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
814                 else
815                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
816 
817                 vgic_put_irq(vcpu->kvm, irq);
818         }
819 }
820 
821 static int match_region(const void *key, const void *elt)
822 {
823         const unsigned int offset = (unsigned long)key;
824         const struct vgic_register_region *region = elt;
825 
826         if (offset < region->reg_offset)
827                 return -1;
828 
829         if (offset >= region->reg_offset + region->len)
830                 return 1;
831 
832         return 0;
833 }
834 
835 const struct vgic_register_region *
836 vgic_find_mmio_region(const struct vgic_register_region *regions,
837                       int nr_regions, unsigned int offset)
838 {
839         return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
840                        sizeof(regions[0]), match_region);
841 }
842 
843 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
844 {
845         if (kvm_vgic_global_state.type == VGIC_V2)
846                 vgic_v2_set_vmcr(vcpu, vmcr);
847         else
848                 vgic_v3_set_vmcr(vcpu, vmcr);
849 }
850 
851 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
852 {
853         if (kvm_vgic_global_state.type == VGIC_V2)
854                 vgic_v2_get_vmcr(vcpu, vmcr);
855         else
856                 vgic_v3_get_vmcr(vcpu, vmcr);
857 }
858 
859 /*
860  * kvm_mmio_read_buf() returns a value in a format where it can be converted
861  * to a byte array and be directly observed as the guest wanted it to appear
862  * in memory if it had done the store itself, which is LE for the GIC, as the
863  * guest knows the GIC is always LE.
864  *
865  * We convert this value to the CPUs native format to deal with it as a data
866  * value.
867  */
868 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
869 {
870         unsigned long data = kvm_mmio_read_buf(val, len);
871 
872         switch (len) {
873         case 1:
874                 return data;
875         case 2:
876                 return le16_to_cpu(data);
877         case 4:
878                 return le32_to_cpu(data);
879         default:
880                 return le64_to_cpu(data);
881         }
882 }
883 
884 /*
885  * kvm_mmio_write_buf() expects a value in a format such that if converted to
886  * a byte array it is observed as the guest would see it if it could perform
887  * the load directly.  Since the GIC is LE, and the guest knows this, the
888  * guest expects a value in little endian format.
889  *
890  * We convert the data value from the CPUs native format to LE so that the
891  * value is returned in the proper format.
892  */
893 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
894                                 unsigned long data)
895 {
896         switch (len) {
897         case 1:
898                 break;
899         case 2:
900                 data = cpu_to_le16(data);
901                 break;
902         case 4:
903                 data = cpu_to_le32(data);
904                 break;
905         default:
906                 data = cpu_to_le64(data);
907         }
908 
909         kvm_mmio_write_buf(buf, len, data);
910 }
911 
912 static
913 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
914 {
915         return container_of(dev, struct vgic_io_device, dev);
916 }
917 
918 static bool check_region(const struct kvm *kvm,
919                          const struct vgic_register_region *region,
920                          gpa_t addr, int len)
921 {
922         int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
923 
924         switch (len) {
925         case sizeof(u8):
926                 flags = VGIC_ACCESS_8bit;
927                 break;
928         case sizeof(u32):
929                 flags = VGIC_ACCESS_32bit;
930                 break;
931         case sizeof(u64):
932                 flags = VGIC_ACCESS_64bit;
933                 break;
934         default:
935                 return false;
936         }
937 
938         if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
939                 if (!region->bits_per_irq)
940                         return true;
941 
942                 /* Do we access a non-allocated IRQ? */
943                 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
944         }
945 
946         return false;
947 }
948 
949 const struct vgic_register_region *
950 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
951                      gpa_t addr, int len)
952 {
953         const struct vgic_register_region *region;
954 
955         region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
956                                        addr - iodev->base_addr);
957         if (!region || !check_region(vcpu->kvm, region, addr, len))
958                 return NULL;
959 
960         return region;
961 }
962 
963 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
964                              gpa_t addr, u32 *val)
965 {
966         const struct vgic_register_region *region;
967         struct kvm_vcpu *r_vcpu;
968 
969         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
970         if (!region) {
971                 *val = 0;
972                 return 0;
973         }
974 
975         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
976         if (region->uaccess_read)
977                 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
978         else
979                 *val = region->read(r_vcpu, addr, sizeof(u32));
980 
981         return 0;
982 }
983 
984 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
985                               gpa_t addr, const u32 *val)
986 {
987         const struct vgic_register_region *region;
988         struct kvm_vcpu *r_vcpu;
989 
990         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
991         if (!region)
992                 return 0;
993 
994         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
995         if (region->uaccess_write)
996                 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
997 
998         region->write(r_vcpu, addr, sizeof(u32), *val);
999         return 0;
1000 }
1001 
1002 /*
1003  * Userland access to VGIC registers.
1004  */
1005 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
1006                  bool is_write, int offset, u32 *val)
1007 {
1008         if (is_write)
1009                 return vgic_uaccess_write(vcpu, dev, offset, val);
1010         else
1011                 return vgic_uaccess_read(vcpu, dev, offset, val);
1012 }
1013 
1014 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1015                               gpa_t addr, int len, void *val)
1016 {
1017         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1018         const struct vgic_register_region *region;
1019         unsigned long data = 0;
1020 
1021         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1022         if (!region) {
1023                 memset(val, 0, len);
1024                 return 0;
1025         }
1026 
1027         switch (iodev->iodev_type) {
1028         case IODEV_CPUIF:
1029                 data = region->read(vcpu, addr, len);
1030                 break;
1031         case IODEV_DIST:
1032                 data = region->read(vcpu, addr, len);
1033                 break;
1034         case IODEV_REDIST:
1035                 data = region->read(iodev->redist_vcpu, addr, len);
1036                 break;
1037         case IODEV_ITS:
1038                 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1039                 break;
1040         }
1041 
1042         vgic_data_host_to_mmio_bus(val, len, data);
1043         return 0;
1044 }
1045 
1046 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1047                                gpa_t addr, int len, const void *val)
1048 {
1049         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1050         const struct vgic_register_region *region;
1051         unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1052 
1053         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1054         if (!region)
1055                 return 0;
1056 
1057         switch (iodev->iodev_type) {
1058         case IODEV_CPUIF:
1059                 region->write(vcpu, addr, len, data);
1060                 break;
1061         case IODEV_DIST:
1062                 region->write(vcpu, addr, len, data);
1063                 break;
1064         case IODEV_REDIST:
1065                 region->write(iodev->redist_vcpu, addr, len, data);
1066                 break;
1067         case IODEV_ITS:
1068                 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1069                 break;
1070         }
1071 
1072         return 0;
1073 }
1074 
1075 const struct kvm_io_device_ops kvm_io_gic_ops = {
1076         .read = dispatch_mmio_read,
1077         .write = dispatch_mmio_write,
1078 };
1079 
1080 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1081                              enum vgic_type type)
1082 {
1083         struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1084         unsigned int len;
1085 
1086         switch (type) {
1087         case VGIC_V2:
1088                 len = vgic_v2_init_dist_iodev(io_device);
1089                 break;
1090         case VGIC_V3:
1091                 len = vgic_v3_init_dist_iodev(io_device);
1092                 break;
1093         default:
1094                 BUG_ON(1);
1095         }
1096 
1097         io_device->base_addr = dist_base_address;
1098         io_device->iodev_type = IODEV_DIST;
1099         io_device->redist_vcpu = NULL;
1100 
1101         return kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1102                                        len, &io_device->dev);
1103 }
1104 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php