~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/kvm/vgic/vgic-v4.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2017 ARM Ltd.
  4  * Author: Marc Zyngier <marc.zyngier@arm.com>
  5  */
  6 
  7 #include <linux/interrupt.h>
  8 #include <linux/irq.h>
  9 #include <linux/irqdomain.h>
 10 #include <linux/kvm_host.h>
 11 #include <linux/irqchip/arm-gic-v3.h>
 12 
 13 #include "vgic.h"
 14 
 15 /*
 16  * How KVM uses GICv4 (insert rude comments here):
 17  *
 18  * The vgic-v4 layer acts as a bridge between several entities:
 19  * - The GICv4 ITS representation offered by the ITS driver
 20  * - VFIO, which is in charge of the PCI endpoint
 21  * - The virtual ITS, which is the only thing the guest sees
 22  *
 23  * The configuration of VLPIs is triggered by a callback from VFIO,
 24  * instructing KVM that a PCI device has been configured to deliver
 25  * MSIs to a vITS.
 26  *
 27  * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
 28  * and this is used to find the corresponding vITS data structures
 29  * (ITS instance, device, event and irq) using a process that is
 30  * extremely similar to the injection of an MSI.
 31  *
 32  * At this stage, we can link the guest's view of an LPI (uniquely
 33  * identified by the routing entry) and the host irq, using the GICv4
 34  * driver mapping operation. Should the mapping succeed, we've then
 35  * successfully upgraded the guest's LPI to a VLPI. We can then start
 36  * with updating GICv4's view of the property table and generating an
 37  * INValidation in order to kickstart the delivery of this VLPI to the
 38  * guest directly, without software intervention. Well, almost.
 39  *
 40  * When the PCI endpoint is deconfigured, this operation is reversed
 41  * with VFIO calling kvm_vgic_v4_unset_forwarding().
 42  *
 43  * Once the VLPI has been mapped, it needs to follow any change the
 44  * guest performs on its LPI through the vITS. For that, a number of
 45  * command handlers have hooks to communicate these changes to the HW:
 46  * - Any invalidation triggers a call to its_prop_update_vlpi()
 47  * - The INT command results in a irq_set_irqchip_state(), which
 48  *   generates an INT on the corresponding VLPI.
 49  * - The CLEAR command results in a irq_set_irqchip_state(), which
 50  *   generates an CLEAR on the corresponding VLPI.
 51  * - DISCARD translates into an unmap, similar to a call to
 52  *   kvm_vgic_v4_unset_forwarding().
 53  * - MOVI is translated by an update of the existing mapping, changing
 54  *   the target vcpu, resulting in a VMOVI being generated.
 55  * - MOVALL is translated by a string of mapping updates (similar to
 56  *   the handling of MOVI). MOVALL is horrible.
 57  *
 58  * Note that a DISCARD/MAPTI sequence emitted from the guest without
 59  * reprogramming the PCI endpoint after MAPTI does not result in a
 60  * VLPI being mapped, as there is no callback from VFIO (the guest
 61  * will get the interrupt via the normal SW injection). Fixing this is
 62  * not trivial, and requires some horrible messing with the VFIO
 63  * internals. Not fun. Don't do that.
 64  *
 65  * Then there is the scheduling. Each time a vcpu is about to run on a
 66  * physical CPU, KVM must tell the corresponding redistributor about
 67  * it. And if we've migrated our vcpu from one CPU to another, we must
 68  * tell the ITS (so that the messages reach the right redistributor).
 69  * This is done in two steps: first issue a irq_set_affinity() on the
 70  * irq corresponding to the vcpu, then call its_make_vpe_resident().
 71  * You must be in a non-preemptible context. On exit, a call to
 72  * its_make_vpe_non_resident() tells the redistributor that we're done
 73  * with the vcpu.
 74  *
 75  * Finally, the doorbell handling: Each vcpu is allocated an interrupt
 76  * which will fire each time a VLPI is made pending whilst the vcpu is
 77  * not running. Each time the vcpu gets blocked, the doorbell
 78  * interrupt gets enabled. When the vcpu is unblocked (for whatever
 79  * reason), the doorbell interrupt is disabled.
 80  */
 81 
 82 #define DB_IRQ_FLAGS    (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
 83 
 84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
 85 {
 86         struct kvm_vcpu *vcpu = info;
 87 
 88         /* We got the message, no need to fire again */
 89         if (!kvm_vgic_global_state.has_gicv4_1 &&
 90             !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
 91                 disable_irq_nosync(irq);
 92 
 93         /*
 94          * The v4.1 doorbell can fire concurrently with the vPE being
 95          * made non-resident. Ensure we only update pending_last
 96          * *after* the non-residency sequence has completed.
 97          */
 98         raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
 99         vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100         raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101 
102         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103         kvm_vcpu_kick(vcpu);
104 
105         return IRQ_HANDLED;
106 }
107 
108 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109 {
110         vpe->sgi_config[irq->intid].enabled     = irq->enabled;
111         vpe->sgi_config[irq->intid].group       = irq->group;
112         vpe->sgi_config[irq->intid].priority    = irq->priority;
113 }
114 
115 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116 {
117         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118         int i;
119 
120         /*
121          * With GICv4.1, every virtual SGI can be directly injected. So
122          * let's pretend that they are HW interrupts, tied to a host
123          * IRQ. The SGI code will do its magic.
124          */
125         for (i = 0; i < VGIC_NR_SGIS; i++) {
126                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
127                 struct irq_desc *desc;
128                 unsigned long flags;
129                 int ret;
130 
131                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
132 
133                 if (irq->hw)
134                         goto unlock;
135 
136                 irq->hw = true;
137                 irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138 
139                 /* Transfer the full irq state to the vPE */
140                 vgic_v4_sync_sgi_config(vpe, irq);
141                 desc = irq_to_desc(irq->host_irq);
142                 ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143                                               false);
144                 if (!WARN_ON(ret)) {
145                         /* Transfer pending state */
146                         ret = irq_set_irqchip_state(irq->host_irq,
147                                                     IRQCHIP_STATE_PENDING,
148                                                     irq->pending_latch);
149                         WARN_ON(ret);
150                         irq->pending_latch = false;
151                 }
152         unlock:
153                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154                 vgic_put_irq(vcpu->kvm, irq);
155         }
156 }
157 
158 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159 {
160         int i;
161 
162         for (i = 0; i < VGIC_NR_SGIS; i++) {
163                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
164                 struct irq_desc *desc;
165                 unsigned long flags;
166                 int ret;
167 
168                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
169 
170                 if (!irq->hw)
171                         goto unlock;
172 
173                 irq->hw = false;
174                 ret = irq_get_irqchip_state(irq->host_irq,
175                                             IRQCHIP_STATE_PENDING,
176                                             &irq->pending_latch);
177                 WARN_ON(ret);
178 
179                 desc = irq_to_desc(irq->host_irq);
180                 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
181         unlock:
182                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183                 vgic_put_irq(vcpu->kvm, irq);
184         }
185 }
186 
187 void vgic_v4_configure_vsgis(struct kvm *kvm)
188 {
189         struct vgic_dist *dist = &kvm->arch.vgic;
190         struct kvm_vcpu *vcpu;
191         unsigned long i;
192 
193         lockdep_assert_held(&kvm->arch.config_lock);
194 
195         kvm_arm_halt_guest(kvm);
196 
197         kvm_for_each_vcpu(i, vcpu, kvm) {
198                 if (dist->nassgireq)
199                         vgic_v4_enable_vsgis(vcpu);
200                 else
201                         vgic_v4_disable_vsgis(vcpu);
202         }
203 
204         kvm_arm_resume_guest(kvm);
205 }
206 
207 /*
208  * Must be called with GICv4.1 and the vPE unmapped, which
209  * indicates the invalidation of any VPT caches associated
210  * with the vPE, thus we can get the VLPI state by peeking
211  * at the VPT.
212  */
213 void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
214 {
215         struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
216         int mask = BIT(irq->intid % BITS_PER_BYTE);
217         void *va;
218         u8 *ptr;
219 
220         va = page_address(vpe->vpt_page);
221         ptr = va + irq->intid / BITS_PER_BYTE;
222 
223         *val = !!(*ptr & mask);
224 }
225 
226 int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq)
227 {
228         return request_irq(irq, vgic_v4_doorbell_handler, 0, "vcpu", vcpu);
229 }
230 
231 /**
232  * vgic_v4_init - Initialize the GICv4 data structures
233  * @kvm:        Pointer to the VM being initialized
234  *
235  * We may be called each time a vITS is created, or when the
236  * vgic is initialized. In both cases, the number of vcpus
237  * should now be fixed.
238  */
239 int vgic_v4_init(struct kvm *kvm)
240 {
241         struct vgic_dist *dist = &kvm->arch.vgic;
242         struct kvm_vcpu *vcpu;
243         int nr_vcpus, ret;
244         unsigned long i;
245 
246         lockdep_assert_held(&kvm->arch.config_lock);
247 
248         if (!kvm_vgic_global_state.has_gicv4)
249                 return 0; /* Nothing to see here... move along. */
250 
251         if (dist->its_vm.vpes)
252                 return 0;
253 
254         nr_vcpus = atomic_read(&kvm->online_vcpus);
255 
256         dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
257                                     GFP_KERNEL_ACCOUNT);
258         if (!dist->its_vm.vpes)
259                 return -ENOMEM;
260 
261         dist->its_vm.nr_vpes = nr_vcpus;
262 
263         kvm_for_each_vcpu(i, vcpu, kvm)
264                 dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
265 
266         ret = its_alloc_vcpu_irqs(&dist->its_vm);
267         if (ret < 0) {
268                 kvm_err("VPE IRQ allocation failure\n");
269                 kfree(dist->its_vm.vpes);
270                 dist->its_vm.nr_vpes = 0;
271                 dist->its_vm.vpes = NULL;
272                 return ret;
273         }
274 
275         kvm_for_each_vcpu(i, vcpu, kvm) {
276                 int irq = dist->its_vm.vpes[i]->irq;
277                 unsigned long irq_flags = DB_IRQ_FLAGS;
278 
279                 /*
280                  * Don't automatically enable the doorbell, as we're
281                  * flipping it back and forth when the vcpu gets
282                  * blocked. Also disable the lazy disabling, as the
283                  * doorbell could kick us out of the guest too
284                  * early...
285                  *
286                  * On GICv4.1, the doorbell is managed in HW and must
287                  * be left enabled.
288                  */
289                 if (kvm_vgic_global_state.has_gicv4_1)
290                         irq_flags &= ~IRQ_NOAUTOEN;
291                 irq_set_status_flags(irq, irq_flags);
292 
293                 ret = vgic_v4_request_vpe_irq(vcpu, irq);
294                 if (ret) {
295                         kvm_err("failed to allocate vcpu IRQ%d\n", irq);
296                         /*
297                          * Trick: adjust the number of vpes so we know
298                          * how many to nuke on teardown...
299                          */
300                         dist->its_vm.nr_vpes = i;
301                         break;
302                 }
303         }
304 
305         if (ret)
306                 vgic_v4_teardown(kvm);
307 
308         return ret;
309 }
310 
311 /**
312  * vgic_v4_teardown - Free the GICv4 data structures
313  * @kvm:        Pointer to the VM being destroyed
314  */
315 void vgic_v4_teardown(struct kvm *kvm)
316 {
317         struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
318         int i;
319 
320         lockdep_assert_held(&kvm->arch.config_lock);
321 
322         if (!its_vm->vpes)
323                 return;
324 
325         for (i = 0; i < its_vm->nr_vpes; i++) {
326                 struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
327                 int irq = its_vm->vpes[i]->irq;
328 
329                 irq_clear_status_flags(irq, DB_IRQ_FLAGS);
330                 free_irq(irq, vcpu);
331         }
332 
333         its_free_vcpu_irqs(its_vm);
334         kfree(its_vm->vpes);
335         its_vm->nr_vpes = 0;
336         its_vm->vpes = NULL;
337 }
338 
339 int vgic_v4_put(struct kvm_vcpu *vcpu)
340 {
341         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
342 
343         if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
344                 return 0;
345 
346         return its_make_vpe_non_resident(vpe, !!vcpu_get_flag(vcpu, IN_WFI));
347 }
348 
349 int vgic_v4_load(struct kvm_vcpu *vcpu)
350 {
351         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
352         int err;
353 
354         if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
355                 return 0;
356 
357         if (vcpu_get_flag(vcpu, IN_WFI))
358                 return 0;
359 
360         /*
361          * Before making the VPE resident, make sure the redistributor
362          * corresponding to our current CPU expects us here. See the
363          * doc in drivers/irqchip/irq-gic-v4.c to understand how this
364          * turns into a VMOVP command at the ITS level.
365          */
366         err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
367         if (err)
368                 return err;
369 
370         err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
371         if (err)
372                 return err;
373 
374         /*
375          * Now that the VPE is resident, let's get rid of a potential
376          * doorbell interrupt that would still be pending. This is a
377          * GICv4.0 only "feature"...
378          */
379         if (!kvm_vgic_global_state.has_gicv4_1)
380                 err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
381 
382         return err;
383 }
384 
385 void vgic_v4_commit(struct kvm_vcpu *vcpu)
386 {
387         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
388 
389         /*
390          * No need to wait for the vPE to be ready across a shallow guest
391          * exit, as only a vcpu_put will invalidate it.
392          */
393         if (!vpe->ready)
394                 its_commit_vpe(vpe);
395 }
396 
397 static struct vgic_its *vgic_get_its(struct kvm *kvm,
398                                      struct kvm_kernel_irq_routing_entry *irq_entry)
399 {
400         struct kvm_msi msi  = (struct kvm_msi) {
401                 .address_lo     = irq_entry->msi.address_lo,
402                 .address_hi     = irq_entry->msi.address_hi,
403                 .data           = irq_entry->msi.data,
404                 .flags          = irq_entry->msi.flags,
405                 .devid          = irq_entry->msi.devid,
406         };
407 
408         return vgic_msi_to_its(kvm, &msi);
409 }
410 
411 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
412                                struct kvm_kernel_irq_routing_entry *irq_entry)
413 {
414         struct vgic_its *its;
415         struct vgic_irq *irq;
416         struct its_vlpi_map map;
417         unsigned long flags;
418         int ret;
419 
420         if (!vgic_supports_direct_msis(kvm))
421                 return 0;
422 
423         /*
424          * Get the ITS, and escape early on error (not a valid
425          * doorbell for any of our vITSs).
426          */
427         its = vgic_get_its(kvm, irq_entry);
428         if (IS_ERR(its))
429                 return 0;
430 
431         mutex_lock(&its->its_lock);
432 
433         /* Perform the actual DevID/EventID -> LPI translation. */
434         ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
435                                    irq_entry->msi.data, &irq);
436         if (ret)
437                 goto out;
438 
439         /* Silently exit if the vLPI is already mapped */
440         if (irq->hw)
441                 goto out;
442 
443         /*
444          * Emit the mapping request. If it fails, the ITS probably
445          * isn't v4 compatible, so let's silently bail out. Holding
446          * the ITS lock should ensure that nothing can modify the
447          * target vcpu.
448          */
449         map = (struct its_vlpi_map) {
450                 .vm             = &kvm->arch.vgic.its_vm,
451                 .vpe            = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
452                 .vintid         = irq->intid,
453                 .properties     = ((irq->priority & 0xfc) |
454                                    (irq->enabled ? LPI_PROP_ENABLED : 0) |
455                                    LPI_PROP_GROUP1),
456                 .db_enabled     = true,
457         };
458 
459         ret = its_map_vlpi(virq, &map);
460         if (ret)
461                 goto out;
462 
463         irq->hw         = true;
464         irq->host_irq   = virq;
465         atomic_inc(&map.vpe->vlpi_count);
466 
467         /* Transfer pending state */
468         raw_spin_lock_irqsave(&irq->irq_lock, flags);
469         if (irq->pending_latch) {
470                 ret = irq_set_irqchip_state(irq->host_irq,
471                                             IRQCHIP_STATE_PENDING,
472                                             irq->pending_latch);
473                 WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
474 
475                 /*
476                  * Clear pending_latch and communicate this state
477                  * change via vgic_queue_irq_unlock.
478                  */
479                 irq->pending_latch = false;
480                 vgic_queue_irq_unlock(kvm, irq, flags);
481         } else {
482                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
483         }
484 
485 out:
486         mutex_unlock(&its->its_lock);
487         return ret;
488 }
489 
490 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
491                                  struct kvm_kernel_irq_routing_entry *irq_entry)
492 {
493         struct vgic_its *its;
494         struct vgic_irq *irq;
495         int ret;
496 
497         if (!vgic_supports_direct_msis(kvm))
498                 return 0;
499 
500         /*
501          * Get the ITS, and escape early on error (not a valid
502          * doorbell for any of our vITSs).
503          */
504         its = vgic_get_its(kvm, irq_entry);
505         if (IS_ERR(its))
506                 return 0;
507 
508         mutex_lock(&its->its_lock);
509 
510         ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
511                                    irq_entry->msi.data, &irq);
512         if (ret)
513                 goto out;
514 
515         WARN_ON(!(irq->hw && irq->host_irq == virq));
516         if (irq->hw) {
517                 atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
518                 irq->hw = false;
519                 ret = its_unmap_vlpi(virq);
520         }
521 
522 out:
523         mutex_unlock(&its->its_lock);
524         return ret;
525 }
526 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php