1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/interrupt.h> 7 #include <linux/irq.h> 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/list_sort.h> 11 #include <linux/nospec.h> 12 13 #include <asm/kvm_hyp.h> 14 15 #include "vgic.h" 16 17 #define CREATE_TRACE_POINTS 18 #include "trace.h" 19 20 struct vgic_global kvm_vgic_global_state __ro_after_init = { 21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT, 22 }; 23 24 /* 25 * Locking order is always: 26 * kvm->lock (mutex) 27 * vcpu->mutex (mutex) 28 * kvm->arch.config_lock (mutex) 29 * its->cmd_lock (mutex) 30 * its->its_lock (mutex) 31 * vgic_cpu->ap_list_lock must be taken with IRQs disabled 32 * vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled 33 * vgic_irq->irq_lock must be taken with IRQs disabled 34 * 35 * As the ap_list_lock might be taken from the timer interrupt handler, 36 * we have to disable IRQs before taking this lock and everything lower 37 * than it. 38 * 39 * The config_lock has additional ordering requirements: 40 * kvm->slots_lock 41 * kvm->srcu 42 * kvm->arch.config_lock 43 * 44 * If you need to take multiple locks, always take the upper lock first, 45 * then the lower ones, e.g. first take the its_lock, then the irq_lock. 46 * If you are already holding a lock and need to take a higher one, you 47 * have to drop the lower ranking lock first and re-acquire it after having 48 * taken the upper one. 49 * 50 * When taking more than one ap_list_lock at the same time, always take the 51 * lowest numbered VCPU's ap_list_lock first, so: 52 * vcpuX->vcpu_id < vcpuY->vcpu_id: 53 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); 54 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); 55 * 56 * Since the VGIC must support injecting virtual interrupts from ISRs, we have 57 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer 58 * spinlocks for any lock that may be taken while injecting an interrupt. 59 */ 60 61 /* 62 * Index the VM's xarray of mapped LPIs and return a reference to the IRQ 63 * structure. The caller is expected to call vgic_put_irq() later once it's 64 * finished with the IRQ. 65 */ 66 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid) 67 { 68 struct vgic_dist *dist = &kvm->arch.vgic; 69 struct vgic_irq *irq = NULL; 70 71 rcu_read_lock(); 72 73 irq = xa_load(&dist->lpi_xa, intid); 74 if (!vgic_try_get_irq_kref(irq)) 75 irq = NULL; 76 77 rcu_read_unlock(); 78 79 return irq; 80 } 81 82 /* 83 * This looks up the virtual interrupt ID to get the corresponding 84 * struct vgic_irq. It also increases the refcount, so any caller is expected 85 * to call vgic_put_irq() once it's finished with this IRQ. 86 */ 87 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, 88 u32 intid) 89 { 90 /* SGIs and PPIs */ 91 if (intid <= VGIC_MAX_PRIVATE) { 92 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1); 93 return &vcpu->arch.vgic_cpu.private_irqs[intid]; 94 } 95 96 /* SPIs */ 97 if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) { 98 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS); 99 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; 100 } 101 102 /* LPIs */ 103 if (intid >= VGIC_MIN_LPI) 104 return vgic_get_lpi(kvm, intid); 105 106 return NULL; 107 } 108 109 /* 110 * We can't do anything in here, because we lack the kvm pointer to 111 * lock and remove the item from the lpi_list. So we keep this function 112 * empty and use the return value of kref_put() to trigger the freeing. 113 */ 114 static void vgic_irq_release(struct kref *ref) 115 { 116 } 117 118 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) 119 { 120 struct vgic_dist *dist = &kvm->arch.vgic; 121 unsigned long flags; 122 123 if (irq->intid < VGIC_MIN_LPI) 124 return; 125 126 if (!kref_put(&irq->refcount, vgic_irq_release)) 127 return; 128 129 xa_lock_irqsave(&dist->lpi_xa, flags); 130 __xa_erase(&dist->lpi_xa, irq->intid); 131 xa_unlock_irqrestore(&dist->lpi_xa, flags); 132 133 kfree_rcu(irq, rcu); 134 } 135 136 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu) 137 { 138 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 139 struct vgic_irq *irq, *tmp; 140 unsigned long flags; 141 142 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); 143 144 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { 145 if (irq->intid >= VGIC_MIN_LPI) { 146 raw_spin_lock(&irq->irq_lock); 147 list_del(&irq->ap_list); 148 irq->vcpu = NULL; 149 raw_spin_unlock(&irq->irq_lock); 150 vgic_put_irq(vcpu->kvm, irq); 151 } 152 } 153 154 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); 155 } 156 157 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending) 158 { 159 WARN_ON(irq_set_irqchip_state(irq->host_irq, 160 IRQCHIP_STATE_PENDING, 161 pending)); 162 } 163 164 bool vgic_get_phys_line_level(struct vgic_irq *irq) 165 { 166 bool line_level; 167 168 BUG_ON(!irq->hw); 169 170 if (irq->ops && irq->ops->get_input_level) 171 return irq->ops->get_input_level(irq->intid); 172 173 WARN_ON(irq_get_irqchip_state(irq->host_irq, 174 IRQCHIP_STATE_PENDING, 175 &line_level)); 176 return line_level; 177 } 178 179 /* Set/Clear the physical active state */ 180 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active) 181 { 182 183 BUG_ON(!irq->hw); 184 WARN_ON(irq_set_irqchip_state(irq->host_irq, 185 IRQCHIP_STATE_ACTIVE, 186 active)); 187 } 188 189 /** 190 * vgic_target_oracle - compute the target vcpu for an irq 191 * 192 * @irq: The irq to route. Must be already locked. 193 * 194 * Based on the current state of the interrupt (enabled, pending, 195 * active, vcpu and target_vcpu), compute the next vcpu this should be 196 * given to. Return NULL if this shouldn't be injected at all. 197 * 198 * Requires the IRQ lock to be held. 199 */ 200 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) 201 { 202 lockdep_assert_held(&irq->irq_lock); 203 204 /* If the interrupt is active, it must stay on the current vcpu */ 205 if (irq->active) 206 return irq->vcpu ? : irq->target_vcpu; 207 208 /* 209 * If the IRQ is not active but enabled and pending, we should direct 210 * it to its configured target VCPU. 211 * If the distributor is disabled, pending interrupts shouldn't be 212 * forwarded. 213 */ 214 if (irq->enabled && irq_is_pending(irq)) { 215 if (unlikely(irq->target_vcpu && 216 !irq->target_vcpu->kvm->arch.vgic.enabled)) 217 return NULL; 218 219 return irq->target_vcpu; 220 } 221 222 /* If neither active nor pending and enabled, then this IRQ should not 223 * be queued to any VCPU. 224 */ 225 return NULL; 226 } 227 228 /* 229 * The order of items in the ap_lists defines how we'll pack things in LRs as 230 * well, the first items in the list being the first things populated in the 231 * LRs. 232 * 233 * A hard rule is that active interrupts can never be pushed out of the LRs 234 * (and therefore take priority) since we cannot reliably trap on deactivation 235 * of IRQs and therefore they have to be present in the LRs. 236 * 237 * Otherwise things should be sorted by the priority field and the GIC 238 * hardware support will take care of preemption of priority groups etc. 239 * 240 * Return negative if "a" sorts before "b", 0 to preserve order, and positive 241 * to sort "b" before "a". 242 */ 243 static int vgic_irq_cmp(void *priv, const struct list_head *a, 244 const struct list_head *b) 245 { 246 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); 247 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); 248 bool penda, pendb; 249 int ret; 250 251 /* 252 * list_sort may call this function with the same element when 253 * the list is fairly long. 254 */ 255 if (unlikely(irqa == irqb)) 256 return 0; 257 258 raw_spin_lock(&irqa->irq_lock); 259 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); 260 261 if (irqa->active || irqb->active) { 262 ret = (int)irqb->active - (int)irqa->active; 263 goto out; 264 } 265 266 penda = irqa->enabled && irq_is_pending(irqa); 267 pendb = irqb->enabled && irq_is_pending(irqb); 268 269 if (!penda || !pendb) { 270 ret = (int)pendb - (int)penda; 271 goto out; 272 } 273 274 /* Both pending and enabled, sort by priority */ 275 ret = irqa->priority - irqb->priority; 276 out: 277 raw_spin_unlock(&irqb->irq_lock); 278 raw_spin_unlock(&irqa->irq_lock); 279 return ret; 280 } 281 282 /* Must be called with the ap_list_lock held */ 283 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) 284 { 285 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 286 287 lockdep_assert_held(&vgic_cpu->ap_list_lock); 288 289 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); 290 } 291 292 /* 293 * Only valid injection if changing level for level-triggered IRQs or for a 294 * rising edge, and in-kernel connected IRQ lines can only be controlled by 295 * their owner. 296 */ 297 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner) 298 { 299 if (irq->owner != owner) 300 return false; 301 302 switch (irq->config) { 303 case VGIC_CONFIG_LEVEL: 304 return irq->line_level != level; 305 case VGIC_CONFIG_EDGE: 306 return level; 307 } 308 309 return false; 310 } 311 312 /* 313 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. 314 * Do the queuing if necessary, taking the right locks in the right order. 315 * Returns true when the IRQ was queued, false otherwise. 316 * 317 * Needs to be entered with the IRQ lock already held, but will return 318 * with all locks dropped. 319 */ 320 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, 321 unsigned long flags) __releases(&irq->irq_lock) 322 { 323 struct kvm_vcpu *vcpu; 324 325 lockdep_assert_held(&irq->irq_lock); 326 327 retry: 328 vcpu = vgic_target_oracle(irq); 329 if (irq->vcpu || !vcpu) { 330 /* 331 * If this IRQ is already on a VCPU's ap_list, then it 332 * cannot be moved or modified and there is no more work for 333 * us to do. 334 * 335 * Otherwise, if the irq is not pending and enabled, it does 336 * not need to be inserted into an ap_list and there is also 337 * no more work for us to do. 338 */ 339 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 340 341 /* 342 * We have to kick the VCPU here, because we could be 343 * queueing an edge-triggered interrupt for which we 344 * get no EOI maintenance interrupt. In that case, 345 * while the IRQ is already on the VCPU's AP list, the 346 * VCPU could have EOI'ed the original interrupt and 347 * won't see this one until it exits for some other 348 * reason. 349 */ 350 if (vcpu) { 351 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 352 kvm_vcpu_kick(vcpu); 353 } 354 return false; 355 } 356 357 /* 358 * We must unlock the irq lock to take the ap_list_lock where 359 * we are going to insert this new pending interrupt. 360 */ 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 /* someone can do stuff here, which we re-check below */ 364 365 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags); 366 raw_spin_lock(&irq->irq_lock); 367 368 /* 369 * Did something change behind our backs? 370 * 371 * There are two cases: 372 * 1) The irq lost its pending state or was disabled behind our 373 * backs and/or it was queued to another VCPU's ap_list. 374 * 2) Someone changed the affinity on this irq behind our 375 * backs and we are now holding the wrong ap_list_lock. 376 * 377 * In both cases, drop the locks and retry. 378 */ 379 380 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { 381 raw_spin_unlock(&irq->irq_lock); 382 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, 383 flags); 384 385 raw_spin_lock_irqsave(&irq->irq_lock, flags); 386 goto retry; 387 } 388 389 /* 390 * Grab a reference to the irq to reflect the fact that it is 391 * now in the ap_list. This is safe as the caller must already hold a 392 * reference on the irq. 393 */ 394 vgic_get_irq_kref(irq); 395 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); 396 irq->vcpu = vcpu; 397 398 raw_spin_unlock(&irq->irq_lock); 399 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); 400 401 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 402 kvm_vcpu_kick(vcpu); 403 404 return true; 405 } 406 407 /** 408 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic 409 * @kvm: The VM structure pointer 410 * @vcpu: The CPU for PPIs or NULL for global interrupts 411 * @intid: The INTID to inject a new state to. 412 * @level: Edge-triggered: true: to trigger the interrupt 413 * false: to ignore the call 414 * Level-sensitive true: raise the input signal 415 * false: lower the input signal 416 * @owner: The opaque pointer to the owner of the IRQ being raised to verify 417 * that the caller is allowed to inject this IRQ. Userspace 418 * injections will have owner == NULL. 419 * 420 * The VGIC is not concerned with devices being active-LOW or active-HIGH for 421 * level-sensitive interrupts. You can think of the level parameter as 1 422 * being HIGH and 0 being LOW and all devices being active-HIGH. 423 */ 424 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, 425 unsigned int intid, bool level, void *owner) 426 { 427 struct vgic_irq *irq; 428 unsigned long flags; 429 int ret; 430 431 ret = vgic_lazy_init(kvm); 432 if (ret) 433 return ret; 434 435 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) 436 return -EINVAL; 437 438 trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level); 439 440 irq = vgic_get_irq(kvm, vcpu, intid); 441 if (!irq) 442 return -EINVAL; 443 444 raw_spin_lock_irqsave(&irq->irq_lock, flags); 445 446 if (!vgic_validate_injection(irq, level, owner)) { 447 /* Nothing to see here, move along... */ 448 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 449 vgic_put_irq(kvm, irq); 450 return 0; 451 } 452 453 if (irq->config == VGIC_CONFIG_LEVEL) 454 irq->line_level = level; 455 else 456 irq->pending_latch = true; 457 458 vgic_queue_irq_unlock(kvm, irq, flags); 459 vgic_put_irq(kvm, irq); 460 461 return 0; 462 } 463 464 /* @irq->irq_lock must be held */ 465 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq, 466 unsigned int host_irq, 467 struct irq_ops *ops) 468 { 469 struct irq_desc *desc; 470 struct irq_data *data; 471 472 /* 473 * Find the physical IRQ number corresponding to @host_irq 474 */ 475 desc = irq_to_desc(host_irq); 476 if (!desc) { 477 kvm_err("%s: no interrupt descriptor\n", __func__); 478 return -EINVAL; 479 } 480 data = irq_desc_get_irq_data(desc); 481 while (data->parent_data) 482 data = data->parent_data; 483 484 irq->hw = true; 485 irq->host_irq = host_irq; 486 irq->hwintid = data->hwirq; 487 irq->ops = ops; 488 return 0; 489 } 490 491 /* @irq->irq_lock must be held */ 492 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq) 493 { 494 irq->hw = false; 495 irq->hwintid = 0; 496 irq->ops = NULL; 497 } 498 499 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, 500 u32 vintid, struct irq_ops *ops) 501 { 502 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 503 unsigned long flags; 504 int ret; 505 506 BUG_ON(!irq); 507 508 raw_spin_lock_irqsave(&irq->irq_lock, flags); 509 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops); 510 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 511 vgic_put_irq(vcpu->kvm, irq); 512 513 return ret; 514 } 515 516 /** 517 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ 518 * @vcpu: The VCPU pointer 519 * @vintid: The INTID of the interrupt 520 * 521 * Reset the active and pending states of a mapped interrupt. Kernel 522 * subsystems injecting mapped interrupts should reset their interrupt lines 523 * when we are doing a reset of the VM. 524 */ 525 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid) 526 { 527 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 528 unsigned long flags; 529 530 if (!irq->hw) 531 goto out; 532 533 raw_spin_lock_irqsave(&irq->irq_lock, flags); 534 irq->active = false; 535 irq->pending_latch = false; 536 irq->line_level = false; 537 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 538 out: 539 vgic_put_irq(vcpu->kvm, irq); 540 } 541 542 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid) 543 { 544 struct vgic_irq *irq; 545 unsigned long flags; 546 547 if (!vgic_initialized(vcpu->kvm)) 548 return -EAGAIN; 549 550 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 551 BUG_ON(!irq); 552 553 raw_spin_lock_irqsave(&irq->irq_lock, flags); 554 kvm_vgic_unmap_irq(irq); 555 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 556 vgic_put_irq(vcpu->kvm, irq); 557 558 return 0; 559 } 560 561 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid) 562 { 563 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 564 unsigned long flags; 565 int ret = -1; 566 567 raw_spin_lock_irqsave(&irq->irq_lock, flags); 568 if (irq->hw) 569 ret = irq->hwintid; 570 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 571 572 vgic_put_irq(vcpu->kvm, irq); 573 return ret; 574 } 575 576 /** 577 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM 578 * 579 * @vcpu: Pointer to the VCPU (used for PPIs) 580 * @intid: The virtual INTID identifying the interrupt (PPI or SPI) 581 * @owner: Opaque pointer to the owner 582 * 583 * Returns 0 if intid is not already used by another in-kernel device and the 584 * owner is set, otherwise returns an error code. 585 */ 586 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner) 587 { 588 struct vgic_irq *irq; 589 unsigned long flags; 590 int ret = 0; 591 592 if (!vgic_initialized(vcpu->kvm)) 593 return -EAGAIN; 594 595 /* SGIs and LPIs cannot be wired up to any device */ 596 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid)) 597 return -EINVAL; 598 599 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 600 raw_spin_lock_irqsave(&irq->irq_lock, flags); 601 if (irq->owner && irq->owner != owner) 602 ret = -EEXIST; 603 else 604 irq->owner = owner; 605 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 606 607 return ret; 608 } 609 610 /** 611 * vgic_prune_ap_list - Remove non-relevant interrupts from the list 612 * 613 * @vcpu: The VCPU pointer 614 * 615 * Go over the list of "interesting" interrupts, and prune those that we 616 * won't have to consider in the near future. 617 */ 618 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) 619 { 620 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 621 struct vgic_irq *irq, *tmp; 622 623 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 624 625 retry: 626 raw_spin_lock(&vgic_cpu->ap_list_lock); 627 628 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { 629 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; 630 bool target_vcpu_needs_kick = false; 631 632 raw_spin_lock(&irq->irq_lock); 633 634 BUG_ON(vcpu != irq->vcpu); 635 636 target_vcpu = vgic_target_oracle(irq); 637 638 if (!target_vcpu) { 639 /* 640 * We don't need to process this interrupt any 641 * further, move it off the list. 642 */ 643 list_del(&irq->ap_list); 644 irq->vcpu = NULL; 645 raw_spin_unlock(&irq->irq_lock); 646 647 /* 648 * This vgic_put_irq call matches the 649 * vgic_get_irq_kref in vgic_queue_irq_unlock, 650 * where we added the LPI to the ap_list. As 651 * we remove the irq from the list, we drop 652 * also drop the refcount. 653 */ 654 vgic_put_irq(vcpu->kvm, irq); 655 continue; 656 } 657 658 if (target_vcpu == vcpu) { 659 /* We're on the right CPU */ 660 raw_spin_unlock(&irq->irq_lock); 661 continue; 662 } 663 664 /* This interrupt looks like it has to be migrated. */ 665 666 raw_spin_unlock(&irq->irq_lock); 667 raw_spin_unlock(&vgic_cpu->ap_list_lock); 668 669 /* 670 * Ensure locking order by always locking the smallest 671 * ID first. 672 */ 673 if (vcpu->vcpu_id < target_vcpu->vcpu_id) { 674 vcpuA = vcpu; 675 vcpuB = target_vcpu; 676 } else { 677 vcpuA = target_vcpu; 678 vcpuB = vcpu; 679 } 680 681 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); 682 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, 683 SINGLE_DEPTH_NESTING); 684 raw_spin_lock(&irq->irq_lock); 685 686 /* 687 * If the affinity has been preserved, move the 688 * interrupt around. Otherwise, it means things have 689 * changed while the interrupt was unlocked, and we 690 * need to replay this. 691 * 692 * In all cases, we cannot trust the list not to have 693 * changed, so we restart from the beginning. 694 */ 695 if (target_vcpu == vgic_target_oracle(irq)) { 696 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; 697 698 list_del(&irq->ap_list); 699 irq->vcpu = target_vcpu; 700 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); 701 target_vcpu_needs_kick = true; 702 } 703 704 raw_spin_unlock(&irq->irq_lock); 705 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); 706 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); 707 708 if (target_vcpu_needs_kick) { 709 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu); 710 kvm_vcpu_kick(target_vcpu); 711 } 712 713 goto retry; 714 } 715 716 raw_spin_unlock(&vgic_cpu->ap_list_lock); 717 } 718 719 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) 720 { 721 if (kvm_vgic_global_state.type == VGIC_V2) 722 vgic_v2_fold_lr_state(vcpu); 723 else 724 vgic_v3_fold_lr_state(vcpu); 725 } 726 727 /* Requires the irq_lock to be held. */ 728 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, 729 struct vgic_irq *irq, int lr) 730 { 731 lockdep_assert_held(&irq->irq_lock); 732 733 if (kvm_vgic_global_state.type == VGIC_V2) 734 vgic_v2_populate_lr(vcpu, irq, lr); 735 else 736 vgic_v3_populate_lr(vcpu, irq, lr); 737 } 738 739 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) 740 { 741 if (kvm_vgic_global_state.type == VGIC_V2) 742 vgic_v2_clear_lr(vcpu, lr); 743 else 744 vgic_v3_clear_lr(vcpu, lr); 745 } 746 747 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu) 748 { 749 if (kvm_vgic_global_state.type == VGIC_V2) 750 vgic_v2_set_underflow(vcpu); 751 else 752 vgic_v3_set_underflow(vcpu); 753 } 754 755 /* Requires the ap_list_lock to be held. */ 756 static int compute_ap_list_depth(struct kvm_vcpu *vcpu, 757 bool *multi_sgi) 758 { 759 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 760 struct vgic_irq *irq; 761 int count = 0; 762 763 *multi_sgi = false; 764 765 lockdep_assert_held(&vgic_cpu->ap_list_lock); 766 767 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 768 int w; 769 770 raw_spin_lock(&irq->irq_lock); 771 /* GICv2 SGIs can count for more than one... */ 772 w = vgic_irq_get_lr_count(irq); 773 raw_spin_unlock(&irq->irq_lock); 774 775 count += w; 776 *multi_sgi |= (w > 1); 777 } 778 return count; 779 } 780 781 /* Requires the VCPU's ap_list_lock to be held. */ 782 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) 783 { 784 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 785 struct vgic_irq *irq; 786 int count; 787 bool multi_sgi; 788 u8 prio = 0xff; 789 int i = 0; 790 791 lockdep_assert_held(&vgic_cpu->ap_list_lock); 792 793 count = compute_ap_list_depth(vcpu, &multi_sgi); 794 if (count > kvm_vgic_global_state.nr_lr || multi_sgi) 795 vgic_sort_ap_list(vcpu); 796 797 count = 0; 798 799 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 800 raw_spin_lock(&irq->irq_lock); 801 802 /* 803 * If we have multi-SGIs in the pipeline, we need to 804 * guarantee that they are all seen before any IRQ of 805 * lower priority. In that case, we need to filter out 806 * these interrupts by exiting early. This is easy as 807 * the AP list has been sorted already. 808 */ 809 if (multi_sgi && irq->priority > prio) { 810 _raw_spin_unlock(&irq->irq_lock); 811 break; 812 } 813 814 if (likely(vgic_target_oracle(irq) == vcpu)) { 815 vgic_populate_lr(vcpu, irq, count++); 816 817 if (irq->source) 818 prio = irq->priority; 819 } 820 821 raw_spin_unlock(&irq->irq_lock); 822 823 if (count == kvm_vgic_global_state.nr_lr) { 824 if (!list_is_last(&irq->ap_list, 825 &vgic_cpu->ap_list_head)) 826 vgic_set_underflow(vcpu); 827 break; 828 } 829 } 830 831 /* Nuke remaining LRs */ 832 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++) 833 vgic_clear_lr(vcpu, i); 834 835 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 836 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count; 837 else 838 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count; 839 } 840 841 static inline bool can_access_vgic_from_kernel(void) 842 { 843 /* 844 * GICv2 can always be accessed from the kernel because it is 845 * memory-mapped, and VHE systems can access GICv3 EL2 system 846 * registers. 847 */ 848 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe(); 849 } 850 851 static inline void vgic_save_state(struct kvm_vcpu *vcpu) 852 { 853 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 854 vgic_v2_save_state(vcpu); 855 else 856 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); 857 } 858 859 /* Sync back the hardware VGIC state into our emulation after a guest's run. */ 860 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) 861 { 862 int used_lrs; 863 864 /* An empty ap_list_head implies used_lrs == 0 */ 865 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) 866 return; 867 868 if (can_access_vgic_from_kernel()) 869 vgic_save_state(vcpu); 870 871 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 872 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; 873 else 874 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; 875 876 if (used_lrs) 877 vgic_fold_lr_state(vcpu); 878 vgic_prune_ap_list(vcpu); 879 } 880 881 static inline void vgic_restore_state(struct kvm_vcpu *vcpu) 882 { 883 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 884 vgic_v2_restore_state(vcpu); 885 else 886 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); 887 } 888 889 /* Flush our emulation state into the GIC hardware before entering the guest. */ 890 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) 891 { 892 /* 893 * If there are no virtual interrupts active or pending for this 894 * VCPU, then there is no work to do and we can bail out without 895 * taking any lock. There is a potential race with someone injecting 896 * interrupts to the VCPU, but it is a benign race as the VCPU will 897 * either observe the new interrupt before or after doing this check, 898 * and introducing additional synchronization mechanism doesn't change 899 * this. 900 * 901 * Note that we still need to go through the whole thing if anything 902 * can be directly injected (GICv4). 903 */ 904 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) && 905 !vgic_supports_direct_msis(vcpu->kvm)) 906 return; 907 908 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 909 910 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) { 911 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); 912 vgic_flush_lr_state(vcpu); 913 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); 914 } 915 916 if (can_access_vgic_from_kernel()) 917 vgic_restore_state(vcpu); 918 919 if (vgic_supports_direct_msis(vcpu->kvm)) 920 vgic_v4_commit(vcpu); 921 } 922 923 void kvm_vgic_load(struct kvm_vcpu *vcpu) 924 { 925 if (unlikely(!vgic_initialized(vcpu->kvm))) 926 return; 927 928 if (kvm_vgic_global_state.type == VGIC_V2) 929 vgic_v2_load(vcpu); 930 else 931 vgic_v3_load(vcpu); 932 } 933 934 void kvm_vgic_put(struct kvm_vcpu *vcpu) 935 { 936 if (unlikely(!vgic_initialized(vcpu->kvm))) 937 return; 938 939 if (kvm_vgic_global_state.type == VGIC_V2) 940 vgic_v2_put(vcpu); 941 else 942 vgic_v3_put(vcpu); 943 } 944 945 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) 946 { 947 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 948 struct vgic_irq *irq; 949 bool pending = false; 950 unsigned long flags; 951 struct vgic_vmcr vmcr; 952 953 if (!vcpu->kvm->arch.vgic.enabled) 954 return false; 955 956 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last) 957 return true; 958 959 vgic_get_vmcr(vcpu, &vmcr); 960 961 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); 962 963 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 964 raw_spin_lock(&irq->irq_lock); 965 pending = irq_is_pending(irq) && irq->enabled && 966 !irq->active && 967 irq->priority < vmcr.pmr; 968 raw_spin_unlock(&irq->irq_lock); 969 970 if (pending) 971 break; 972 } 973 974 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); 975 976 return pending; 977 } 978 979 void vgic_kick_vcpus(struct kvm *kvm) 980 { 981 struct kvm_vcpu *vcpu; 982 unsigned long c; 983 984 /* 985 * We've injected an interrupt, time to find out who deserves 986 * a good kick... 987 */ 988 kvm_for_each_vcpu(c, vcpu, kvm) { 989 if (kvm_vgic_vcpu_pending_irq(vcpu)) { 990 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 991 kvm_vcpu_kick(vcpu); 992 } 993 } 994 } 995 996 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid) 997 { 998 struct vgic_irq *irq; 999 bool map_is_active; 1000 unsigned long flags; 1001 1002 if (!vgic_initialized(vcpu->kvm)) 1003 return false; 1004 1005 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 1006 raw_spin_lock_irqsave(&irq->irq_lock, flags); 1007 map_is_active = irq->hw && irq->active; 1008 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 1009 vgic_put_irq(vcpu->kvm, irq); 1010 1011 return map_is_active; 1012 } 1013 1014 /* 1015 * Level-triggered mapped IRQs are special because we only observe rising 1016 * edges as input to the VGIC. 1017 * 1018 * If the guest never acked the interrupt we have to sample the physical 1019 * line and set the line level, because the device state could have changed 1020 * or we simply need to process the still pending interrupt later. 1021 * 1022 * We could also have entered the guest with the interrupt active+pending. 1023 * On the next exit, we need to re-evaluate the pending state, as it could 1024 * otherwise result in a spurious interrupt by injecting a now potentially 1025 * stale pending state. 1026 * 1027 * If this causes us to lower the level, we have to also clear the physical 1028 * active state, since we will otherwise never be told when the interrupt 1029 * becomes asserted again. 1030 * 1031 * Another case is when the interrupt requires a helping hand on 1032 * deactivation (no HW deactivation, for example). 1033 */ 1034 void vgic_irq_handle_resampling(struct vgic_irq *irq, 1035 bool lr_deactivated, bool lr_pending) 1036 { 1037 if (vgic_irq_is_mapped_level(irq)) { 1038 bool resample = false; 1039 1040 if (unlikely(vgic_irq_needs_resampling(irq))) { 1041 resample = !(irq->active || irq->pending_latch); 1042 } else if (lr_pending || (lr_deactivated && irq->line_level)) { 1043 irq->line_level = vgic_get_phys_line_level(irq); 1044 resample = !irq->line_level; 1045 } 1046 1047 if (resample) 1048 vgic_irq_set_phys_active(irq, false); 1049 } 1050 } 1051
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.