~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/mm/init.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Based on arch/arm/mm/init.c
  4  *
  5  * Copyright (C) 1995-2005 Russell King
  6  * Copyright (C) 2012 ARM Ltd.
  7  */
  8 
  9 #include <linux/kernel.h>
 10 #include <linux/export.h>
 11 #include <linux/errno.h>
 12 #include <linux/swap.h>
 13 #include <linux/init.h>
 14 #include <linux/cache.h>
 15 #include <linux/mman.h>
 16 #include <linux/nodemask.h>
 17 #include <linux/initrd.h>
 18 #include <linux/gfp.h>
 19 #include <linux/math.h>
 20 #include <linux/memblock.h>
 21 #include <linux/sort.h>
 22 #include <linux/of.h>
 23 #include <linux/of_fdt.h>
 24 #include <linux/dma-direct.h>
 25 #include <linux/dma-map-ops.h>
 26 #include <linux/efi.h>
 27 #include <linux/swiotlb.h>
 28 #include <linux/vmalloc.h>
 29 #include <linux/mm.h>
 30 #include <linux/kexec.h>
 31 #include <linux/crash_dump.h>
 32 #include <linux/hugetlb.h>
 33 #include <linux/acpi_iort.h>
 34 #include <linux/kmemleak.h>
 35 #include <linux/execmem.h>
 36 
 37 #include <asm/boot.h>
 38 #include <asm/fixmap.h>
 39 #include <asm/kasan.h>
 40 #include <asm/kernel-pgtable.h>
 41 #include <asm/kvm_host.h>
 42 #include <asm/memory.h>
 43 #include <asm/numa.h>
 44 #include <asm/sections.h>
 45 #include <asm/setup.h>
 46 #include <linux/sizes.h>
 47 #include <asm/tlb.h>
 48 #include <asm/alternative.h>
 49 #include <asm/xen/swiotlb-xen.h>
 50 
 51 /*
 52  * We need to be able to catch inadvertent references to memstart_addr
 53  * that occur (potentially in generic code) before arm64_memblock_init()
 54  * executes, which assigns it its actual value. So use a default value
 55  * that cannot be mistaken for a real physical address.
 56  */
 57 s64 memstart_addr __ro_after_init = -1;
 58 EXPORT_SYMBOL(memstart_addr);
 59 
 60 /*
 61  * If the corresponding config options are enabled, we create both ZONE_DMA
 62  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
 63  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
 64  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
 65  * otherwise it is empty.
 66  */
 67 phys_addr_t __ro_after_init arm64_dma_phys_limit;
 68 
 69 /*
 70  * To make optimal use of block mappings when laying out the linear
 71  * mapping, round down the base of physical memory to a size that can
 72  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
 73  * (64k granule), or a multiple that can be mapped using contiguous bits
 74  * in the page tables: 32 * PMD_SIZE (16k granule)
 75  */
 76 #if defined(CONFIG_ARM64_4K_PAGES)
 77 #define ARM64_MEMSTART_SHIFT            PUD_SHIFT
 78 #elif defined(CONFIG_ARM64_16K_PAGES)
 79 #define ARM64_MEMSTART_SHIFT            CONT_PMD_SHIFT
 80 #else
 81 #define ARM64_MEMSTART_SHIFT            PMD_SHIFT
 82 #endif
 83 
 84 /*
 85  * sparsemem vmemmap imposes an additional requirement on the alignment of
 86  * memstart_addr, due to the fact that the base of the vmemmap region
 87  * has a direct correspondence, and needs to appear sufficiently aligned
 88  * in the virtual address space.
 89  */
 90 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
 91 #define ARM64_MEMSTART_ALIGN    (1UL << SECTION_SIZE_BITS)
 92 #else
 93 #define ARM64_MEMSTART_ALIGN    (1UL << ARM64_MEMSTART_SHIFT)
 94 #endif
 95 
 96 static void __init arch_reserve_crashkernel(void)
 97 {
 98         unsigned long long low_size = 0;
 99         unsigned long long crash_base, crash_size;
100         char *cmdline = boot_command_line;
101         bool high = false;
102         int ret;
103 
104         if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
105                 return;
106 
107         ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
108                                 &crash_size, &crash_base,
109                                 &low_size, &high);
110         if (ret)
111                 return;
112 
113         reserve_crashkernel_generic(cmdline, crash_size, crash_base,
114                                     low_size, high);
115 }
116 
117 /*
118  * Return the maximum physical address for a zone accessible by the given bits
119  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
120  * available memory, otherwise cap it at 32-bit.
121  */
122 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
123 {
124         phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
125         phys_addr_t phys_start = memblock_start_of_DRAM();
126 
127         if (phys_start > U32_MAX)
128                 zone_mask = PHYS_ADDR_MAX;
129         else if (phys_start > zone_mask)
130                 zone_mask = U32_MAX;
131 
132         return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
133 }
134 
135 static void __init zone_sizes_init(void)
136 {
137         unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
138         unsigned int __maybe_unused acpi_zone_dma_bits;
139         unsigned int __maybe_unused dt_zone_dma_bits;
140         phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
141 
142 #ifdef CONFIG_ZONE_DMA
143         acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
144         dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
145         zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
146         arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
147         max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150         max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
151         if (!arm64_dma_phys_limit)
152                 arm64_dma_phys_limit = dma32_phys_limit;
153 #endif
154         if (!arm64_dma_phys_limit)
155                 arm64_dma_phys_limit = PHYS_MASK + 1;
156         max_zone_pfns[ZONE_NORMAL] = max_pfn;
157 
158         free_area_init(max_zone_pfns);
159 }
160 
161 int pfn_is_map_memory(unsigned long pfn)
162 {
163         phys_addr_t addr = PFN_PHYS(pfn);
164 
165         /* avoid false positives for bogus PFNs, see comment in pfn_valid() */
166         if (PHYS_PFN(addr) != pfn)
167                 return 0;
168 
169         return memblock_is_map_memory(addr);
170 }
171 EXPORT_SYMBOL(pfn_is_map_memory);
172 
173 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
174 
175 /*
176  * Limit the memory size that was specified via FDT.
177  */
178 static int __init early_mem(char *p)
179 {
180         if (!p)
181                 return 1;
182 
183         memory_limit = memparse(p, &p) & PAGE_MASK;
184         pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
185 
186         return 0;
187 }
188 early_param("mem", early_mem);
189 
190 void __init arm64_memblock_init(void)
191 {
192         s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
193 
194         /*
195          * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
196          * be limited in their ability to support a linear map that exceeds 51
197          * bits of VA space, depending on the placement of the ID map. Given
198          * that the placement of the ID map may be randomized, let's simply
199          * limit the kernel's linear map to 51 bits as well if we detect this
200          * configuration.
201          */
202         if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
203             is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
204                 pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
205                 linear_region_size = min_t(u64, linear_region_size, BIT(51));
206         }
207 
208         /* Remove memory above our supported physical address size */
209         memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
210 
211         /*
212          * Select a suitable value for the base of physical memory.
213          */
214         memstart_addr = round_down(memblock_start_of_DRAM(),
215                                    ARM64_MEMSTART_ALIGN);
216 
217         if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
218                 pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
219 
220         /*
221          * Remove the memory that we will not be able to cover with the
222          * linear mapping. Take care not to clip the kernel which may be
223          * high in memory.
224          */
225         memblock_remove(max_t(u64, memstart_addr + linear_region_size,
226                         __pa_symbol(_end)), ULLONG_MAX);
227         if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
228                 /* ensure that memstart_addr remains sufficiently aligned */
229                 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
230                                          ARM64_MEMSTART_ALIGN);
231                 memblock_remove(0, memstart_addr);
232         }
233 
234         /*
235          * If we are running with a 52-bit kernel VA config on a system that
236          * does not support it, we have to place the available physical
237          * memory in the 48-bit addressable part of the linear region, i.e.,
238          * we have to move it upward. Since memstart_addr represents the
239          * physical address of PAGE_OFFSET, we have to *subtract* from it.
240          */
241         if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
242                 memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
243 
244         /*
245          * Apply the memory limit if it was set. Since the kernel may be loaded
246          * high up in memory, add back the kernel region that must be accessible
247          * via the linear mapping.
248          */
249         if (memory_limit != PHYS_ADDR_MAX) {
250                 memblock_mem_limit_remove_map(memory_limit);
251                 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
252         }
253 
254         if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
255                 /*
256                  * Add back the memory we just removed if it results in the
257                  * initrd to become inaccessible via the linear mapping.
258                  * Otherwise, this is a no-op
259                  */
260                 u64 base = phys_initrd_start & PAGE_MASK;
261                 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
262 
263                 /*
264                  * We can only add back the initrd memory if we don't end up
265                  * with more memory than we can address via the linear mapping.
266                  * It is up to the bootloader to position the kernel and the
267                  * initrd reasonably close to each other (i.e., within 32 GB of
268                  * each other) so that all granule/#levels combinations can
269                  * always access both.
270                  */
271                 if (WARN(base < memblock_start_of_DRAM() ||
272                          base + size > memblock_start_of_DRAM() +
273                                        linear_region_size,
274                         "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
275                         phys_initrd_size = 0;
276                 } else {
277                         memblock_add(base, size);
278                         memblock_clear_nomap(base, size);
279                         memblock_reserve(base, size);
280                 }
281         }
282 
283         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
284                 extern u16 memstart_offset_seed;
285                 u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
286                 int parange = cpuid_feature_extract_unsigned_field(
287                                         mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
288                 s64 range = linear_region_size -
289                             BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
290 
291                 /*
292                  * If the size of the linear region exceeds, by a sufficient
293                  * margin, the size of the region that the physical memory can
294                  * span, randomize the linear region as well.
295                  */
296                 if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
297                         range /= ARM64_MEMSTART_ALIGN;
298                         memstart_addr -= ARM64_MEMSTART_ALIGN *
299                                          ((range * memstart_offset_seed) >> 16);
300                 }
301         }
302 
303         /*
304          * Register the kernel text, kernel data, initrd, and initial
305          * pagetables with memblock.
306          */
307         memblock_reserve(__pa_symbol(_stext), _end - _stext);
308         if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
309                 /* the generic initrd code expects virtual addresses */
310                 initrd_start = __phys_to_virt(phys_initrd_start);
311                 initrd_end = initrd_start + phys_initrd_size;
312         }
313 
314         early_init_fdt_scan_reserved_mem();
315 
316         high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
317 }
318 
319 void __init bootmem_init(void)
320 {
321         unsigned long min, max;
322 
323         min = PFN_UP(memblock_start_of_DRAM());
324         max = PFN_DOWN(memblock_end_of_DRAM());
325 
326         early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
327 
328         max_pfn = max_low_pfn = max;
329         min_low_pfn = min;
330 
331         arch_numa_init();
332 
333         /*
334          * must be done after arch_numa_init() which calls numa_init() to
335          * initialize node_online_map that gets used in hugetlb_cma_reserve()
336          * while allocating required CMA size across online nodes.
337          */
338 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
339         arm64_hugetlb_cma_reserve();
340 #endif
341 
342         kvm_hyp_reserve();
343 
344         /*
345          * sparse_init() tries to allocate memory from memblock, so must be
346          * done after the fixed reservations
347          */
348         sparse_init();
349         zone_sizes_init();
350 
351         /*
352          * Reserve the CMA area after arm64_dma_phys_limit was initialised.
353          */
354         dma_contiguous_reserve(arm64_dma_phys_limit);
355 
356         /*
357          * request_standard_resources() depends on crashkernel's memory being
358          * reserved, so do it here.
359          */
360         arch_reserve_crashkernel();
361 
362         memblock_dump_all();
363 }
364 
365 /*
366  * mem_init() marks the free areas in the mem_map and tells us how much memory
367  * is free.  This is done after various parts of the system have claimed their
368  * memory after the kernel image.
369  */
370 void __init mem_init(void)
371 {
372         bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
373 
374         if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
375                 /*
376                  * If no bouncing needed for ZONE_DMA, reduce the swiotlb
377                  * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
378                  */
379                 unsigned long size =
380                         DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
381                 swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
382                 swiotlb = true;
383         }
384 
385         swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
386 
387         /* this will put all unused low memory onto the freelists */
388         memblock_free_all();
389 
390         /*
391          * Check boundaries twice: Some fundamental inconsistencies can be
392          * detected at build time already.
393          */
394 #ifdef CONFIG_COMPAT
395         BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
396 #endif
397 
398         /*
399          * Selected page table levels should match when derived from
400          * scratch using the virtual address range and page size.
401          */
402         BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
403                      CONFIG_PGTABLE_LEVELS);
404 
405         if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
406                 extern int sysctl_overcommit_memory;
407                 /*
408                  * On a machine this small we won't get anywhere without
409                  * overcommit, so turn it on by default.
410                  */
411                 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
412         }
413 }
414 
415 void free_initmem(void)
416 {
417         free_reserved_area(lm_alias(__init_begin),
418                            lm_alias(__init_end),
419                            POISON_FREE_INITMEM, "unused kernel");
420         /*
421          * Unmap the __init region but leave the VM area in place. This
422          * prevents the region from being reused for kernel modules, which
423          * is not supported by kallsyms.
424          */
425         vunmap_range((u64)__init_begin, (u64)__init_end);
426 }
427 
428 void dump_mem_limit(void)
429 {
430         if (memory_limit != PHYS_ADDR_MAX) {
431                 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
432         } else {
433                 pr_emerg("Memory Limit: none\n");
434         }
435 }
436 
437 #ifdef CONFIG_EXECMEM
438 static u64 module_direct_base __ro_after_init = 0;
439 static u64 module_plt_base __ro_after_init = 0;
440 
441 /*
442  * Choose a random page-aligned base address for a window of 'size' bytes which
443  * entirely contains the interval [start, end - 1].
444  */
445 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
446 {
447         u64 max_pgoff, pgoff;
448 
449         if ((end - start) >= size)
450                 return 0;
451 
452         max_pgoff = (size - (end - start)) / PAGE_SIZE;
453         pgoff = get_random_u32_inclusive(0, max_pgoff);
454 
455         return start - pgoff * PAGE_SIZE;
456 }
457 
458 /*
459  * Modules may directly reference data and text anywhere within the kernel
460  * image and other modules. References using PREL32 relocations have a +/-2G
461  * range, and so we need to ensure that the entire kernel image and all modules
462  * fall within a 2G window such that these are always within range.
463  *
464  * Modules may directly branch to functions and code within the kernel text,
465  * and to functions and code within other modules. These branches will use
466  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
467  * that the entire kernel text and all module text falls within a 128M window
468  * such that these are always within range. With PLTs, we can expand this to a
469  * 2G window.
470  *
471  * We chose the 128M region to surround the entire kernel image (rather than
472  * just the text) as using the same bounds for the 128M and 2G regions ensures
473  * by construction that we never select a 128M region that is not a subset of
474  * the 2G region. For very large and unusual kernel configurations this means
475  * we may fall back to PLTs where they could have been avoided, but this keeps
476  * the logic significantly simpler.
477  */
478 static int __init module_init_limits(void)
479 {
480         u64 kernel_end = (u64)_end;
481         u64 kernel_start = (u64)_text;
482         u64 kernel_size = kernel_end - kernel_start;
483 
484         /*
485          * The default modules region is placed immediately below the kernel
486          * image, and is large enough to use the full 2G relocation range.
487          */
488         BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
489         BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
490 
491         if (!kaslr_enabled()) {
492                 if (kernel_size < SZ_128M)
493                         module_direct_base = kernel_end - SZ_128M;
494                 if (kernel_size < SZ_2G)
495                         module_plt_base = kernel_end - SZ_2G;
496         } else {
497                 u64 min = kernel_start;
498                 u64 max = kernel_end;
499 
500                 if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
501                         pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
502                 } else {
503                         module_direct_base = random_bounding_box(SZ_128M, min, max);
504                         if (module_direct_base) {
505                                 min = module_direct_base;
506                                 max = module_direct_base + SZ_128M;
507                         }
508                 }
509 
510                 module_plt_base = random_bounding_box(SZ_2G, min, max);
511         }
512 
513         pr_info("%llu pages in range for non-PLT usage",
514                 module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
515         pr_info("%llu pages in range for PLT usage",
516                 module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
517 
518         return 0;
519 }
520 
521 static struct execmem_info execmem_info __ro_after_init;
522 
523 struct execmem_info __init *execmem_arch_setup(void)
524 {
525         unsigned long fallback_start = 0, fallback_end = 0;
526         unsigned long start = 0, end = 0;
527 
528         module_init_limits();
529 
530         /*
531          * Where possible, prefer to allocate within direct branch range of the
532          * kernel such that no PLTs are necessary.
533          */
534         if (module_direct_base) {
535                 start = module_direct_base;
536                 end = module_direct_base + SZ_128M;
537 
538                 if (module_plt_base) {
539                         fallback_start = module_plt_base;
540                         fallback_end = module_plt_base + SZ_2G;
541                 }
542         } else if (module_plt_base) {
543                 start = module_plt_base;
544                 end = module_plt_base + SZ_2G;
545         }
546 
547         execmem_info = (struct execmem_info){
548                 .ranges = {
549                         [EXECMEM_DEFAULT] = {
550                                 .start  = start,
551                                 .end    = end,
552                                 .pgprot = PAGE_KERNEL,
553                                 .alignment = 1,
554                                 .fallback_start = fallback_start,
555                                 .fallback_end   = fallback_end,
556                         },
557                         [EXECMEM_KPROBES] = {
558                                 .start  = VMALLOC_START,
559                                 .end    = VMALLOC_END,
560                                 .pgprot = PAGE_KERNEL_ROX,
561                                 .alignment = 1,
562                         },
563                         [EXECMEM_BPF] = {
564                                 .start  = VMALLOC_START,
565                                 .end    = VMALLOC_END,
566                                 .pgprot = PAGE_KERNEL,
567                                 .alignment = 1,
568                         },
569                 },
570         };
571 
572         return &execmem_info;
573 }
574 #endif /* CONFIG_EXECMEM */
575 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php