1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file contains kasan initialization code for ARM64. 4 * 5 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 */ 8 9 #define pr_fmt(fmt) "kasan: " fmt 10 #include <linux/kasan.h> 11 #include <linux/kernel.h> 12 #include <linux/sched/task.h> 13 #include <linux/memblock.h> 14 #include <linux/start_kernel.h> 15 #include <linux/mm.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/kernel-pgtable.h> 19 #include <asm/page.h> 20 #include <asm/pgalloc.h> 21 #include <asm/sections.h> 22 #include <asm/tlbflush.h> 23 24 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 25 26 static pgd_t tmp_pg_dir[PTRS_PER_PTE] __initdata __aligned(PAGE_SIZE); 27 28 /* 29 * The p*d_populate functions call virt_to_phys implicitly so they can't be used 30 * directly on kernel symbols (bm_p*d). All the early functions are called too 31 * early to use lm_alias so __p*d_populate functions must be used to populate 32 * with the physical address from __pa_symbol. 33 */ 34 35 static phys_addr_t __init kasan_alloc_zeroed_page(int node) 36 { 37 void *p = memblock_alloc_try_nid(PAGE_SIZE, PAGE_SIZE, 38 __pa(MAX_DMA_ADDRESS), 39 MEMBLOCK_ALLOC_NOLEAKTRACE, node); 40 if (!p) 41 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n", 42 __func__, PAGE_SIZE, PAGE_SIZE, node, 43 __pa(MAX_DMA_ADDRESS)); 44 45 return __pa(p); 46 } 47 48 static phys_addr_t __init kasan_alloc_raw_page(int node) 49 { 50 void *p = memblock_alloc_try_nid_raw(PAGE_SIZE, PAGE_SIZE, 51 __pa(MAX_DMA_ADDRESS), 52 MEMBLOCK_ALLOC_NOLEAKTRACE, 53 node); 54 if (!p) 55 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n", 56 __func__, PAGE_SIZE, PAGE_SIZE, node, 57 __pa(MAX_DMA_ADDRESS)); 58 59 return __pa(p); 60 } 61 62 static pte_t *__init kasan_pte_offset(pmd_t *pmdp, unsigned long addr, int node, 63 bool early) 64 { 65 if (pmd_none(READ_ONCE(*pmdp))) { 66 phys_addr_t pte_phys = early ? 67 __pa_symbol(kasan_early_shadow_pte) 68 : kasan_alloc_zeroed_page(node); 69 __pmd_populate(pmdp, pte_phys, PMD_TYPE_TABLE); 70 } 71 72 return early ? pte_offset_kimg(pmdp, addr) 73 : pte_offset_kernel(pmdp, addr); 74 } 75 76 static pmd_t *__init kasan_pmd_offset(pud_t *pudp, unsigned long addr, int node, 77 bool early) 78 { 79 if (pud_none(READ_ONCE(*pudp))) { 80 phys_addr_t pmd_phys = early ? 81 __pa_symbol(kasan_early_shadow_pmd) 82 : kasan_alloc_zeroed_page(node); 83 __pud_populate(pudp, pmd_phys, PUD_TYPE_TABLE); 84 } 85 86 return early ? pmd_offset_kimg(pudp, addr) : pmd_offset(pudp, addr); 87 } 88 89 static pud_t *__init kasan_pud_offset(p4d_t *p4dp, unsigned long addr, int node, 90 bool early) 91 { 92 if (p4d_none(READ_ONCE(*p4dp))) { 93 phys_addr_t pud_phys = early ? 94 __pa_symbol(kasan_early_shadow_pud) 95 : kasan_alloc_zeroed_page(node); 96 __p4d_populate(p4dp, pud_phys, P4D_TYPE_TABLE); 97 } 98 99 return early ? pud_offset_kimg(p4dp, addr) : pud_offset(p4dp, addr); 100 } 101 102 static p4d_t *__init kasan_p4d_offset(pgd_t *pgdp, unsigned long addr, int node, 103 bool early) 104 { 105 if (pgd_none(READ_ONCE(*pgdp))) { 106 phys_addr_t p4d_phys = early ? 107 __pa_symbol(kasan_early_shadow_p4d) 108 : kasan_alloc_zeroed_page(node); 109 __pgd_populate(pgdp, p4d_phys, PGD_TYPE_TABLE); 110 } 111 112 return early ? p4d_offset_kimg(pgdp, addr) : p4d_offset(pgdp, addr); 113 } 114 115 static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr, 116 unsigned long end, int node, bool early) 117 { 118 unsigned long next; 119 pte_t *ptep = kasan_pte_offset(pmdp, addr, node, early); 120 121 do { 122 phys_addr_t page_phys = early ? 123 __pa_symbol(kasan_early_shadow_page) 124 : kasan_alloc_raw_page(node); 125 if (!early) 126 memset(__va(page_phys), KASAN_SHADOW_INIT, PAGE_SIZE); 127 next = addr + PAGE_SIZE; 128 __set_pte(ptep, pfn_pte(__phys_to_pfn(page_phys), PAGE_KERNEL)); 129 } while (ptep++, addr = next, addr != end && pte_none(__ptep_get(ptep))); 130 } 131 132 static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr, 133 unsigned long end, int node, bool early) 134 { 135 unsigned long next; 136 pmd_t *pmdp = kasan_pmd_offset(pudp, addr, node, early); 137 138 do { 139 next = pmd_addr_end(addr, end); 140 kasan_pte_populate(pmdp, addr, next, node, early); 141 } while (pmdp++, addr = next, addr != end && pmd_none(READ_ONCE(*pmdp))); 142 } 143 144 static void __init kasan_pud_populate(p4d_t *p4dp, unsigned long addr, 145 unsigned long end, int node, bool early) 146 { 147 unsigned long next; 148 pud_t *pudp = kasan_pud_offset(p4dp, addr, node, early); 149 150 do { 151 next = pud_addr_end(addr, end); 152 kasan_pmd_populate(pudp, addr, next, node, early); 153 } while (pudp++, addr = next, addr != end && pud_none(READ_ONCE(*pudp))); 154 } 155 156 static void __init kasan_p4d_populate(pgd_t *pgdp, unsigned long addr, 157 unsigned long end, int node, bool early) 158 { 159 unsigned long next; 160 p4d_t *p4dp = kasan_p4d_offset(pgdp, addr, node, early); 161 162 do { 163 next = p4d_addr_end(addr, end); 164 kasan_pud_populate(p4dp, addr, next, node, early); 165 } while (p4dp++, addr = next, addr != end && p4d_none(READ_ONCE(*p4dp))); 166 } 167 168 static void __init kasan_pgd_populate(unsigned long addr, unsigned long end, 169 int node, bool early) 170 { 171 unsigned long next; 172 pgd_t *pgdp; 173 174 pgdp = pgd_offset_k(addr); 175 do { 176 next = pgd_addr_end(addr, end); 177 kasan_p4d_populate(pgdp, addr, next, node, early); 178 } while (pgdp++, addr = next, addr != end); 179 } 180 181 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS > 4 182 #define SHADOW_ALIGN P4D_SIZE 183 #else 184 #define SHADOW_ALIGN PUD_SIZE 185 #endif 186 187 /* 188 * Return whether 'addr' is aligned to the size covered by a root level 189 * descriptor. 190 */ 191 static bool __init root_level_aligned(u64 addr) 192 { 193 int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 1) * (PAGE_SHIFT - 3); 194 195 return (addr % (PAGE_SIZE << shift)) == 0; 196 } 197 198 /* The early shadow maps everything to a single page of zeroes */ 199 asmlinkage void __init kasan_early_init(void) 200 { 201 BUILD_BUG_ON(KASAN_SHADOW_OFFSET != 202 KASAN_SHADOW_END - (1UL << (64 - KASAN_SHADOW_SCALE_SHIFT))); 203 BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS), SHADOW_ALIGN)); 204 BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS_MIN), SHADOW_ALIGN)); 205 BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_END, SHADOW_ALIGN)); 206 207 if (!root_level_aligned(KASAN_SHADOW_START)) { 208 /* 209 * The start address is misaligned, and so the next level table 210 * will be shared with the linear region. This can happen with 211 * 4 or 5 level paging, so install a generic pte_t[] as the 212 * next level. This prevents the kasan_pgd_populate call below 213 * from inserting an entry that refers to the shared KASAN zero 214 * shadow pud_t[]/p4d_t[], which could end up getting corrupted 215 * when the linear region is mapped. 216 */ 217 static pte_t tbl[PTRS_PER_PTE] __page_aligned_bss; 218 pgd_t *pgdp = pgd_offset_k(KASAN_SHADOW_START); 219 220 set_pgd(pgdp, __pgd(__pa_symbol(tbl) | PGD_TYPE_TABLE)); 221 } 222 223 kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, NUMA_NO_NODE, 224 true); 225 } 226 227 /* Set up full kasan mappings, ensuring that the mapped pages are zeroed */ 228 static void __init kasan_map_populate(unsigned long start, unsigned long end, 229 int node) 230 { 231 kasan_pgd_populate(start & PAGE_MASK, PAGE_ALIGN(end), node, false); 232 } 233 234 /* 235 * Return the descriptor index of 'addr' in the root level table 236 */ 237 static int __init root_level_idx(u64 addr) 238 { 239 /* 240 * On 64k pages, the TTBR1 range root tables are extended for 52-bit 241 * virtual addressing, and TTBR1 will simply point to the pgd_t entry 242 * that covers the start of the 48-bit addressable VA space if LVA is 243 * not implemented. This means we need to index the table as usual, 244 * instead of masking off bits based on vabits_actual. 245 */ 246 u64 vabits = IS_ENABLED(CONFIG_ARM64_64K_PAGES) ? VA_BITS 247 : vabits_actual; 248 int shift = (ARM64_HW_PGTABLE_LEVELS(vabits) - 1) * (PAGE_SHIFT - 3); 249 250 return (addr & ~_PAGE_OFFSET(vabits)) >> (shift + PAGE_SHIFT); 251 } 252 253 /* 254 * Clone a next level table from swapper_pg_dir into tmp_pg_dir 255 */ 256 static void __init clone_next_level(u64 addr, pgd_t *tmp_pg_dir, pud_t *pud) 257 { 258 int idx = root_level_idx(addr); 259 pgd_t pgd = READ_ONCE(swapper_pg_dir[idx]); 260 pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd)); 261 262 memcpy(pud, pudp, PAGE_SIZE); 263 tmp_pg_dir[idx] = __pgd(__phys_to_pgd_val(__pa_symbol(pud)) | 264 PUD_TYPE_TABLE); 265 } 266 267 /* 268 * Return the descriptor index of 'addr' in the next level table 269 */ 270 static int __init next_level_idx(u64 addr) 271 { 272 int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 2) * (PAGE_SHIFT - 3); 273 274 return (addr >> (shift + PAGE_SHIFT)) % PTRS_PER_PTE; 275 } 276 277 /* 278 * Dereference the table descriptor at 'pgd_idx' and clear the entries from 279 * 'start' to 'end' (exclusive) from the table. 280 */ 281 static void __init clear_next_level(int pgd_idx, int start, int end) 282 { 283 pgd_t pgd = READ_ONCE(swapper_pg_dir[pgd_idx]); 284 pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd)); 285 286 memset(&pudp[start], 0, (end - start) * sizeof(pud_t)); 287 } 288 289 static void __init clear_shadow(u64 start, u64 end) 290 { 291 int l = root_level_idx(start), m = root_level_idx(end); 292 293 if (!root_level_aligned(start)) 294 clear_next_level(l++, next_level_idx(start), PTRS_PER_PTE); 295 if (!root_level_aligned(end)) 296 clear_next_level(m, 0, next_level_idx(end)); 297 memset(&swapper_pg_dir[l], 0, (m - l) * sizeof(pgd_t)); 298 } 299 300 static void __init kasan_init_shadow(void) 301 { 302 static pud_t pud[2][PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); 303 u64 kimg_shadow_start, kimg_shadow_end; 304 u64 mod_shadow_start; 305 u64 vmalloc_shadow_end; 306 phys_addr_t pa_start, pa_end; 307 u64 i; 308 309 kimg_shadow_start = (u64)kasan_mem_to_shadow(KERNEL_START) & PAGE_MASK; 310 kimg_shadow_end = PAGE_ALIGN((u64)kasan_mem_to_shadow(KERNEL_END)); 311 312 mod_shadow_start = (u64)kasan_mem_to_shadow((void *)MODULES_VADDR); 313 314 vmalloc_shadow_end = (u64)kasan_mem_to_shadow((void *)VMALLOC_END); 315 316 /* 317 * We are going to perform proper setup of shadow memory. 318 * At first we should unmap early shadow (clear_pgds() call below). 319 * However, instrumented code couldn't execute without shadow memory. 320 * tmp_pg_dir used to keep early shadow mapped until full shadow 321 * setup will be finished. 322 */ 323 memcpy(tmp_pg_dir, swapper_pg_dir, sizeof(tmp_pg_dir)); 324 325 /* 326 * If the start or end address of the shadow region is not aligned to 327 * the root level size, we have to allocate a temporary next-level table 328 * in each case, clone the next level of descriptors, and install the 329 * table into tmp_pg_dir. Note that with 5 levels of paging, the next 330 * level will in fact be p4d_t, but that makes no difference in this 331 * case. 332 */ 333 if (!root_level_aligned(KASAN_SHADOW_START)) 334 clone_next_level(KASAN_SHADOW_START, tmp_pg_dir, pud[0]); 335 if (!root_level_aligned(KASAN_SHADOW_END)) 336 clone_next_level(KASAN_SHADOW_END, tmp_pg_dir, pud[1]); 337 dsb(ishst); 338 cpu_replace_ttbr1(lm_alias(tmp_pg_dir)); 339 340 clear_shadow(KASAN_SHADOW_START, KASAN_SHADOW_END); 341 342 kasan_map_populate(kimg_shadow_start, kimg_shadow_end, 343 early_pfn_to_nid(virt_to_pfn(lm_alias(KERNEL_START)))); 344 345 kasan_populate_early_shadow(kasan_mem_to_shadow((void *)PAGE_END), 346 (void *)mod_shadow_start); 347 348 BUILD_BUG_ON(VMALLOC_START != MODULES_END); 349 kasan_populate_early_shadow((void *)vmalloc_shadow_end, 350 (void *)KASAN_SHADOW_END); 351 352 for_each_mem_range(i, &pa_start, &pa_end) { 353 void *start = (void *)__phys_to_virt(pa_start); 354 void *end = (void *)__phys_to_virt(pa_end); 355 356 if (start >= end) 357 break; 358 359 kasan_map_populate((unsigned long)kasan_mem_to_shadow(start), 360 (unsigned long)kasan_mem_to_shadow(end), 361 early_pfn_to_nid(virt_to_pfn(start))); 362 } 363 364 /* 365 * KAsan may reuse the contents of kasan_early_shadow_pte directly, 366 * so we should make sure that it maps the zero page read-only. 367 */ 368 for (i = 0; i < PTRS_PER_PTE; i++) 369 __set_pte(&kasan_early_shadow_pte[i], 370 pfn_pte(sym_to_pfn(kasan_early_shadow_page), 371 PAGE_KERNEL_RO)); 372 373 memset(kasan_early_shadow_page, KASAN_SHADOW_INIT, PAGE_SIZE); 374 cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); 375 } 376 377 static void __init kasan_init_depth(void) 378 { 379 init_task.kasan_depth = 0; 380 } 381 382 #ifdef CONFIG_KASAN_VMALLOC 383 void __init kasan_populate_early_vm_area_shadow(void *start, unsigned long size) 384 { 385 unsigned long shadow_start, shadow_end; 386 387 if (!is_vmalloc_or_module_addr(start)) 388 return; 389 390 shadow_start = (unsigned long)kasan_mem_to_shadow(start); 391 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); 392 shadow_end = (unsigned long)kasan_mem_to_shadow(start + size); 393 shadow_end = ALIGN(shadow_end, PAGE_SIZE); 394 kasan_map_populate(shadow_start, shadow_end, NUMA_NO_NODE); 395 } 396 #endif 397 398 void __init kasan_init(void) 399 { 400 kasan_init_shadow(); 401 kasan_init_depth(); 402 #if defined(CONFIG_KASAN_GENERIC) 403 /* 404 * Generic KASAN is now fully initialized. 405 * Software and Hardware Tag-Based modes still require 406 * kasan_init_sw_tags() and kasan_init_hw_tags() correspondingly. 407 */ 408 pr_info("KernelAddressSanitizer initialized (generic)\n"); 409 #endif 410 } 411 412 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 413
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.