~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/mm/mmu.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Based on arch/arm/mm/mmu.c
  4  *
  5  * Copyright (C) 1995-2005 Russell King
  6  * Copyright (C) 2012 ARM Ltd.
  7  */
  8 
  9 #include <linux/cache.h>
 10 #include <linux/export.h>
 11 #include <linux/kernel.h>
 12 #include <linux/errno.h>
 13 #include <linux/init.h>
 14 #include <linux/ioport.h>
 15 #include <linux/kexec.h>
 16 #include <linux/libfdt.h>
 17 #include <linux/mman.h>
 18 #include <linux/nodemask.h>
 19 #include <linux/memblock.h>
 20 #include <linux/memremap.h>
 21 #include <linux/memory.h>
 22 #include <linux/fs.h>
 23 #include <linux/io.h>
 24 #include <linux/mm.h>
 25 #include <linux/vmalloc.h>
 26 #include <linux/set_memory.h>
 27 #include <linux/kfence.h>
 28 
 29 #include <asm/barrier.h>
 30 #include <asm/cputype.h>
 31 #include <asm/fixmap.h>
 32 #include <asm/kasan.h>
 33 #include <asm/kernel-pgtable.h>
 34 #include <asm/sections.h>
 35 #include <asm/setup.h>
 36 #include <linux/sizes.h>
 37 #include <asm/tlb.h>
 38 #include <asm/mmu_context.h>
 39 #include <asm/ptdump.h>
 40 #include <asm/tlbflush.h>
 41 #include <asm/pgalloc.h>
 42 #include <asm/kfence.h>
 43 
 44 #define NO_BLOCK_MAPPINGS       BIT(0)
 45 #define NO_CONT_MAPPINGS        BIT(1)
 46 #define NO_EXEC_MAPPINGS        BIT(2)  /* assumes FEAT_HPDS is not used */
 47 
 48 u64 kimage_voffset __ro_after_init;
 49 EXPORT_SYMBOL(kimage_voffset);
 50 
 51 u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
 52 
 53 static bool rodata_is_rw __ro_after_init = true;
 54 
 55 /*
 56  * The booting CPU updates the failed status @__early_cpu_boot_status,
 57  * with MMU turned off.
 58  */
 59 long __section(".mmuoff.data.write") __early_cpu_boot_status;
 60 
 61 /*
 62  * Empty_zero_page is a special page that is used for zero-initialized data
 63  * and COW.
 64  */
 65 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
 66 EXPORT_SYMBOL(empty_zero_page);
 67 
 68 static DEFINE_SPINLOCK(swapper_pgdir_lock);
 69 static DEFINE_MUTEX(fixmap_lock);
 70 
 71 void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
 72 {
 73         pgd_t *fixmap_pgdp;
 74 
 75         /*
 76          * Don't bother with the fixmap if swapper_pg_dir is still mapped
 77          * writable in the kernel mapping.
 78          */
 79         if (rodata_is_rw) {
 80                 WRITE_ONCE(*pgdp, pgd);
 81                 dsb(ishst);
 82                 isb();
 83                 return;
 84         }
 85 
 86         spin_lock(&swapper_pgdir_lock);
 87         fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
 88         WRITE_ONCE(*fixmap_pgdp, pgd);
 89         /*
 90          * We need dsb(ishst) here to ensure the page-table-walker sees
 91          * our new entry before set_p?d() returns. The fixmap's
 92          * flush_tlb_kernel_range() via clear_fixmap() does this for us.
 93          */
 94         pgd_clear_fixmap();
 95         spin_unlock(&swapper_pgdir_lock);
 96 }
 97 
 98 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 99                               unsigned long size, pgprot_t vma_prot)
100 {
101         if (!pfn_is_map_memory(pfn))
102                 return pgprot_noncached(vma_prot);
103         else if (file->f_flags & O_SYNC)
104                 return pgprot_writecombine(vma_prot);
105         return vma_prot;
106 }
107 EXPORT_SYMBOL(phys_mem_access_prot);
108 
109 static phys_addr_t __init early_pgtable_alloc(int shift)
110 {
111         phys_addr_t phys;
112 
113         phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
114                                          MEMBLOCK_ALLOC_NOLEAKTRACE);
115         if (!phys)
116                 panic("Failed to allocate page table page\n");
117 
118         return phys;
119 }
120 
121 bool pgattr_change_is_safe(u64 old, u64 new)
122 {
123         /*
124          * The following mapping attributes may be updated in live
125          * kernel mappings without the need for break-before-make.
126          */
127         pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
128                         PTE_SWBITS_MASK;
129 
130         /* creating or taking down mappings is always safe */
131         if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
132                 return true;
133 
134         /* A live entry's pfn should not change */
135         if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
136                 return false;
137 
138         /* live contiguous mappings may not be manipulated at all */
139         if ((old | new) & PTE_CONT)
140                 return false;
141 
142         /* Transitioning from Non-Global to Global is unsafe */
143         if (old & ~new & PTE_NG)
144                 return false;
145 
146         /*
147          * Changing the memory type between Normal and Normal-Tagged is safe
148          * since Tagged is considered a permission attribute from the
149          * mismatched attribute aliases perspective.
150          */
151         if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
152              (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
153             ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
154              (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
155                 mask |= PTE_ATTRINDX_MASK;
156 
157         return ((old ^ new) & ~mask) == 0;
158 }
159 
160 static void init_clear_pgtable(void *table)
161 {
162         clear_page(table);
163 
164         /* Ensure the zeroing is observed by page table walks. */
165         dsb(ishst);
166 }
167 
168 static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
169                      phys_addr_t phys, pgprot_t prot)
170 {
171         do {
172                 pte_t old_pte = __ptep_get(ptep);
173 
174                 /*
175                  * Required barriers to make this visible to the table walker
176                  * are deferred to the end of alloc_init_cont_pte().
177                  */
178                 __set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
179 
180                 /*
181                  * After the PTE entry has been populated once, we
182                  * only allow updates to the permission attributes.
183                  */
184                 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
185                                               pte_val(__ptep_get(ptep))));
186 
187                 phys += PAGE_SIZE;
188         } while (ptep++, addr += PAGE_SIZE, addr != end);
189 }
190 
191 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
192                                 unsigned long end, phys_addr_t phys,
193                                 pgprot_t prot,
194                                 phys_addr_t (*pgtable_alloc)(int),
195                                 int flags)
196 {
197         unsigned long next;
198         pmd_t pmd = READ_ONCE(*pmdp);
199         pte_t *ptep;
200 
201         BUG_ON(pmd_sect(pmd));
202         if (pmd_none(pmd)) {
203                 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
204                 phys_addr_t pte_phys;
205 
206                 if (flags & NO_EXEC_MAPPINGS)
207                         pmdval |= PMD_TABLE_PXN;
208                 BUG_ON(!pgtable_alloc);
209                 pte_phys = pgtable_alloc(PAGE_SHIFT);
210                 ptep = pte_set_fixmap(pte_phys);
211                 init_clear_pgtable(ptep);
212                 ptep += pte_index(addr);
213                 __pmd_populate(pmdp, pte_phys, pmdval);
214         } else {
215                 BUG_ON(pmd_bad(pmd));
216                 ptep = pte_set_fixmap_offset(pmdp, addr);
217         }
218 
219         do {
220                 pgprot_t __prot = prot;
221 
222                 next = pte_cont_addr_end(addr, end);
223 
224                 /* use a contiguous mapping if the range is suitably aligned */
225                 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
226                     (flags & NO_CONT_MAPPINGS) == 0)
227                         __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
228 
229                 init_pte(ptep, addr, next, phys, __prot);
230 
231                 ptep += pte_index(next) - pte_index(addr);
232                 phys += next - addr;
233         } while (addr = next, addr != end);
234 
235         /*
236          * Note: barriers and maintenance necessary to clear the fixmap slot
237          * ensure that all previous pgtable writes are visible to the table
238          * walker.
239          */
240         pte_clear_fixmap();
241 }
242 
243 static void init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
244                      phys_addr_t phys, pgprot_t prot,
245                      phys_addr_t (*pgtable_alloc)(int), int flags)
246 {
247         unsigned long next;
248 
249         do {
250                 pmd_t old_pmd = READ_ONCE(*pmdp);
251 
252                 next = pmd_addr_end(addr, end);
253 
254                 /* try section mapping first */
255                 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
256                     (flags & NO_BLOCK_MAPPINGS) == 0) {
257                         pmd_set_huge(pmdp, phys, prot);
258 
259                         /*
260                          * After the PMD entry has been populated once, we
261                          * only allow updates to the permission attributes.
262                          */
263                         BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
264                                                       READ_ONCE(pmd_val(*pmdp))));
265                 } else {
266                         alloc_init_cont_pte(pmdp, addr, next, phys, prot,
267                                             pgtable_alloc, flags);
268 
269                         BUG_ON(pmd_val(old_pmd) != 0 &&
270                                pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
271                 }
272                 phys += next - addr;
273         } while (pmdp++, addr = next, addr != end);
274 }
275 
276 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
277                                 unsigned long end, phys_addr_t phys,
278                                 pgprot_t prot,
279                                 phys_addr_t (*pgtable_alloc)(int), int flags)
280 {
281         unsigned long next;
282         pud_t pud = READ_ONCE(*pudp);
283         pmd_t *pmdp;
284 
285         /*
286          * Check for initial section mappings in the pgd/pud.
287          */
288         BUG_ON(pud_sect(pud));
289         if (pud_none(pud)) {
290                 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
291                 phys_addr_t pmd_phys;
292 
293                 if (flags & NO_EXEC_MAPPINGS)
294                         pudval |= PUD_TABLE_PXN;
295                 BUG_ON(!pgtable_alloc);
296                 pmd_phys = pgtable_alloc(PMD_SHIFT);
297                 pmdp = pmd_set_fixmap(pmd_phys);
298                 init_clear_pgtable(pmdp);
299                 pmdp += pmd_index(addr);
300                 __pud_populate(pudp, pmd_phys, pudval);
301         } else {
302                 BUG_ON(pud_bad(pud));
303                 pmdp = pmd_set_fixmap_offset(pudp, addr);
304         }
305 
306         do {
307                 pgprot_t __prot = prot;
308 
309                 next = pmd_cont_addr_end(addr, end);
310 
311                 /* use a contiguous mapping if the range is suitably aligned */
312                 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
313                     (flags & NO_CONT_MAPPINGS) == 0)
314                         __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
315 
316                 init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
317 
318                 pmdp += pmd_index(next) - pmd_index(addr);
319                 phys += next - addr;
320         } while (addr = next, addr != end);
321 
322         pmd_clear_fixmap();
323 }
324 
325 static void alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
326                            phys_addr_t phys, pgprot_t prot,
327                            phys_addr_t (*pgtable_alloc)(int),
328                            int flags)
329 {
330         unsigned long next;
331         p4d_t p4d = READ_ONCE(*p4dp);
332         pud_t *pudp;
333 
334         if (p4d_none(p4d)) {
335                 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
336                 phys_addr_t pud_phys;
337 
338                 if (flags & NO_EXEC_MAPPINGS)
339                         p4dval |= P4D_TABLE_PXN;
340                 BUG_ON(!pgtable_alloc);
341                 pud_phys = pgtable_alloc(PUD_SHIFT);
342                 pudp = pud_set_fixmap(pud_phys);
343                 init_clear_pgtable(pudp);
344                 pudp += pud_index(addr);
345                 __p4d_populate(p4dp, pud_phys, p4dval);
346         } else {
347                 BUG_ON(p4d_bad(p4d));
348                 pudp = pud_set_fixmap_offset(p4dp, addr);
349         }
350 
351         do {
352                 pud_t old_pud = READ_ONCE(*pudp);
353 
354                 next = pud_addr_end(addr, end);
355 
356                 /*
357                  * For 4K granule only, attempt to put down a 1GB block
358                  */
359                 if (pud_sect_supported() &&
360                    ((addr | next | phys) & ~PUD_MASK) == 0 &&
361                     (flags & NO_BLOCK_MAPPINGS) == 0) {
362                         pud_set_huge(pudp, phys, prot);
363 
364                         /*
365                          * After the PUD entry has been populated once, we
366                          * only allow updates to the permission attributes.
367                          */
368                         BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
369                                                       READ_ONCE(pud_val(*pudp))));
370                 } else {
371                         alloc_init_cont_pmd(pudp, addr, next, phys, prot,
372                                             pgtable_alloc, flags);
373 
374                         BUG_ON(pud_val(old_pud) != 0 &&
375                                pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
376                 }
377                 phys += next - addr;
378         } while (pudp++, addr = next, addr != end);
379 
380         pud_clear_fixmap();
381 }
382 
383 static void alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
384                            phys_addr_t phys, pgprot_t prot,
385                            phys_addr_t (*pgtable_alloc)(int),
386                            int flags)
387 {
388         unsigned long next;
389         pgd_t pgd = READ_ONCE(*pgdp);
390         p4d_t *p4dp;
391 
392         if (pgd_none(pgd)) {
393                 pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN;
394                 phys_addr_t p4d_phys;
395 
396                 if (flags & NO_EXEC_MAPPINGS)
397                         pgdval |= PGD_TABLE_PXN;
398                 BUG_ON(!pgtable_alloc);
399                 p4d_phys = pgtable_alloc(P4D_SHIFT);
400                 p4dp = p4d_set_fixmap(p4d_phys);
401                 init_clear_pgtable(p4dp);
402                 p4dp += p4d_index(addr);
403                 __pgd_populate(pgdp, p4d_phys, pgdval);
404         } else {
405                 BUG_ON(pgd_bad(pgd));
406                 p4dp = p4d_set_fixmap_offset(pgdp, addr);
407         }
408 
409         do {
410                 p4d_t old_p4d = READ_ONCE(*p4dp);
411 
412                 next = p4d_addr_end(addr, end);
413 
414                 alloc_init_pud(p4dp, addr, next, phys, prot,
415                                pgtable_alloc, flags);
416 
417                 BUG_ON(p4d_val(old_p4d) != 0 &&
418                        p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
419 
420                 phys += next - addr;
421         } while (p4dp++, addr = next, addr != end);
422 
423         p4d_clear_fixmap();
424 }
425 
426 static void __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
427                                         unsigned long virt, phys_addr_t size,
428                                         pgprot_t prot,
429                                         phys_addr_t (*pgtable_alloc)(int),
430                                         int flags)
431 {
432         unsigned long addr, end, next;
433         pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
434 
435         /*
436          * If the virtual and physical address don't have the same offset
437          * within a page, we cannot map the region as the caller expects.
438          */
439         if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
440                 return;
441 
442         phys &= PAGE_MASK;
443         addr = virt & PAGE_MASK;
444         end = PAGE_ALIGN(virt + size);
445 
446         do {
447                 next = pgd_addr_end(addr, end);
448                 alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
449                                flags);
450                 phys += next - addr;
451         } while (pgdp++, addr = next, addr != end);
452 }
453 
454 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
455                                  unsigned long virt, phys_addr_t size,
456                                  pgprot_t prot,
457                                  phys_addr_t (*pgtable_alloc)(int),
458                                  int flags)
459 {
460         mutex_lock(&fixmap_lock);
461         __create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
462                                     pgtable_alloc, flags);
463         mutex_unlock(&fixmap_lock);
464 }
465 
466 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
467 extern __alias(__create_pgd_mapping_locked)
468 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
469                              phys_addr_t size, pgprot_t prot,
470                              phys_addr_t (*pgtable_alloc)(int), int flags);
471 #endif
472 
473 static phys_addr_t __pgd_pgtable_alloc(int shift)
474 {
475         /* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
476         void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL & ~__GFP_ZERO);
477 
478         BUG_ON(!ptr);
479         return __pa(ptr);
480 }
481 
482 static phys_addr_t pgd_pgtable_alloc(int shift)
483 {
484         phys_addr_t pa = __pgd_pgtable_alloc(shift);
485         struct ptdesc *ptdesc = page_ptdesc(phys_to_page(pa));
486 
487         /*
488          * Call proper page table ctor in case later we need to
489          * call core mm functions like apply_to_page_range() on
490          * this pre-allocated page table.
491          *
492          * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
493          * folded, and if so pagetable_pte_ctor() becomes nop.
494          */
495         if (shift == PAGE_SHIFT)
496                 BUG_ON(!pagetable_pte_ctor(ptdesc));
497         else if (shift == PMD_SHIFT)
498                 BUG_ON(!pagetable_pmd_ctor(ptdesc));
499 
500         return pa;
501 }
502 
503 /*
504  * This function can only be used to modify existing table entries,
505  * without allocating new levels of table. Note that this permits the
506  * creation of new section or page entries.
507  */
508 void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
509                                    phys_addr_t size, pgprot_t prot)
510 {
511         if (virt < PAGE_OFFSET) {
512                 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
513                         &phys, virt);
514                 return;
515         }
516         __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
517                              NO_CONT_MAPPINGS);
518 }
519 
520 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
521                                unsigned long virt, phys_addr_t size,
522                                pgprot_t prot, bool page_mappings_only)
523 {
524         int flags = 0;
525 
526         BUG_ON(mm == &init_mm);
527 
528         if (page_mappings_only)
529                 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
530 
531         __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
532                              pgd_pgtable_alloc, flags);
533 }
534 
535 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
536                                 phys_addr_t size, pgprot_t prot)
537 {
538         if (virt < PAGE_OFFSET) {
539                 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
540                         &phys, virt);
541                 return;
542         }
543 
544         __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
545                              NO_CONT_MAPPINGS);
546 
547         /* flush the TLBs after updating live kernel mappings */
548         flush_tlb_kernel_range(virt, virt + size);
549 }
550 
551 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
552                                   phys_addr_t end, pgprot_t prot, int flags)
553 {
554         __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
555                              prot, early_pgtable_alloc, flags);
556 }
557 
558 void __init mark_linear_text_alias_ro(void)
559 {
560         /*
561          * Remove the write permissions from the linear alias of .text/.rodata
562          */
563         update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
564                             (unsigned long)__init_begin - (unsigned long)_stext,
565                             PAGE_KERNEL_RO);
566 }
567 
568 #ifdef CONFIG_KFENCE
569 
570 bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
571 
572 /* early_param() will be parsed before map_mem() below. */
573 static int __init parse_kfence_early_init(char *arg)
574 {
575         int val;
576 
577         if (get_option(&arg, &val))
578                 kfence_early_init = !!val;
579         return 0;
580 }
581 early_param("kfence.sample_interval", parse_kfence_early_init);
582 
583 static phys_addr_t __init arm64_kfence_alloc_pool(void)
584 {
585         phys_addr_t kfence_pool;
586 
587         if (!kfence_early_init)
588                 return 0;
589 
590         kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
591         if (!kfence_pool) {
592                 pr_err("failed to allocate kfence pool\n");
593                 kfence_early_init = false;
594                 return 0;
595         }
596 
597         /* Temporarily mark as NOMAP. */
598         memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
599 
600         return kfence_pool;
601 }
602 
603 static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
604 {
605         if (!kfence_pool)
606                 return;
607 
608         /* KFENCE pool needs page-level mapping. */
609         __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
610                         pgprot_tagged(PAGE_KERNEL),
611                         NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
612         memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
613         __kfence_pool = phys_to_virt(kfence_pool);
614 }
615 #else /* CONFIG_KFENCE */
616 
617 static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
618 static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
619 
620 #endif /* CONFIG_KFENCE */
621 
622 static void __init map_mem(pgd_t *pgdp)
623 {
624         static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
625         phys_addr_t kernel_start = __pa_symbol(_stext);
626         phys_addr_t kernel_end = __pa_symbol(__init_begin);
627         phys_addr_t start, end;
628         phys_addr_t early_kfence_pool;
629         int flags = NO_EXEC_MAPPINGS;
630         u64 i;
631 
632         /*
633          * Setting hierarchical PXNTable attributes on table entries covering
634          * the linear region is only possible if it is guaranteed that no table
635          * entries at any level are being shared between the linear region and
636          * the vmalloc region. Check whether this is true for the PGD level, in
637          * which case it is guaranteed to be true for all other levels as well.
638          * (Unless we are running with support for LPA2, in which case the
639          * entire reduced VA space is covered by a single pgd_t which will have
640          * been populated without the PXNTable attribute by the time we get here.)
641          */
642         BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
643                      pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
644 
645         early_kfence_pool = arm64_kfence_alloc_pool();
646 
647         if (can_set_direct_map())
648                 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
649 
650         /*
651          * Take care not to create a writable alias for the
652          * read-only text and rodata sections of the kernel image.
653          * So temporarily mark them as NOMAP to skip mappings in
654          * the following for-loop
655          */
656         memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
657 
658         /* map all the memory banks */
659         for_each_mem_range(i, &start, &end) {
660                 if (start >= end)
661                         break;
662                 /*
663                  * The linear map must allow allocation tags reading/writing
664                  * if MTE is present. Otherwise, it has the same attributes as
665                  * PAGE_KERNEL.
666                  */
667                 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
668                                flags);
669         }
670 
671         /*
672          * Map the linear alias of the [_stext, __init_begin) interval
673          * as non-executable now, and remove the write permission in
674          * mark_linear_text_alias_ro() below (which will be called after
675          * alternative patching has completed). This makes the contents
676          * of the region accessible to subsystems such as hibernate,
677          * but protects it from inadvertent modification or execution.
678          * Note that contiguous mappings cannot be remapped in this way,
679          * so we should avoid them here.
680          */
681         __map_memblock(pgdp, kernel_start, kernel_end,
682                        PAGE_KERNEL, NO_CONT_MAPPINGS);
683         memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
684         arm64_kfence_map_pool(early_kfence_pool, pgdp);
685 }
686 
687 void mark_rodata_ro(void)
688 {
689         unsigned long section_size;
690 
691         /*
692          * mark .rodata as read only. Use __init_begin rather than __end_rodata
693          * to cover NOTES and EXCEPTION_TABLE.
694          */
695         section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
696         WRITE_ONCE(rodata_is_rw, false);
697         update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
698                             section_size, PAGE_KERNEL_RO);
699 }
700 
701 static void __init declare_vma(struct vm_struct *vma,
702                                void *va_start, void *va_end,
703                                unsigned long vm_flags)
704 {
705         phys_addr_t pa_start = __pa_symbol(va_start);
706         unsigned long size = va_end - va_start;
707 
708         BUG_ON(!PAGE_ALIGNED(pa_start));
709         BUG_ON(!PAGE_ALIGNED(size));
710 
711         if (!(vm_flags & VM_NO_GUARD))
712                 size += PAGE_SIZE;
713 
714         vma->addr       = va_start;
715         vma->phys_addr  = pa_start;
716         vma->size       = size;
717         vma->flags      = VM_MAP | vm_flags;
718         vma->caller     = __builtin_return_address(0);
719 
720         vm_area_add_early(vma);
721 }
722 
723 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
724 static pgprot_t kernel_exec_prot(void)
725 {
726         return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
727 }
728 
729 static int __init map_entry_trampoline(void)
730 {
731         int i;
732 
733         if (!arm64_kernel_unmapped_at_el0())
734                 return 0;
735 
736         pgprot_t prot = kernel_exec_prot();
737         phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
738 
739         /* The trampoline is always mapped and can therefore be global */
740         pgprot_val(prot) &= ~PTE_NG;
741 
742         /* Map only the text into the trampoline page table */
743         memset(tramp_pg_dir, 0, PGD_SIZE);
744         __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
745                              entry_tramp_text_size(), prot,
746                              __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
747 
748         /* Map both the text and data into the kernel page table */
749         for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
750                 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
751                              pa_start + i * PAGE_SIZE, prot);
752 
753         if (IS_ENABLED(CONFIG_RELOCATABLE))
754                 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
755                              pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
756 
757         return 0;
758 }
759 core_initcall(map_entry_trampoline);
760 #endif
761 
762 /*
763  * Declare the VMA areas for the kernel
764  */
765 static void __init declare_kernel_vmas(void)
766 {
767         static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
768 
769         declare_vma(&vmlinux_seg[0], _stext, _etext, VM_NO_GUARD);
770         declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
771         declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
772         declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
773         declare_vma(&vmlinux_seg[4], _data, _end, 0);
774 }
775 
776 void __pi_map_range(u64 *pgd, u64 start, u64 end, u64 pa, pgprot_t prot,
777                     int level, pte_t *tbl, bool may_use_cont, u64 va_offset);
778 
779 static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
780           kpti_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
781 
782 static void __init create_idmap(void)
783 {
784         u64 start = __pa_symbol(__idmap_text_start);
785         u64 end   = __pa_symbol(__idmap_text_end);
786         u64 ptep  = __pa_symbol(idmap_ptes);
787 
788         __pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
789                        IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
790                        __phys_to_virt(ptep) - ptep);
791 
792         if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings) {
793                 extern u32 __idmap_kpti_flag;
794                 u64 pa = __pa_symbol(&__idmap_kpti_flag);
795 
796                 /*
797                  * The KPTI G-to-nG conversion code needs a read-write mapping
798                  * of its synchronization flag in the ID map.
799                  */
800                 ptep = __pa_symbol(kpti_ptes);
801                 __pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
802                                IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
803                                __phys_to_virt(ptep) - ptep);
804         }
805 }
806 
807 void __init paging_init(void)
808 {
809         map_mem(swapper_pg_dir);
810 
811         memblock_allow_resize();
812 
813         create_idmap();
814         declare_kernel_vmas();
815 }
816 
817 #ifdef CONFIG_MEMORY_HOTPLUG
818 static void free_hotplug_page_range(struct page *page, size_t size,
819                                     struct vmem_altmap *altmap)
820 {
821         if (altmap) {
822                 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
823         } else {
824                 WARN_ON(PageReserved(page));
825                 free_pages((unsigned long)page_address(page), get_order(size));
826         }
827 }
828 
829 static void free_hotplug_pgtable_page(struct page *page)
830 {
831         free_hotplug_page_range(page, PAGE_SIZE, NULL);
832 }
833 
834 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
835                                   unsigned long floor, unsigned long ceiling,
836                                   unsigned long mask)
837 {
838         start &= mask;
839         if (start < floor)
840                 return false;
841 
842         if (ceiling) {
843                 ceiling &= mask;
844                 if (!ceiling)
845                         return false;
846         }
847 
848         if (end - 1 > ceiling - 1)
849                 return false;
850         return true;
851 }
852 
853 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
854                                     unsigned long end, bool free_mapped,
855                                     struct vmem_altmap *altmap)
856 {
857         pte_t *ptep, pte;
858 
859         do {
860                 ptep = pte_offset_kernel(pmdp, addr);
861                 pte = __ptep_get(ptep);
862                 if (pte_none(pte))
863                         continue;
864 
865                 WARN_ON(!pte_present(pte));
866                 __pte_clear(&init_mm, addr, ptep);
867                 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
868                 if (free_mapped)
869                         free_hotplug_page_range(pte_page(pte),
870                                                 PAGE_SIZE, altmap);
871         } while (addr += PAGE_SIZE, addr < end);
872 }
873 
874 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
875                                     unsigned long end, bool free_mapped,
876                                     struct vmem_altmap *altmap)
877 {
878         unsigned long next;
879         pmd_t *pmdp, pmd;
880 
881         do {
882                 next = pmd_addr_end(addr, end);
883                 pmdp = pmd_offset(pudp, addr);
884                 pmd = READ_ONCE(*pmdp);
885                 if (pmd_none(pmd))
886                         continue;
887 
888                 WARN_ON(!pmd_present(pmd));
889                 if (pmd_sect(pmd)) {
890                         pmd_clear(pmdp);
891 
892                         /*
893                          * One TLBI should be sufficient here as the PMD_SIZE
894                          * range is mapped with a single block entry.
895                          */
896                         flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
897                         if (free_mapped)
898                                 free_hotplug_page_range(pmd_page(pmd),
899                                                         PMD_SIZE, altmap);
900                         continue;
901                 }
902                 WARN_ON(!pmd_table(pmd));
903                 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
904         } while (addr = next, addr < end);
905 }
906 
907 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
908                                     unsigned long end, bool free_mapped,
909                                     struct vmem_altmap *altmap)
910 {
911         unsigned long next;
912         pud_t *pudp, pud;
913 
914         do {
915                 next = pud_addr_end(addr, end);
916                 pudp = pud_offset(p4dp, addr);
917                 pud = READ_ONCE(*pudp);
918                 if (pud_none(pud))
919                         continue;
920 
921                 WARN_ON(!pud_present(pud));
922                 if (pud_sect(pud)) {
923                         pud_clear(pudp);
924 
925                         /*
926                          * One TLBI should be sufficient here as the PUD_SIZE
927                          * range is mapped with a single block entry.
928                          */
929                         flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
930                         if (free_mapped)
931                                 free_hotplug_page_range(pud_page(pud),
932                                                         PUD_SIZE, altmap);
933                         continue;
934                 }
935                 WARN_ON(!pud_table(pud));
936                 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
937         } while (addr = next, addr < end);
938 }
939 
940 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
941                                     unsigned long end, bool free_mapped,
942                                     struct vmem_altmap *altmap)
943 {
944         unsigned long next;
945         p4d_t *p4dp, p4d;
946 
947         do {
948                 next = p4d_addr_end(addr, end);
949                 p4dp = p4d_offset(pgdp, addr);
950                 p4d = READ_ONCE(*p4dp);
951                 if (p4d_none(p4d))
952                         continue;
953 
954                 WARN_ON(!p4d_present(p4d));
955                 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
956         } while (addr = next, addr < end);
957 }
958 
959 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
960                                 bool free_mapped, struct vmem_altmap *altmap)
961 {
962         unsigned long next;
963         pgd_t *pgdp, pgd;
964 
965         /*
966          * altmap can only be used as vmemmap mapping backing memory.
967          * In case the backing memory itself is not being freed, then
968          * altmap is irrelevant. Warn about this inconsistency when
969          * encountered.
970          */
971         WARN_ON(!free_mapped && altmap);
972 
973         do {
974                 next = pgd_addr_end(addr, end);
975                 pgdp = pgd_offset_k(addr);
976                 pgd = READ_ONCE(*pgdp);
977                 if (pgd_none(pgd))
978                         continue;
979 
980                 WARN_ON(!pgd_present(pgd));
981                 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
982         } while (addr = next, addr < end);
983 }
984 
985 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
986                                  unsigned long end, unsigned long floor,
987                                  unsigned long ceiling)
988 {
989         pte_t *ptep, pte;
990         unsigned long i, start = addr;
991 
992         do {
993                 ptep = pte_offset_kernel(pmdp, addr);
994                 pte = __ptep_get(ptep);
995 
996                 /*
997                  * This is just a sanity check here which verifies that
998                  * pte clearing has been done by earlier unmap loops.
999                  */
1000                 WARN_ON(!pte_none(pte));
1001         } while (addr += PAGE_SIZE, addr < end);
1002 
1003         if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1004                 return;
1005 
1006         /*
1007          * Check whether we can free the pte page if the rest of the
1008          * entries are empty. Overlap with other regions have been
1009          * handled by the floor/ceiling check.
1010          */
1011         ptep = pte_offset_kernel(pmdp, 0UL);
1012         for (i = 0; i < PTRS_PER_PTE; i++) {
1013                 if (!pte_none(__ptep_get(&ptep[i])))
1014                         return;
1015         }
1016 
1017         pmd_clear(pmdp);
1018         __flush_tlb_kernel_pgtable(start);
1019         free_hotplug_pgtable_page(virt_to_page(ptep));
1020 }
1021 
1022 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1023                                  unsigned long end, unsigned long floor,
1024                                  unsigned long ceiling)
1025 {
1026         pmd_t *pmdp, pmd;
1027         unsigned long i, next, start = addr;
1028 
1029         do {
1030                 next = pmd_addr_end(addr, end);
1031                 pmdp = pmd_offset(pudp, addr);
1032                 pmd = READ_ONCE(*pmdp);
1033                 if (pmd_none(pmd))
1034                         continue;
1035 
1036                 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1037                 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1038         } while (addr = next, addr < end);
1039 
1040         if (CONFIG_PGTABLE_LEVELS <= 2)
1041                 return;
1042 
1043         if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1044                 return;
1045 
1046         /*
1047          * Check whether we can free the pmd page if the rest of the
1048          * entries are empty. Overlap with other regions have been
1049          * handled by the floor/ceiling check.
1050          */
1051         pmdp = pmd_offset(pudp, 0UL);
1052         for (i = 0; i < PTRS_PER_PMD; i++) {
1053                 if (!pmd_none(READ_ONCE(pmdp[i])))
1054                         return;
1055         }
1056 
1057         pud_clear(pudp);
1058         __flush_tlb_kernel_pgtable(start);
1059         free_hotplug_pgtable_page(virt_to_page(pmdp));
1060 }
1061 
1062 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1063                                  unsigned long end, unsigned long floor,
1064                                  unsigned long ceiling)
1065 {
1066         pud_t *pudp, pud;
1067         unsigned long i, next, start = addr;
1068 
1069         do {
1070                 next = pud_addr_end(addr, end);
1071                 pudp = pud_offset(p4dp, addr);
1072                 pud = READ_ONCE(*pudp);
1073                 if (pud_none(pud))
1074                         continue;
1075 
1076                 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1077                 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1078         } while (addr = next, addr < end);
1079 
1080         if (!pgtable_l4_enabled())
1081                 return;
1082 
1083         if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1084                 return;
1085 
1086         /*
1087          * Check whether we can free the pud page if the rest of the
1088          * entries are empty. Overlap with other regions have been
1089          * handled by the floor/ceiling check.
1090          */
1091         pudp = pud_offset(p4dp, 0UL);
1092         for (i = 0; i < PTRS_PER_PUD; i++) {
1093                 if (!pud_none(READ_ONCE(pudp[i])))
1094                         return;
1095         }
1096 
1097         p4d_clear(p4dp);
1098         __flush_tlb_kernel_pgtable(start);
1099         free_hotplug_pgtable_page(virt_to_page(pudp));
1100 }
1101 
1102 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1103                                  unsigned long end, unsigned long floor,
1104                                  unsigned long ceiling)
1105 {
1106         p4d_t *p4dp, p4d;
1107         unsigned long i, next, start = addr;
1108 
1109         do {
1110                 next = p4d_addr_end(addr, end);
1111                 p4dp = p4d_offset(pgdp, addr);
1112                 p4d = READ_ONCE(*p4dp);
1113                 if (p4d_none(p4d))
1114                         continue;
1115 
1116                 WARN_ON(!p4d_present(p4d));
1117                 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1118         } while (addr = next, addr < end);
1119 
1120         if (!pgtable_l5_enabled())
1121                 return;
1122 
1123         if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1124                 return;
1125 
1126         /*
1127          * Check whether we can free the p4d page if the rest of the
1128          * entries are empty. Overlap with other regions have been
1129          * handled by the floor/ceiling check.
1130          */
1131         p4dp = p4d_offset(pgdp, 0UL);
1132         for (i = 0; i < PTRS_PER_P4D; i++) {
1133                 if (!p4d_none(READ_ONCE(p4dp[i])))
1134                         return;
1135         }
1136 
1137         pgd_clear(pgdp);
1138         __flush_tlb_kernel_pgtable(start);
1139         free_hotplug_pgtable_page(virt_to_page(p4dp));
1140 }
1141 
1142 static void free_empty_tables(unsigned long addr, unsigned long end,
1143                               unsigned long floor, unsigned long ceiling)
1144 {
1145         unsigned long next;
1146         pgd_t *pgdp, pgd;
1147 
1148         do {
1149                 next = pgd_addr_end(addr, end);
1150                 pgdp = pgd_offset_k(addr);
1151                 pgd = READ_ONCE(*pgdp);
1152                 if (pgd_none(pgd))
1153                         continue;
1154 
1155                 WARN_ON(!pgd_present(pgd));
1156                 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1157         } while (addr = next, addr < end);
1158 }
1159 #endif
1160 
1161 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1162                                unsigned long addr, unsigned long next)
1163 {
1164         pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1165 }
1166 
1167 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1168                                 unsigned long addr, unsigned long next)
1169 {
1170         vmemmap_verify((pte_t *)pmdp, node, addr, next);
1171         return 1;
1172 }
1173 
1174 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1175                 struct vmem_altmap *altmap)
1176 {
1177         WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1178 
1179         if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES))
1180                 return vmemmap_populate_basepages(start, end, node, altmap);
1181         else
1182                 return vmemmap_populate_hugepages(start, end, node, altmap);
1183 }
1184 
1185 #ifdef CONFIG_MEMORY_HOTPLUG
1186 void vmemmap_free(unsigned long start, unsigned long end,
1187                 struct vmem_altmap *altmap)
1188 {
1189         WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1190 
1191         unmap_hotplug_range(start, end, true, altmap);
1192         free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1193 }
1194 #endif /* CONFIG_MEMORY_HOTPLUG */
1195 
1196 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1197 {
1198         pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1199 
1200         /* Only allow permission changes for now */
1201         if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1202                                    pud_val(new_pud)))
1203                 return 0;
1204 
1205         VM_BUG_ON(phys & ~PUD_MASK);
1206         set_pud(pudp, new_pud);
1207         return 1;
1208 }
1209 
1210 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1211 {
1212         pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1213 
1214         /* Only allow permission changes for now */
1215         if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1216                                    pmd_val(new_pmd)))
1217                 return 0;
1218 
1219         VM_BUG_ON(phys & ~PMD_MASK);
1220         set_pmd(pmdp, new_pmd);
1221         return 1;
1222 }
1223 
1224 #ifndef __PAGETABLE_P4D_FOLDED
1225 void p4d_clear_huge(p4d_t *p4dp)
1226 {
1227 }
1228 #endif
1229 
1230 int pud_clear_huge(pud_t *pudp)
1231 {
1232         if (!pud_sect(READ_ONCE(*pudp)))
1233                 return 0;
1234         pud_clear(pudp);
1235         return 1;
1236 }
1237 
1238 int pmd_clear_huge(pmd_t *pmdp)
1239 {
1240         if (!pmd_sect(READ_ONCE(*pmdp)))
1241                 return 0;
1242         pmd_clear(pmdp);
1243         return 1;
1244 }
1245 
1246 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1247 {
1248         pte_t *table;
1249         pmd_t pmd;
1250 
1251         pmd = READ_ONCE(*pmdp);
1252 
1253         if (!pmd_table(pmd)) {
1254                 VM_WARN_ON(1);
1255                 return 1;
1256         }
1257 
1258         table = pte_offset_kernel(pmdp, addr);
1259         pmd_clear(pmdp);
1260         __flush_tlb_kernel_pgtable(addr);
1261         pte_free_kernel(NULL, table);
1262         return 1;
1263 }
1264 
1265 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1266 {
1267         pmd_t *table;
1268         pmd_t *pmdp;
1269         pud_t pud;
1270         unsigned long next, end;
1271 
1272         pud = READ_ONCE(*pudp);
1273 
1274         if (!pud_table(pud)) {
1275                 VM_WARN_ON(1);
1276                 return 1;
1277         }
1278 
1279         table = pmd_offset(pudp, addr);
1280         pmdp = table;
1281         next = addr;
1282         end = addr + PUD_SIZE;
1283         do {
1284                 pmd_free_pte_page(pmdp, next);
1285         } while (pmdp++, next += PMD_SIZE, next != end);
1286 
1287         pud_clear(pudp);
1288         __flush_tlb_kernel_pgtable(addr);
1289         pmd_free(NULL, table);
1290         return 1;
1291 }
1292 
1293 #ifdef CONFIG_MEMORY_HOTPLUG
1294 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1295 {
1296         unsigned long end = start + size;
1297 
1298         WARN_ON(pgdir != init_mm.pgd);
1299         WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1300 
1301         unmap_hotplug_range(start, end, false, NULL);
1302         free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1303 }
1304 
1305 struct range arch_get_mappable_range(void)
1306 {
1307         struct range mhp_range;
1308         u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1309         u64 end_linear_pa = __pa(PAGE_END - 1);
1310 
1311         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1312                 /*
1313                  * Check for a wrap, it is possible because of randomized linear
1314                  * mapping the start physical address is actually bigger than
1315                  * the end physical address. In this case set start to zero
1316                  * because [0, end_linear_pa] range must still be able to cover
1317                  * all addressable physical addresses.
1318                  */
1319                 if (start_linear_pa > end_linear_pa)
1320                         start_linear_pa = 0;
1321         }
1322 
1323         WARN_ON(start_linear_pa > end_linear_pa);
1324 
1325         /*
1326          * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1327          * accommodating both its ends but excluding PAGE_END. Max physical
1328          * range which can be mapped inside this linear mapping range, must
1329          * also be derived from its end points.
1330          */
1331         mhp_range.start = start_linear_pa;
1332         mhp_range.end =  end_linear_pa;
1333 
1334         return mhp_range;
1335 }
1336 
1337 int arch_add_memory(int nid, u64 start, u64 size,
1338                     struct mhp_params *params)
1339 {
1340         int ret, flags = NO_EXEC_MAPPINGS;
1341 
1342         VM_BUG_ON(!mhp_range_allowed(start, size, true));
1343 
1344         if (can_set_direct_map())
1345                 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1346 
1347         __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1348                              size, params->pgprot, __pgd_pgtable_alloc,
1349                              flags);
1350 
1351         memblock_clear_nomap(start, size);
1352 
1353         ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1354                            params);
1355         if (ret)
1356                 __remove_pgd_mapping(swapper_pg_dir,
1357                                      __phys_to_virt(start), size);
1358         else {
1359                 max_pfn = PFN_UP(start + size);
1360                 max_low_pfn = max_pfn;
1361         }
1362 
1363         return ret;
1364 }
1365 
1366 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1367 {
1368         unsigned long start_pfn = start >> PAGE_SHIFT;
1369         unsigned long nr_pages = size >> PAGE_SHIFT;
1370 
1371         __remove_pages(start_pfn, nr_pages, altmap);
1372         __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1373 }
1374 
1375 /*
1376  * This memory hotplug notifier helps prevent boot memory from being
1377  * inadvertently removed as it blocks pfn range offlining process in
1378  * __offline_pages(). Hence this prevents both offlining as well as
1379  * removal process for boot memory which is initially always online.
1380  * In future if and when boot memory could be removed, this notifier
1381  * should be dropped and free_hotplug_page_range() should handle any
1382  * reserved pages allocated during boot.
1383  */
1384 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1385                                            unsigned long action, void *data)
1386 {
1387         struct mem_section *ms;
1388         struct memory_notify *arg = data;
1389         unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1390         unsigned long pfn = arg->start_pfn;
1391 
1392         if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1393                 return NOTIFY_OK;
1394 
1395         for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1396                 unsigned long start = PFN_PHYS(pfn);
1397                 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1398 
1399                 ms = __pfn_to_section(pfn);
1400                 if (!early_section(ms))
1401                         continue;
1402 
1403                 if (action == MEM_GOING_OFFLINE) {
1404                         /*
1405                          * Boot memory removal is not supported. Prevent
1406                          * it via blocking any attempted offline request
1407                          * for the boot memory and just report it.
1408                          */
1409                         pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1410                         return NOTIFY_BAD;
1411                 } else if (action == MEM_OFFLINE) {
1412                         /*
1413                          * This should have never happened. Boot memory
1414                          * offlining should have been prevented by this
1415                          * very notifier. Probably some memory removal
1416                          * procedure might have changed which would then
1417                          * require further debug.
1418                          */
1419                         pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1420 
1421                         /*
1422                          * Core memory hotplug does not process a return
1423                          * code from the notifier for MEM_OFFLINE events.
1424                          * The error condition has been reported. Return
1425                          * from here as if ignored.
1426                          */
1427                         return NOTIFY_DONE;
1428                 }
1429         }
1430         return NOTIFY_OK;
1431 }
1432 
1433 static struct notifier_block prevent_bootmem_remove_nb = {
1434         .notifier_call = prevent_bootmem_remove_notifier,
1435 };
1436 
1437 /*
1438  * This ensures that boot memory sections on the platform are online
1439  * from early boot. Memory sections could not be prevented from being
1440  * offlined, unless for some reason they are not online to begin with.
1441  * This helps validate the basic assumption on which the above memory
1442  * event notifier works to prevent boot memory section offlining and
1443  * its possible removal.
1444  */
1445 static void validate_bootmem_online(void)
1446 {
1447         phys_addr_t start, end, addr;
1448         struct mem_section *ms;
1449         u64 i;
1450 
1451         /*
1452          * Scanning across all memblock might be expensive
1453          * on some big memory systems. Hence enable this
1454          * validation only with DEBUG_VM.
1455          */
1456         if (!IS_ENABLED(CONFIG_DEBUG_VM))
1457                 return;
1458 
1459         for_each_mem_range(i, &start, &end) {
1460                 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1461                         ms = __pfn_to_section(PHYS_PFN(addr));
1462 
1463                         /*
1464                          * All memory ranges in the system at this point
1465                          * should have been marked as early sections.
1466                          */
1467                         WARN_ON(!early_section(ms));
1468 
1469                         /*
1470                          * Memory notifier mechanism here to prevent boot
1471                          * memory offlining depends on the fact that each
1472                          * early section memory on the system is initially
1473                          * online. Otherwise a given memory section which
1474                          * is already offline will be overlooked and can
1475                          * be removed completely. Call out such sections.
1476                          */
1477                         if (!online_section(ms))
1478                                 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1479                                         addr, addr + (1UL << PA_SECTION_SHIFT));
1480                 }
1481         }
1482 }
1483 
1484 static int __init prevent_bootmem_remove_init(void)
1485 {
1486         int ret = 0;
1487 
1488         if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1489                 return ret;
1490 
1491         validate_bootmem_online();
1492         ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1493         if (ret)
1494                 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1495 
1496         return ret;
1497 }
1498 early_initcall(prevent_bootmem_remove_init);
1499 #endif
1500 
1501 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
1502 {
1503         if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
1504                 /*
1505                  * Break-before-make (BBM) is required for all user space mappings
1506                  * when the permission changes from executable to non-executable
1507                  * in cases where cpu is affected with errata #2645198.
1508                  */
1509                 if (pte_user_exec(ptep_get(ptep)))
1510                         return ptep_clear_flush(vma, addr, ptep);
1511         }
1512         return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1513 }
1514 
1515 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1516                              pte_t old_pte, pte_t pte)
1517 {
1518         set_pte_at(vma->vm_mm, addr, ptep, pte);
1519 }
1520 
1521 /*
1522  * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
1523  * avoiding the possibility of conflicting TLB entries being allocated.
1524  */
1525 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
1526 {
1527         typedef void (ttbr_replace_func)(phys_addr_t);
1528         extern ttbr_replace_func idmap_cpu_replace_ttbr1;
1529         ttbr_replace_func *replace_phys;
1530         unsigned long daif;
1531 
1532         /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
1533         phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
1534 
1535         if (cnp)
1536                 ttbr1 |= TTBR_CNP_BIT;
1537 
1538         replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
1539 
1540         cpu_install_idmap();
1541 
1542         /*
1543          * We really don't want to take *any* exceptions while TTBR1 is
1544          * in the process of being replaced so mask everything.
1545          */
1546         daif = local_daif_save();
1547         replace_phys(ttbr1);
1548         local_daif_restore(daif);
1549 
1550         cpu_uninstall_idmap();
1551 }
1552 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php