~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/loongarch/kernel/kgdb.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * LoongArch KGDB support
  4  *
  5  * Copyright (C) 2023 Loongson Technology Corporation Limited
  6  */
  7 
  8 #include <linux/hw_breakpoint.h>
  9 #include <linux/kdebug.h>
 10 #include <linux/kgdb.h>
 11 #include <linux/processor.h>
 12 #include <linux/ptrace.h>
 13 #include <linux/sched.h>
 14 #include <linux/smp.h>
 15 
 16 #include <asm/cacheflush.h>
 17 #include <asm/fpu.h>
 18 #include <asm/hw_breakpoint.h>
 19 #include <asm/inst.h>
 20 #include <asm/irq_regs.h>
 21 #include <asm/ptrace.h>
 22 #include <asm/sigcontext.h>
 23 
 24 int kgdb_watch_activated;
 25 static unsigned int stepped_opcode;
 26 static unsigned long stepped_address;
 27 
 28 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
 29         { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
 30         { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
 31         { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
 32         { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
 33         { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
 34         { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
 35         { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
 36         { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
 37         { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
 38         { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
 39         { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
 40         { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
 41         { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
 42         { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
 43         { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
 44         { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
 45         { "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
 46         { "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
 47         { "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
 48         { "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
 49         { "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
 50         { "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
 51         { "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
 52         { "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
 53         { "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
 54         { "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
 55         { "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
 56         { "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
 57         { "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
 58         { "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
 59         { "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
 60         { "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
 61         { "orig_a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, orig_a0) },
 62         { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_era) },
 63         { "badv", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_badvaddr) },
 64         { "f0", GDB_SIZEOF_REG, 0 },
 65         { "f1", GDB_SIZEOF_REG, 1 },
 66         { "f2", GDB_SIZEOF_REG, 2 },
 67         { "f3", GDB_SIZEOF_REG, 3 },
 68         { "f4", GDB_SIZEOF_REG, 4 },
 69         { "f5", GDB_SIZEOF_REG, 5 },
 70         { "f6", GDB_SIZEOF_REG, 6 },
 71         { "f7", GDB_SIZEOF_REG, 7 },
 72         { "f8", GDB_SIZEOF_REG, 8 },
 73         { "f9", GDB_SIZEOF_REG, 9 },
 74         { "f10", GDB_SIZEOF_REG, 10 },
 75         { "f11", GDB_SIZEOF_REG, 11 },
 76         { "f12", GDB_SIZEOF_REG, 12 },
 77         { "f13", GDB_SIZEOF_REG, 13 },
 78         { "f14", GDB_SIZEOF_REG, 14 },
 79         { "f15", GDB_SIZEOF_REG, 15 },
 80         { "f16", GDB_SIZEOF_REG, 16 },
 81         { "f17", GDB_SIZEOF_REG, 17 },
 82         { "f18", GDB_SIZEOF_REG, 18 },
 83         { "f19", GDB_SIZEOF_REG, 19 },
 84         { "f20", GDB_SIZEOF_REG, 20 },
 85         { "f21", GDB_SIZEOF_REG, 21 },
 86         { "f22", GDB_SIZEOF_REG, 22 },
 87         { "f23", GDB_SIZEOF_REG, 23 },
 88         { "f24", GDB_SIZEOF_REG, 24 },
 89         { "f25", GDB_SIZEOF_REG, 25 },
 90         { "f26", GDB_SIZEOF_REG, 26 },
 91         { "f27", GDB_SIZEOF_REG, 27 },
 92         { "f28", GDB_SIZEOF_REG, 28 },
 93         { "f29", GDB_SIZEOF_REG, 29 },
 94         { "f30", GDB_SIZEOF_REG, 30 },
 95         { "f31", GDB_SIZEOF_REG, 31 },
 96         { "fcc0", 1, 0 },
 97         { "fcc1", 1, 1 },
 98         { "fcc2", 1, 2 },
 99         { "fcc3", 1, 3 },
100         { "fcc4", 1, 4 },
101         { "fcc5", 1, 5 },
102         { "fcc6", 1, 6 },
103         { "fcc7", 1, 7 },
104         { "fcsr", 4, 0 },
105 };
106 
107 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
108 {
109         int reg_offset, reg_size;
110 
111         if (regno < 0 || regno >= DBG_MAX_REG_NUM)
112                 return NULL;
113 
114         reg_offset = dbg_reg_def[regno].offset;
115         reg_size = dbg_reg_def[regno].size;
116 
117         if (reg_offset == -1)
118                 goto out;
119 
120         /* Handle general-purpose/orig_a0/pc/badv registers */
121         if (regno <= DBG_PT_REGS_END) {
122                 memcpy(mem, (void *)regs + reg_offset, reg_size);
123                 goto out;
124         }
125 
126         if (!(regs->csr_euen & CSR_EUEN_FPEN))
127                 goto out;
128 
129         save_fp(current);
130 
131         /* Handle FP registers */
132         switch (regno) {
133         case DBG_FCSR:                          /* Process the fcsr */
134                 memcpy(mem, (void *)&current->thread.fpu.fcsr, reg_size);
135                 break;
136         case DBG_FCC_BASE ... DBG_FCC_END:      /* Process the fcc */
137                 memcpy(mem, (void *)&current->thread.fpu.fcc + reg_offset, reg_size);
138                 break;
139         case DBG_FPR_BASE ... DBG_FPR_END:      /* Process the fpr */
140                 memcpy(mem, (void *)&current->thread.fpu.fpr[reg_offset], reg_size);
141                 break;
142         default:
143                 break;
144         }
145 
146 out:
147         return dbg_reg_def[regno].name;
148 }
149 
150 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
151 {
152         int reg_offset, reg_size;
153 
154         if (regno < 0 || regno >= DBG_MAX_REG_NUM)
155                 return -EINVAL;
156 
157         reg_offset = dbg_reg_def[regno].offset;
158         reg_size = dbg_reg_def[regno].size;
159 
160         if (reg_offset == -1)
161                 return 0;
162 
163         /* Handle general-purpose/orig_a0/pc/badv registers */
164         if (regno <= DBG_PT_REGS_END) {
165                 memcpy((void *)regs + reg_offset, mem, reg_size);
166                 return 0;
167         }
168 
169         if (!(regs->csr_euen & CSR_EUEN_FPEN))
170                 return 0;
171 
172         /* Handle FP registers */
173         switch (regno) {
174         case DBG_FCSR:                          /* Process the fcsr */
175                 memcpy((void *)&current->thread.fpu.fcsr, mem, reg_size);
176                 break;
177         case DBG_FCC_BASE ... DBG_FCC_END:      /* Process the fcc */
178                 memcpy((void *)&current->thread.fpu.fcc + reg_offset, mem, reg_size);
179                 break;
180         case DBG_FPR_BASE ... DBG_FPR_END:      /* Process the fpr */
181                 memcpy((void *)&current->thread.fpu.fpr[reg_offset], mem, reg_size);
182                 break;
183         default:
184                 break;
185         }
186 
187         restore_fp(current);
188 
189         return 0;
190 }
191 
192 /*
193  * Similar to regs_to_gdb_regs() except that process is sleeping and so
194  * we may not be able to get all the info.
195  */
196 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
197 {
198         /* Initialize to zero */
199         memset((char *)gdb_regs, 0, NUMREGBYTES);
200 
201         gdb_regs[DBG_LOONGARCH_RA] = p->thread.reg01;
202         gdb_regs[DBG_LOONGARCH_TP] = (long)p;
203         gdb_regs[DBG_LOONGARCH_SP] = p->thread.reg03;
204 
205         /* S0 - S8 */
206         gdb_regs[DBG_LOONGARCH_S0] = p->thread.reg23;
207         gdb_regs[DBG_LOONGARCH_S1] = p->thread.reg24;
208         gdb_regs[DBG_LOONGARCH_S2] = p->thread.reg25;
209         gdb_regs[DBG_LOONGARCH_S3] = p->thread.reg26;
210         gdb_regs[DBG_LOONGARCH_S4] = p->thread.reg27;
211         gdb_regs[DBG_LOONGARCH_S5] = p->thread.reg28;
212         gdb_regs[DBG_LOONGARCH_S6] = p->thread.reg29;
213         gdb_regs[DBG_LOONGARCH_S7] = p->thread.reg30;
214         gdb_regs[DBG_LOONGARCH_S8] = p->thread.reg31;
215 
216         /*
217          * PC use return address (RA), i.e. the moment after return from __switch_to()
218          */
219         gdb_regs[DBG_LOONGARCH_PC] = p->thread.reg01;
220 }
221 
222 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
223 {
224         regs->csr_era = pc;
225 }
226 
227 void arch_kgdb_breakpoint(void)
228 {
229         __asm__ __volatile__ (                  \
230                 ".globl kgdb_breakinst\n\t"     \
231                 "nop\n"                         \
232                 "kgdb_breakinst:\tbreak 2\n\t"); /* BRK_KDB = 2 */
233 }
234 
235 /*
236  * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
237  * then try to fall into the debugger
238  */
239 static int kgdb_loongarch_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
240 {
241         struct die_args *args = (struct die_args *)ptr;
242         struct pt_regs *regs = args->regs;
243 
244         /* Userspace events, ignore. */
245         if (user_mode(regs))
246                 return NOTIFY_DONE;
247 
248         if (!kgdb_io_module_registered)
249                 return NOTIFY_DONE;
250 
251         if (atomic_read(&kgdb_active) != -1)
252                 kgdb_nmicallback(smp_processor_id(), regs);
253 
254         if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
255                 return NOTIFY_DONE;
256 
257         if (atomic_read(&kgdb_setting_breakpoint))
258                 if (regs->csr_era == (unsigned long)&kgdb_breakinst)
259                         regs->csr_era += LOONGARCH_INSN_SIZE;
260 
261         return NOTIFY_STOP;
262 }
263 
264 bool kgdb_breakpoint_handler(struct pt_regs *regs)
265 {
266         struct die_args args = {
267                 .regs   = regs,
268                 .str    = "Break",
269                 .err    = BRK_KDB,
270                 .trapnr = read_csr_excode(),
271                 .signr  = SIGTRAP,
272 
273         };
274 
275         return (kgdb_loongarch_notify(NULL, DIE_TRAP, &args) == NOTIFY_STOP) ? true : false;
276 }
277 
278 static struct notifier_block kgdb_notifier = {
279         .notifier_call = kgdb_loongarch_notify,
280 };
281 
282 static inline void kgdb_arch_update_addr(struct pt_regs *regs,
283                                          char *remcom_in_buffer)
284 {
285         unsigned long addr;
286         char *ptr;
287 
288         ptr = &remcom_in_buffer[1];
289         if (kgdb_hex2long(&ptr, &addr))
290                 regs->csr_era = addr;
291 }
292 
293 /* Calculate the new address for after a step */
294 static int get_step_address(struct pt_regs *regs, unsigned long *next_addr)
295 {
296         char cj_val;
297         unsigned int si, si_l, si_h, rd, rj, cj;
298         unsigned long pc = instruction_pointer(regs);
299         union loongarch_instruction *ip = (union loongarch_instruction *)pc;
300 
301         if (pc & 3) {
302                 pr_warn("%s: invalid pc 0x%lx\n", __func__, pc);
303                 return -EINVAL;
304         }
305 
306         *next_addr = pc + LOONGARCH_INSN_SIZE;
307 
308         si_h = ip->reg0i26_format.immediate_h;
309         si_l = ip->reg0i26_format.immediate_l;
310         switch (ip->reg0i26_format.opcode) {
311         case b_op:
312                 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
313                 return 0;
314         case bl_op:
315                 *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
316                 regs->regs[1] = pc + LOONGARCH_INSN_SIZE;
317                 return 0;
318         }
319 
320         rj = ip->reg1i21_format.rj;
321         cj = (rj & 0x07) + DBG_FCC_BASE;
322         si_l = ip->reg1i21_format.immediate_l;
323         si_h = ip->reg1i21_format.immediate_h;
324         dbg_get_reg(cj, &cj_val, regs);
325         switch (ip->reg1i21_format.opcode) {
326         case beqz_op:
327                 if (regs->regs[rj] == 0)
328                         *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
329                 return 0;
330         case bnez_op:
331                 if (regs->regs[rj] != 0)
332                         *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
333                 return 0;
334         case bceqz_op: /* bceqz_op = bcnez_op */
335                 if (((rj & 0x18) == 0x00) && !cj_val) /* bceqz */
336                         *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
337                 if (((rj & 0x18) == 0x08) && cj_val) /* bcnez */
338                         *next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
339                 return 0;
340         }
341 
342         rj = ip->reg2i16_format.rj;
343         rd = ip->reg2i16_format.rd;
344         si = ip->reg2i16_format.immediate;
345         switch (ip->reg2i16_format.opcode) {
346         case beq_op:
347                 if (regs->regs[rj] == regs->regs[rd])
348                         *next_addr = pc + sign_extend64(si << 2, 17);
349                 return 0;
350         case bne_op:
351                 if (regs->regs[rj] != regs->regs[rd])
352                         *next_addr = pc + sign_extend64(si << 2, 17);
353                 return 0;
354         case blt_op:
355                 if ((long)regs->regs[rj] < (long)regs->regs[rd])
356                         *next_addr = pc + sign_extend64(si << 2, 17);
357                 return 0;
358         case bge_op:
359                 if ((long)regs->regs[rj] >= (long)regs->regs[rd])
360                         *next_addr = pc + sign_extend64(si << 2, 17);
361                 return 0;
362         case bltu_op:
363                 if (regs->regs[rj] < regs->regs[rd])
364                         *next_addr = pc + sign_extend64(si << 2, 17);
365                 return 0;
366         case bgeu_op:
367                 if (regs->regs[rj] >= regs->regs[rd])
368                         *next_addr = pc + sign_extend64(si << 2, 17);
369                 return 0;
370         case jirl_op:
371                 regs->regs[rd] = pc + LOONGARCH_INSN_SIZE;
372                 *next_addr = regs->regs[rj] + sign_extend64(si << 2, 17);
373                 return 0;
374         }
375 
376         return 0;
377 }
378 
379 static int do_single_step(struct pt_regs *regs)
380 {
381         int error = 0;
382         unsigned long addr = 0; /* Determine where the target instruction will send us to */
383 
384         error = get_step_address(regs, &addr);
385         if (error)
386                 return error;
387 
388         /* Store the opcode in the stepped address */
389         error = get_kernel_nofault(stepped_opcode, (void *)addr);
390         if (error)
391                 return error;
392 
393         stepped_address = addr;
394 
395         /* Replace the opcode with the break instruction */
396         error = copy_to_kernel_nofault((void *)stepped_address,
397                                        arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
398         flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
399 
400         if (error) {
401                 stepped_opcode = 0;
402                 stepped_address = 0;
403         } else {
404                 kgdb_single_step = 1;
405                 atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id());
406         }
407 
408         return error;
409 }
410 
411 /* Undo a single step */
412 static void undo_single_step(struct pt_regs *regs)
413 {
414         if (stepped_opcode) {
415                 copy_to_kernel_nofault((void *)stepped_address,
416                                        (void *)&stepped_opcode, BREAK_INSTR_SIZE);
417                 flush_icache_range(stepped_address, stepped_address + BREAK_INSTR_SIZE);
418         }
419 
420         stepped_opcode = 0;
421         stepped_address = 0;
422         kgdb_single_step = 0;
423         atomic_set(&kgdb_cpu_doing_single_step, -1);
424 }
425 
426 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
427                                char *remcom_in_buffer, char *remcom_out_buffer,
428                                struct pt_regs *regs)
429 {
430         int ret = 0;
431 
432         undo_single_step(regs);
433         regs->csr_prmd |= CSR_PRMD_PWE;
434 
435         switch (remcom_in_buffer[0]) {
436         case 'D':
437         case 'k':
438                 regs->csr_prmd &= ~CSR_PRMD_PWE;
439                 fallthrough;
440         case 'c':
441                 kgdb_arch_update_addr(regs, remcom_in_buffer);
442                 break;
443         case 's':
444                 kgdb_arch_update_addr(regs, remcom_in_buffer);
445                 ret = do_single_step(regs);
446                 break;
447         default:
448                 ret = -1;
449         }
450 
451         return ret;
452 }
453 
454 static struct hw_breakpoint {
455         unsigned int            enabled;
456         unsigned long           addr;
457         int                     len;
458         int                     type;
459         struct perf_event       * __percpu *pev;
460 } breakinfo[LOONGARCH_MAX_BRP];
461 
462 static int hw_break_reserve_slot(int breakno)
463 {
464         int cpu, cnt = 0;
465         struct perf_event **pevent;
466 
467         for_each_online_cpu(cpu) {
468                 cnt++;
469                 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
470                 if (dbg_reserve_bp_slot(*pevent))
471                         goto fail;
472         }
473 
474         return 0;
475 
476 fail:
477         for_each_online_cpu(cpu) {
478                 cnt--;
479                 if (!cnt)
480                         break;
481                 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
482                 dbg_release_bp_slot(*pevent);
483         }
484 
485         return -1;
486 }
487 
488 static int hw_break_release_slot(int breakno)
489 {
490         int cpu;
491         struct perf_event **pevent;
492 
493         if (dbg_is_early)
494                 return 0;
495 
496         for_each_online_cpu(cpu) {
497                 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
498                 if (dbg_release_bp_slot(*pevent))
499                         /*
500                          * The debugger is responsible for handing the retry on
501                          * remove failure.
502                          */
503                         return -1;
504         }
505 
506         return 0;
507 }
508 
509 static int kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
510 {
511         int i;
512 
513         for (i = 0; i < LOONGARCH_MAX_BRP; i++)
514                 if (!breakinfo[i].enabled)
515                         break;
516 
517         if (i == LOONGARCH_MAX_BRP)
518                 return -1;
519 
520         switch (bptype) {
521         case BP_HARDWARE_BREAKPOINT:
522                 breakinfo[i].type = HW_BREAKPOINT_X;
523                 break;
524         case BP_READ_WATCHPOINT:
525                 breakinfo[i].type = HW_BREAKPOINT_R;
526                 break;
527         case BP_WRITE_WATCHPOINT:
528                 breakinfo[i].type = HW_BREAKPOINT_W;
529                 break;
530         case BP_ACCESS_WATCHPOINT:
531                 breakinfo[i].type = HW_BREAKPOINT_RW;
532                 break;
533         default:
534                 return -1;
535         }
536 
537         switch (len) {
538         case 1:
539                 breakinfo[i].len = HW_BREAKPOINT_LEN_1;
540                 break;
541         case 2:
542                 breakinfo[i].len = HW_BREAKPOINT_LEN_2;
543                 break;
544         case 4:
545                 breakinfo[i].len = HW_BREAKPOINT_LEN_4;
546                 break;
547         case 8:
548                 breakinfo[i].len = HW_BREAKPOINT_LEN_8;
549                 break;
550         default:
551                 return -1;
552         }
553 
554         breakinfo[i].addr = addr;
555         if (hw_break_reserve_slot(i)) {
556                 breakinfo[i].addr = 0;
557                 return -1;
558         }
559         breakinfo[i].enabled = 1;
560 
561         return 0;
562 }
563 
564 static int kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
565 {
566         int i;
567 
568         for (i = 0; i < LOONGARCH_MAX_BRP; i++)
569                 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
570                         break;
571 
572         if (i == LOONGARCH_MAX_BRP)
573                 return -1;
574 
575         if (hw_break_release_slot(i)) {
576                 pr_err("Cannot remove hw breakpoint at %lx\n", addr);
577                 return -1;
578         }
579         breakinfo[i].enabled = 0;
580 
581         return 0;
582 }
583 
584 static void kgdb_disable_hw_break(struct pt_regs *regs)
585 {
586         int i;
587         int cpu = raw_smp_processor_id();
588         struct perf_event *bp;
589 
590         for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
591                 if (!breakinfo[i].enabled)
592                         continue;
593 
594                 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
595                 if (bp->attr.disabled == 1)
596                         continue;
597 
598                 arch_uninstall_hw_breakpoint(bp);
599                 bp->attr.disabled = 1;
600         }
601 
602         /* Disable hardware debugging while we are in kgdb */
603         csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
604 }
605 
606 static void kgdb_remove_all_hw_break(void)
607 {
608         int i;
609         int cpu = raw_smp_processor_id();
610         struct perf_event *bp;
611 
612         for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
613                 if (!breakinfo[i].enabled)
614                         continue;
615 
616                 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
617                 if (!bp->attr.disabled) {
618                         arch_uninstall_hw_breakpoint(bp);
619                         bp->attr.disabled = 1;
620                         continue;
621                 }
622 
623                 if (hw_break_release_slot(i))
624                         pr_err("KGDB: hw bpt remove failed %lx\n", breakinfo[i].addr);
625                 breakinfo[i].enabled = 0;
626         }
627 
628         csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
629         kgdb_watch_activated = 0;
630 }
631 
632 static void kgdb_correct_hw_break(void)
633 {
634         int i, activated = 0;
635 
636         for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
637                 struct perf_event *bp;
638                 int val;
639                 int cpu = raw_smp_processor_id();
640 
641                 if (!breakinfo[i].enabled)
642                         continue;
643 
644                 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
645                 if (bp->attr.disabled != 1)
646                         continue;
647 
648                 bp->attr.bp_addr = breakinfo[i].addr;
649                 bp->attr.bp_len = breakinfo[i].len;
650                 bp->attr.bp_type = breakinfo[i].type;
651 
652                 val = hw_breakpoint_arch_parse(bp, &bp->attr, counter_arch_bp(bp));
653                 if (val)
654                         return;
655 
656                 val = arch_install_hw_breakpoint(bp);
657                 if (!val)
658                         bp->attr.disabled = 0;
659                 activated = 1;
660         }
661 
662         csr_xchg32(activated ? CSR_CRMD_WE : 0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
663         kgdb_watch_activated = activated;
664 }
665 
666 const struct kgdb_arch arch_kgdb_ops = {
667         .gdb_bpt_instr          = {0x02, 0x00, break_op >> 1, 0x00}, /* BRK_KDB = 2 */
668         .flags                  = KGDB_HW_BREAKPOINT,
669         .set_hw_breakpoint      = kgdb_set_hw_break,
670         .remove_hw_breakpoint   = kgdb_remove_hw_break,
671         .disable_hw_break       = kgdb_disable_hw_break,
672         .remove_all_hw_break    = kgdb_remove_all_hw_break,
673         .correct_hw_break       = kgdb_correct_hw_break,
674 };
675 
676 int kgdb_arch_init(void)
677 {
678         return register_die_notifier(&kgdb_notifier);
679 }
680 
681 void kgdb_arch_late(void)
682 {
683         int i, cpu;
684         struct perf_event_attr attr;
685         struct perf_event **pevent;
686 
687         hw_breakpoint_init(&attr);
688 
689         attr.bp_addr = (unsigned long)kgdb_arch_init;
690         attr.bp_len = HW_BREAKPOINT_LEN_4;
691         attr.bp_type = HW_BREAKPOINT_W;
692         attr.disabled = 1;
693 
694         for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
695                 if (breakinfo[i].pev)
696                         continue;
697 
698                 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
699                 if (IS_ERR((void * __force)breakinfo[i].pev)) {
700                         pr_err("kgdb: Could not allocate hw breakpoints.\n");
701                         breakinfo[i].pev = NULL;
702                         return;
703                 }
704 
705                 for_each_online_cpu(cpu) {
706                         pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
707                         if (pevent[0]->destroy) {
708                                 pevent[0]->destroy = NULL;
709                                 release_bp_slot(*pevent);
710                         }
711                 }
712         }
713 }
714 
715 void kgdb_arch_exit(void)
716 {
717         int i;
718 
719         for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
720                 if (breakinfo[i].pev) {
721                         unregister_wide_hw_breakpoint(breakinfo[i].pev);
722                         breakinfo[i].pev = NULL;
723                 }
724         }
725 
726         unregister_die_notifier(&kgdb_notifier);
727 }
728 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php