1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 2000, 2001 Kanoj Sarcar 7 * Copyright (C) 2000, 2001 Ralf Baechle 8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 10 */ 11 #include <linux/acpi.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq_work.h> 17 #include <linux/profile.h> 18 #include <linux/seq_file.h> 19 #include <linux/smp.h> 20 #include <linux/threads.h> 21 #include <linux/export.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/time.h> 24 #include <linux/tracepoint.h> 25 #include <linux/sched/hotplug.h> 26 #include <linux/sched/task_stack.h> 27 28 #include <asm/cpu.h> 29 #include <asm/idle.h> 30 #include <asm/loongson.h> 31 #include <asm/mmu_context.h> 32 #include <asm/numa.h> 33 #include <asm/paravirt.h> 34 #include <asm/processor.h> 35 #include <asm/setup.h> 36 #include <asm/time.h> 37 38 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 39 EXPORT_SYMBOL(__cpu_number_map); 40 41 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 42 EXPORT_SYMBOL(__cpu_logical_map); 43 44 /* Representing the threads (siblings) of each logical CPU */ 45 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 46 EXPORT_SYMBOL(cpu_sibling_map); 47 48 /* Representing the core map of multi-core chips of each logical CPU */ 49 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 50 EXPORT_SYMBOL(cpu_core_map); 51 52 static DECLARE_COMPLETION(cpu_starting); 53 static DECLARE_COMPLETION(cpu_running); 54 55 /* 56 * A logcal cpu mask containing only one VPE per core to 57 * reduce the number of IPIs on large MT systems. 58 */ 59 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 60 EXPORT_SYMBOL(cpu_foreign_map); 61 62 /* representing cpus for which sibling maps can be computed */ 63 static cpumask_t cpu_sibling_setup_map; 64 65 /* representing cpus for which core maps can be computed */ 66 static cpumask_t cpu_core_setup_map; 67 68 struct secondary_data cpuboot_data; 69 static DEFINE_PER_CPU(int, cpu_state); 70 71 static const char *ipi_types[NR_IPI] __tracepoint_string = { 72 [IPI_RESCHEDULE] = "Rescheduling interrupts", 73 [IPI_CALL_FUNCTION] = "Function call interrupts", 74 [IPI_IRQ_WORK] = "IRQ work interrupts", 75 }; 76 77 void show_ipi_list(struct seq_file *p, int prec) 78 { 79 unsigned int cpu, i; 80 81 for (i = 0; i < NR_IPI; i++) { 82 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : ""); 83 for_each_online_cpu(cpu) 84 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]); 85 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]); 86 } 87 } 88 89 static inline void set_cpu_core_map(int cpu) 90 { 91 int i; 92 93 cpumask_set_cpu(cpu, &cpu_core_setup_map); 94 95 for_each_cpu(i, &cpu_core_setup_map) { 96 if (cpu_data[cpu].package == cpu_data[i].package) { 97 cpumask_set_cpu(i, &cpu_core_map[cpu]); 98 cpumask_set_cpu(cpu, &cpu_core_map[i]); 99 } 100 } 101 } 102 103 static inline void set_cpu_sibling_map(int cpu) 104 { 105 int i; 106 107 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 108 109 for_each_cpu(i, &cpu_sibling_setup_map) { 110 if (cpus_are_siblings(cpu, i)) { 111 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 112 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 113 } 114 } 115 } 116 117 static inline void clear_cpu_sibling_map(int cpu) 118 { 119 int i; 120 121 for_each_cpu(i, &cpu_sibling_setup_map) { 122 if (cpus_are_siblings(cpu, i)) { 123 cpumask_clear_cpu(i, &cpu_sibling_map[cpu]); 124 cpumask_clear_cpu(cpu, &cpu_sibling_map[i]); 125 } 126 } 127 128 cpumask_clear_cpu(cpu, &cpu_sibling_setup_map); 129 } 130 131 /* 132 * Calculate a new cpu_foreign_map mask whenever a 133 * new cpu appears or disappears. 134 */ 135 void calculate_cpu_foreign_map(void) 136 { 137 int i, k, core_present; 138 cpumask_t temp_foreign_map; 139 140 /* Re-calculate the mask */ 141 cpumask_clear(&temp_foreign_map); 142 for_each_online_cpu(i) { 143 core_present = 0; 144 for_each_cpu(k, &temp_foreign_map) 145 if (cpus_are_siblings(i, k)) 146 core_present = 1; 147 if (!core_present) 148 cpumask_set_cpu(i, &temp_foreign_map); 149 } 150 151 for_each_online_cpu(i) 152 cpumask_andnot(&cpu_foreign_map[i], 153 &temp_foreign_map, &cpu_sibling_map[i]); 154 } 155 156 /* Send mailbox buffer via Mail_Send */ 157 static void csr_mail_send(uint64_t data, int cpu, int mailbox) 158 { 159 uint64_t val; 160 161 /* Send high 32 bits */ 162 val = IOCSR_MBUF_SEND_BLOCKING; 163 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 164 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 165 val |= (data & IOCSR_MBUF_SEND_H32_MASK); 166 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 167 168 /* Send low 32 bits */ 169 val = IOCSR_MBUF_SEND_BLOCKING; 170 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT); 171 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT); 172 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT); 173 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND); 174 }; 175 176 static u32 ipi_read_clear(int cpu) 177 { 178 u32 action; 179 180 /* Load the ipi register to figure out what we're supposed to do */ 181 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS); 182 /* Clear the ipi register to clear the interrupt */ 183 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR); 184 wbflush(); 185 186 return action; 187 } 188 189 static void ipi_write_action(int cpu, u32 action) 190 { 191 uint32_t val; 192 193 val = IOCSR_IPI_SEND_BLOCKING | action; 194 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT); 195 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND); 196 } 197 198 static void loongson_send_ipi_single(int cpu, unsigned int action) 199 { 200 ipi_write_action(cpu_logical_map(cpu), (u32)action); 201 } 202 203 static void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action) 204 { 205 unsigned int i; 206 207 for_each_cpu(i, mask) 208 ipi_write_action(cpu_logical_map(i), (u32)action); 209 } 210 211 /* 212 * This function sends a 'reschedule' IPI to another CPU. 213 * it goes straight through and wastes no time serializing 214 * anything. Worst case is that we lose a reschedule ... 215 */ 216 void arch_smp_send_reschedule(int cpu) 217 { 218 mp_ops.send_ipi_single(cpu, ACTION_RESCHEDULE); 219 } 220 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 221 222 #ifdef CONFIG_IRQ_WORK 223 void arch_irq_work_raise(void) 224 { 225 mp_ops.send_ipi_single(smp_processor_id(), ACTION_IRQ_WORK); 226 } 227 #endif 228 229 static irqreturn_t loongson_ipi_interrupt(int irq, void *dev) 230 { 231 unsigned int action; 232 unsigned int cpu = smp_processor_id(); 233 234 action = ipi_read_clear(cpu_logical_map(cpu)); 235 236 if (action & SMP_RESCHEDULE) { 237 scheduler_ipi(); 238 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++; 239 } 240 241 if (action & SMP_CALL_FUNCTION) { 242 generic_smp_call_function_interrupt(); 243 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++; 244 } 245 246 if (action & SMP_IRQ_WORK) { 247 irq_work_run(); 248 per_cpu(irq_stat, cpu).ipi_irqs[IPI_IRQ_WORK]++; 249 } 250 251 return IRQ_HANDLED; 252 } 253 254 static void loongson_init_ipi(void) 255 { 256 int r, ipi_irq; 257 258 ipi_irq = get_percpu_irq(INT_IPI); 259 if (ipi_irq < 0) 260 panic("IPI IRQ mapping failed\n"); 261 262 irq_set_percpu_devid(ipi_irq); 263 r = request_percpu_irq(ipi_irq, loongson_ipi_interrupt, "IPI", &irq_stat); 264 if (r < 0) 265 panic("IPI IRQ request failed\n"); 266 } 267 268 struct smp_ops mp_ops = { 269 .init_ipi = loongson_init_ipi, 270 .send_ipi_single = loongson_send_ipi_single, 271 .send_ipi_mask = loongson_send_ipi_mask, 272 }; 273 274 static void __init fdt_smp_setup(void) 275 { 276 #ifdef CONFIG_OF 277 unsigned int cpu, cpuid; 278 struct device_node *node = NULL; 279 280 for_each_of_cpu_node(node) { 281 if (!of_device_is_available(node)) 282 continue; 283 284 cpuid = of_get_cpu_hwid(node, 0); 285 if (cpuid >= nr_cpu_ids) 286 continue; 287 288 if (cpuid == loongson_sysconf.boot_cpu_id) 289 cpu = 0; 290 else 291 cpu = find_first_zero_bit(cpumask_bits(cpu_present_mask), NR_CPUS); 292 293 num_processors++; 294 set_cpu_possible(cpu, true); 295 set_cpu_present(cpu, true); 296 __cpu_number_map[cpuid] = cpu; 297 __cpu_logical_map[cpu] = cpuid; 298 299 early_numa_add_cpu(cpu, 0); 300 set_cpuid_to_node(cpuid, 0); 301 } 302 303 loongson_sysconf.nr_cpus = num_processors; 304 set_bit(0, loongson_sysconf.cores_io_master); 305 #endif 306 } 307 308 void __init loongson_smp_setup(void) 309 { 310 fdt_smp_setup(); 311 312 if (loongson_sysconf.cores_per_package == 0) 313 loongson_sysconf.cores_per_package = num_processors; 314 315 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package; 316 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; 317 318 pv_ipi_init(); 319 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 320 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus); 321 } 322 323 void __init loongson_prepare_cpus(unsigned int max_cpus) 324 { 325 int i = 0; 326 327 parse_acpi_topology(); 328 329 for (i = 0; i < loongson_sysconf.nr_cpus; i++) { 330 set_cpu_present(i, true); 331 csr_mail_send(0, __cpu_logical_map[i], 0); 332 cpu_data[i].global_id = __cpu_logical_map[i]; 333 } 334 335 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 336 } 337 338 /* 339 * Setup the PC, SP, and TP of a secondary processor and start it running! 340 */ 341 void loongson_boot_secondary(int cpu, struct task_struct *idle) 342 { 343 unsigned long entry; 344 345 pr_info("Booting CPU#%d...\n", cpu); 346 347 entry = __pa_symbol((unsigned long)&smpboot_entry); 348 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle); 349 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle); 350 351 csr_mail_send(entry, cpu_logical_map(cpu), 0); 352 353 loongson_send_ipi_single(cpu, ACTION_BOOT_CPU); 354 } 355 356 /* 357 * SMP init and finish on secondary CPUs 358 */ 359 void loongson_init_secondary(void) 360 { 361 unsigned int cpu = smp_processor_id(); 362 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 | 363 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER | ECFGF_SIP0; 364 365 change_csr_ecfg(ECFG0_IM, imask); 366 367 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 368 369 #ifdef CONFIG_NUMA 370 numa_add_cpu(cpu); 371 #endif 372 per_cpu(cpu_state, cpu) = CPU_ONLINE; 373 cpu_data[cpu].package = 374 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; 375 cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core : 376 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package; 377 } 378 379 void loongson_smp_finish(void) 380 { 381 local_irq_enable(); 382 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0); 383 pr_info("CPU#%d finished\n", smp_processor_id()); 384 } 385 386 #ifdef CONFIG_HOTPLUG_CPU 387 388 int loongson_cpu_disable(void) 389 { 390 unsigned long flags; 391 unsigned int cpu = smp_processor_id(); 392 393 if (io_master(cpu)) 394 return -EBUSY; 395 396 #ifdef CONFIG_NUMA 397 numa_remove_cpu(cpu); 398 #endif 399 set_cpu_online(cpu, false); 400 clear_cpu_sibling_map(cpu); 401 calculate_cpu_foreign_map(); 402 local_irq_save(flags); 403 irq_migrate_all_off_this_cpu(); 404 clear_csr_ecfg(ECFG0_IM); 405 local_irq_restore(flags); 406 local_flush_tlb_all(); 407 408 return 0; 409 } 410 411 void loongson_cpu_die(unsigned int cpu) 412 { 413 while (per_cpu(cpu_state, cpu) != CPU_DEAD) 414 cpu_relax(); 415 416 mb(); 417 } 418 419 void __noreturn arch_cpu_idle_dead(void) 420 { 421 register uint64_t addr; 422 register void (*init_fn)(void); 423 424 idle_task_exit(); 425 local_irq_enable(); 426 set_csr_ecfg(ECFGF_IPI); 427 __this_cpu_write(cpu_state, CPU_DEAD); 428 429 __smp_mb(); 430 do { 431 __asm__ __volatile__("idle 0\n\t"); 432 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0); 433 } while (addr == 0); 434 435 local_irq_disable(); 436 init_fn = (void *)TO_CACHE(addr); 437 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR); 438 439 init_fn(); 440 BUG(); 441 } 442 443 #endif 444 445 /* 446 * Power management 447 */ 448 #ifdef CONFIG_PM 449 450 static int loongson_ipi_suspend(void) 451 { 452 return 0; 453 } 454 455 static void loongson_ipi_resume(void) 456 { 457 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN); 458 } 459 460 static struct syscore_ops loongson_ipi_syscore_ops = { 461 .resume = loongson_ipi_resume, 462 .suspend = loongson_ipi_suspend, 463 }; 464 465 /* 466 * Enable boot cpu ipi before enabling nonboot cpus 467 * during syscore_resume. 468 */ 469 static int __init ipi_pm_init(void) 470 { 471 register_syscore_ops(&loongson_ipi_syscore_ops); 472 return 0; 473 } 474 475 core_initcall(ipi_pm_init); 476 #endif 477 478 /* Preload SMP state for boot cpu */ 479 void smp_prepare_boot_cpu(void) 480 { 481 unsigned int cpu, node, rr_node; 482 483 set_cpu_possible(0, true); 484 set_cpu_online(0, true); 485 set_my_cpu_offset(per_cpu_offset(0)); 486 numa_add_cpu(0); 487 488 rr_node = first_node(node_online_map); 489 for_each_possible_cpu(cpu) { 490 node = early_cpu_to_node(cpu); 491 492 /* 493 * The mapping between present cpus and nodes has been 494 * built during MADT and SRAT parsing. 495 * 496 * If possible cpus = present cpus here, early_cpu_to_node 497 * will return valid node. 498 * 499 * If possible cpus > present cpus here (e.g. some possible 500 * cpus will be added by cpu-hotplug later), for possible but 501 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE, 502 * and we just map them to online nodes in round-robin way. 503 * Once hotplugged, new correct mapping will be built for them. 504 */ 505 if (node != NUMA_NO_NODE) 506 set_cpu_numa_node(cpu, node); 507 else { 508 set_cpu_numa_node(cpu, rr_node); 509 rr_node = next_node_in(rr_node, node_online_map); 510 } 511 } 512 } 513 514 /* called from main before smp_init() */ 515 void __init smp_prepare_cpus(unsigned int max_cpus) 516 { 517 init_new_context(current, &init_mm); 518 current_thread_info()->cpu = 0; 519 loongson_prepare_cpus(max_cpus); 520 set_cpu_sibling_map(0); 521 set_cpu_core_map(0); 522 calculate_cpu_foreign_map(); 523 #ifndef CONFIG_HOTPLUG_CPU 524 init_cpu_present(cpu_possible_mask); 525 #endif 526 } 527 528 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 529 { 530 loongson_boot_secondary(cpu, tidle); 531 532 /* Wait for CPU to start and be ready to sync counters */ 533 if (!wait_for_completion_timeout(&cpu_starting, 534 msecs_to_jiffies(5000))) { 535 pr_crit("CPU%u: failed to start\n", cpu); 536 return -EIO; 537 } 538 539 /* Wait for CPU to finish startup & mark itself online before return */ 540 wait_for_completion(&cpu_running); 541 542 return 0; 543 } 544 545 /* 546 * First C code run on the secondary CPUs after being started up by 547 * the master. 548 */ 549 asmlinkage void start_secondary(void) 550 { 551 unsigned int cpu; 552 553 sync_counter(); 554 cpu = raw_smp_processor_id(); 555 set_my_cpu_offset(per_cpu_offset(cpu)); 556 557 cpu_probe(); 558 constant_clockevent_init(); 559 loongson_init_secondary(); 560 561 set_cpu_sibling_map(cpu); 562 set_cpu_core_map(cpu); 563 564 notify_cpu_starting(cpu); 565 566 /* Notify boot CPU that we're starting */ 567 complete(&cpu_starting); 568 569 /* The CPU is running, now mark it online */ 570 set_cpu_online(cpu, true); 571 572 calculate_cpu_foreign_map(); 573 574 /* 575 * Notify boot CPU that we're up & online and it can safely return 576 * from __cpu_up() 577 */ 578 complete(&cpu_running); 579 580 /* 581 * irq will be enabled in loongson_smp_finish(), enabling it too 582 * early is dangerous. 583 */ 584 WARN_ON_ONCE(!irqs_disabled()); 585 loongson_smp_finish(); 586 587 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 588 } 589 590 void __init smp_cpus_done(unsigned int max_cpus) 591 { 592 } 593 594 static void stop_this_cpu(void *dummy) 595 { 596 set_cpu_online(smp_processor_id(), false); 597 calculate_cpu_foreign_map(); 598 local_irq_disable(); 599 while (true); 600 } 601 602 void smp_send_stop(void) 603 { 604 smp_call_function(stop_this_cpu, NULL, 0); 605 } 606 607 #ifdef CONFIG_PROFILING 608 int setup_profiling_timer(unsigned int multiplier) 609 { 610 return 0; 611 } 612 #endif 613 614 static void flush_tlb_all_ipi(void *info) 615 { 616 local_flush_tlb_all(); 617 } 618 619 void flush_tlb_all(void) 620 { 621 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 622 } 623 624 static void flush_tlb_mm_ipi(void *mm) 625 { 626 local_flush_tlb_mm((struct mm_struct *)mm); 627 } 628 629 void flush_tlb_mm(struct mm_struct *mm) 630 { 631 if (atomic_read(&mm->mm_users) == 0) 632 return; /* happens as a result of exit_mmap() */ 633 634 preempt_disable(); 635 636 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 637 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1); 638 } else { 639 unsigned int cpu; 640 641 for_each_online_cpu(cpu) { 642 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 643 cpu_context(cpu, mm) = 0; 644 } 645 local_flush_tlb_mm(mm); 646 } 647 648 preempt_enable(); 649 } 650 651 struct flush_tlb_data { 652 struct vm_area_struct *vma; 653 unsigned long addr1; 654 unsigned long addr2; 655 }; 656 657 static void flush_tlb_range_ipi(void *info) 658 { 659 struct flush_tlb_data *fd = info; 660 661 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 662 } 663 664 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 665 { 666 struct mm_struct *mm = vma->vm_mm; 667 668 preempt_disable(); 669 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 670 struct flush_tlb_data fd = { 671 .vma = vma, 672 .addr1 = start, 673 .addr2 = end, 674 }; 675 676 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1); 677 } else { 678 unsigned int cpu; 679 680 for_each_online_cpu(cpu) { 681 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 682 cpu_context(cpu, mm) = 0; 683 } 684 local_flush_tlb_range(vma, start, end); 685 } 686 preempt_enable(); 687 } 688 689 static void flush_tlb_kernel_range_ipi(void *info) 690 { 691 struct flush_tlb_data *fd = info; 692 693 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 694 } 695 696 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 697 { 698 struct flush_tlb_data fd = { 699 .addr1 = start, 700 .addr2 = end, 701 }; 702 703 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 704 } 705 706 static void flush_tlb_page_ipi(void *info) 707 { 708 struct flush_tlb_data *fd = info; 709 710 local_flush_tlb_page(fd->vma, fd->addr1); 711 } 712 713 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 714 { 715 preempt_disable(); 716 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 717 struct flush_tlb_data fd = { 718 .vma = vma, 719 .addr1 = page, 720 }; 721 722 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1); 723 } else { 724 unsigned int cpu; 725 726 for_each_online_cpu(cpu) { 727 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 728 cpu_context(cpu, vma->vm_mm) = 0; 729 } 730 local_flush_tlb_page(vma, page); 731 } 732 preempt_enable(); 733 } 734 EXPORT_SYMBOL(flush_tlb_page); 735 736 static void flush_tlb_one_ipi(void *info) 737 { 738 unsigned long vaddr = (unsigned long) info; 739 740 local_flush_tlb_one(vaddr); 741 } 742 743 void flush_tlb_one(unsigned long vaddr) 744 { 745 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1); 746 } 747 EXPORT_SYMBOL(flush_tlb_one); 748
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.