1 | 2 | setox.sa 3.1 12/10/90 3 | 4 | The entry point setox computes the exponential of a value. 5 | setoxd does the same except the input value is a denormalized 6 | number. setoxm1 computes exp(X)-1, and setoxm1d computes 7 | exp(X)-1 for denormalized X. 8 | 9 | INPUT 10 | ----- 11 | Double-extended value in memory location pointed to by address 12 | register a0. 13 | 14 | OUTPUT 15 | ------ 16 | exp(X) or exp(X)-1 returned in floating-point register fp0. 17 | 18 | ACCURACY and MONOTONICITY 19 | ------------------------- 20 | The returned result is within 0.85 ulps in 64 significant bit, i.e. 21 | within 0.5001 ulp to 53 bits if the result is subsequently rounded 22 | to double precision. The result is provably monotonic in double 23 | precision. 24 | 25 | SPEED 26 | ----- 27 | Two timings are measured, both in the copy-back mode. The 28 | first one is measured when the function is invoked the first time 29 | (so the instructions and data are not in cache), and the 30 | second one is measured when the function is reinvoked at the same 31 | input argument. 32 | 33 | The program setox takes approximately 210/190 cycles for input 34 | argument X whose magnitude is less than 16380 log2, which 35 | is the usual situation. For the less common arguments, 36 | depending on their values, the program may run faster or slower -- 37 | but no worse than 10% slower even in the extreme cases. 38 | 39 | The program setoxm1 takes approximately ??? / ??? cycles for input 40 | argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes 41 | approximately ??? / ??? cycles. For the less common arguments, 42 | depending on their values, the program may run faster or slower -- 43 | but no worse than 10% slower even in the extreme cases. 44 | 45 | ALGORITHM and IMPLEMENTATION NOTES 46 | ---------------------------------- 47 | 48 | setoxd 49 | ------ 50 | Step 1. Set ans := 1.0 51 | 52 | Step 2. Return ans := ans + sign(X)*2^(-126). Exit. 53 | Notes: This will always generate one exception -- inexact. 54 | 55 | 56 | setox 57 | ----- 58 | 59 | Step 1. Filter out extreme cases of input argument. 60 | 1.1 If |X| >= 2^(-65), go to Step 1.3. 61 | 1.2 Go to Step 7. 62 | 1.3 If |X| < 16380 log(2), go to Step 2. 63 | 1.4 Go to Step 8. 64 | Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. 65 | To avoid the use of floating-point comparisons, a 66 | compact representation of |X| is used. This format is a 67 | 32-bit integer, the upper (more significant) 16 bits are 68 | the sign and biased exponent field of |X|; the lower 16 69 | bits are the 16 most significant fraction (including the 70 | explicit bit) bits of |X|. Consequently, the comparisons 71 | in Steps 1.1 and 1.3 can be performed by integer comparison. 72 | Note also that the constant 16380 log(2) used in Step 1.3 73 | is also in the compact form. Thus taking the branch 74 | to Step 2 guarantees |X| < 16380 log(2). There is no harm 75 | to have a small number of cases where |X| is less than, 76 | but close to, 16380 log(2) and the branch to Step 9 is 77 | taken. 78 | 79 | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). 80 | 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken) 81 | 2.2 N := round-to-nearest-integer( X * 64/log2 ). 82 | 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63. 83 | 2.4 Calculate M = (N - J)/64; so N = 64M + J. 84 | 2.5 Calculate the address of the stored value of 2^(J/64). 85 | 2.6 Create the value Scale = 2^M. 86 | Notes: The calculation in 2.2 is really performed by 87 | 88 | Z := X * constant 89 | N := round-to-nearest-integer(Z) 90 | 91 | where 92 | 93 | constant := single-precision( 64/log 2 ). 94 | 95 | Using a single-precision constant avoids memory access. 96 | Another effect of using a single-precision "constant" is 97 | that the calculated value Z is 98 | 99 | Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). 100 | 101 | This error has to be considered later in Steps 3 and 4. 102 | 103 | Step 3. Calculate X - N*log2/64. 104 | 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). 105 | 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). 106 | Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate 107 | the value -log2/64 to 88 bits of accuracy. 108 | b) N*L1 is exact because N is no longer than 22 bits and 109 | L1 is no longer than 24 bits. 110 | c) The calculation X+N*L1 is also exact due to cancellation. 111 | Thus, R is practically X+N(L1+L2) to full 64 bits. 112 | d) It is important to estimate how large can |R| be after 113 | Step 3.2. 114 | 115 | N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) 116 | X*64/log2 (1+eps) = N + f, |f| <= 0.5 117 | X*64/log2 - N = f - eps*X 64/log2 118 | X - N*log2/64 = f*log2/64 - eps*X 119 | 120 | 121 | Now |X| <= 16446 log2, thus 122 | 123 | |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 124 | <= 0.57 log2/64. 125 | This bound will be used in Step 4. 126 | 127 | Step 4. Approximate exp(R)-1 by a polynomial 128 | p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) 129 | Notes: a) In order to reduce memory access, the coefficients are 130 | made as "short" as possible: A1 (which is 1/2), A4 and A5 131 | are single precision; A2 and A3 are double precision. 132 | b) Even with the restrictions above, 133 | |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. 134 | Note that 0.0062 is slightly bigger than 0.57 log2/64. 135 | c) To fully utilize the pipeline, p is separated into 136 | two independent pieces of roughly equal complexities 137 | p = [ R + R*S*(A2 + S*A4) ] + 138 | [ S*(A1 + S*(A3 + S*A5)) ] 139 | where S = R*R. 140 | 141 | Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by 142 | ans := T + ( T*p + t) 143 | where T and t are the stored values for 2^(J/64). 144 | Notes: 2^(J/64) is stored as T and t where T+t approximates 145 | 2^(J/64) to roughly 85 bits; T is in extended precision 146 | and t is in single precision. Note also that T is rounded 147 | to 62 bits so that the last two bits of T are zero. The 148 | reason for such a special form is that T-1, T-2, and T-8 149 | will all be exact --- a property that will give much 150 | more accurate computation of the function EXPM1. 151 | 152 | Step 6. Reconstruction of exp(X) 153 | exp(X) = 2^M * 2^(J/64) * exp(R). 154 | 6.1 If AdjFlag = 0, go to 6.3 155 | 6.2 ans := ans * AdjScale 156 | 6.3 Restore the user FPCR 157 | 6.4 Return ans := ans * Scale. Exit. 158 | Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, 159 | |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will 160 | neither overflow nor underflow. If AdjFlag = 1, that 161 | means that 162 | X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. 163 | Hence, exp(X) may overflow or underflow or neither. 164 | When that is the case, AdjScale = 2^(M1) where M1 is 165 | approximately M. Thus 6.2 will never cause over/underflow. 166 | Possible exception in 6.4 is overflow or underflow. 167 | The inexact exception is not generated in 6.4. Although 168 | one can argue that the inexact flag should always be 169 | raised, to simulate that exception cost to much than the 170 | flag is worth in practical uses. 171 | 172 | Step 7. Return 1 + X. 173 | 7.1 ans := X 174 | 7.2 Restore user FPCR. 175 | 7.3 Return ans := 1 + ans. Exit 176 | Notes: For non-zero X, the inexact exception will always be 177 | raised by 7.3. That is the only exception raised by 7.3. 178 | Note also that we use the FMOVEM instruction to move X 179 | in Step 7.1 to avoid unnecessary trapping. (Although 180 | the FMOVEM may not seem relevant since X is normalized, 181 | the precaution will be useful in the library version of 182 | this code where the separate entry for denormalized inputs 183 | will be done away with.) 184 | 185 | Step 8. Handle exp(X) where |X| >= 16380log2. 186 | 8.1 If |X| > 16480 log2, go to Step 9. 187 | (mimic 2.2 - 2.6) 188 | 8.2 N := round-to-integer( X * 64/log2 ) 189 | 8.3 Calculate J = N mod 64, J = 0,1,...,63 190 | 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1. 191 | 8.5 Calculate the address of the stored value 2^(J/64). 192 | 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. 193 | 8.7 Go to Step 3. 194 | Notes: Refer to notes for 2.2 - 2.6. 195 | 196 | Step 9. Handle exp(X), |X| > 16480 log2. 197 | 9.1 If X < 0, go to 9.3 198 | 9.2 ans := Huge, go to 9.4 199 | 9.3 ans := Tiny. 200 | 9.4 Restore user FPCR. 201 | 9.5 Return ans := ans * ans. Exit. 202 | Notes: Exp(X) will surely overflow or underflow, depending on 203 | X's sign. "Huge" and "Tiny" are respectively large/tiny 204 | extended-precision numbers whose square over/underflow 205 | with an inexact result. Thus, 9.5 always raises the 206 | inexact together with either overflow or underflow. 207 | 208 | 209 | setoxm1d 210 | -------- 211 | 212 | Step 1. Set ans := 0 213 | 214 | Step 2. Return ans := X + ans. Exit. 215 | Notes: This will return X with the appropriate rounding 216 | precision prescribed by the user FPCR. 217 | 218 | setoxm1 219 | ------- 220 | 221 | Step 1. Check |X| 222 | 1.1 If |X| >= 1/4, go to Step 1.3. 223 | 1.2 Go to Step 7. 224 | 1.3 If |X| < 70 log(2), go to Step 2. 225 | 1.4 Go to Step 10. 226 | Notes: The usual case should take the branches 1.1 -> 1.3 -> 2. 227 | However, it is conceivable |X| can be small very often 228 | because EXPM1 is intended to evaluate exp(X)-1 accurately 229 | when |X| is small. For further details on the comparisons, 230 | see the notes on Step 1 of setox. 231 | 232 | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). 233 | 2.1 N := round-to-nearest-integer( X * 64/log2 ). 234 | 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63. 235 | 2.3 Calculate M = (N - J)/64; so N = 64M + J. 236 | 2.4 Calculate the address of the stored value of 2^(J/64). 237 | 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M). 238 | Notes: See the notes on Step 2 of setox. 239 | 240 | Step 3. Calculate X - N*log2/64. 241 | 3.1 R := X + N*L1, where L1 := single-precision(-log2/64). 242 | 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1). 243 | Notes: Applying the analysis of Step 3 of setox in this case 244 | shows that |R| <= 0.0055 (note that |X| <= 70 log2 in 245 | this case). 246 | 247 | Step 4. Approximate exp(R)-1 by a polynomial 248 | p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) 249 | Notes: a) In order to reduce memory access, the coefficients are 250 | made as "short" as possible: A1 (which is 1/2), A5 and A6 251 | are single precision; A2, A3 and A4 are double precision. 252 | b) Even with the restriction above, 253 | |p - (exp(R)-1)| < |R| * 2^(-72.7) 254 | for all |R| <= 0.0055. 255 | c) To fully utilize the pipeline, p is separated into 256 | two independent pieces of roughly equal complexity 257 | p = [ R*S*(A2 + S*(A4 + S*A6)) ] + 258 | [ R + S*(A1 + S*(A3 + S*A5)) ] 259 | where S = R*R. 260 | 261 | Step 5. Compute 2^(J/64)*p by 262 | p := T*p 263 | where T and t are the stored values for 2^(J/64). 264 | Notes: 2^(J/64) is stored as T and t where T+t approximates 265 | 2^(J/64) to roughly 85 bits; T is in extended precision 266 | and t is in single precision. Note also that T is rounded 267 | to 62 bits so that the last two bits of T are zero. The 268 | reason for such a special form is that T-1, T-2, and T-8 269 | will all be exact --- a property that will be exploited 270 | in Step 6 below. The total relative error in p is no 271 | bigger than 2^(-67.7) compared to the final result. 272 | 273 | Step 6. Reconstruction of exp(X)-1 274 | exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). 275 | 6.1 If M <= 63, go to Step 6.3. 276 | 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 277 | 6.3 If M >= -3, go to 6.5. 278 | 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 279 | 6.5 ans := (T + OnebySc) + (p + t). 280 | 6.6 Restore user FPCR. 281 | 6.7 Return ans := Sc * ans. Exit. 282 | Notes: The various arrangements of the expressions give accurate 283 | evaluations. 284 | 285 | Step 7. exp(X)-1 for |X| < 1/4. 286 | 7.1 If |X| >= 2^(-65), go to Step 9. 287 | 7.2 Go to Step 8. 288 | 289 | Step 8. Calculate exp(X)-1, |X| < 2^(-65). 290 | 8.1 If |X| < 2^(-16312), goto 8.3 291 | 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit. 292 | 8.3 X := X * 2^(140). 293 | 8.4 Restore FPCR; ans := ans - 2^(-16382). 294 | Return ans := ans*2^(140). Exit 295 | Notes: The idea is to return "X - tiny" under the user 296 | precision and rounding modes. To avoid unnecessary 297 | inefficiency, we stay away from denormalized numbers the 298 | best we can. For |X| >= 2^(-16312), the straightforward 299 | 8.2 generates the inexact exception as the case warrants. 300 | 301 | Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial 302 | p = X + X*X*(B1 + X*(B2 + ... + X*B12)) 303 | Notes: a) In order to reduce memory access, the coefficients are 304 | made as "short" as possible: B1 (which is 1/2), B9 to B12 305 | are single precision; B3 to B8 are double precision; and 306 | B2 is double extended. 307 | b) Even with the restriction above, 308 | |p - (exp(X)-1)| < |X| 2^(-70.6) 309 | for all |X| <= 0.251. 310 | Note that 0.251 is slightly bigger than 1/4. 311 | c) To fully preserve accuracy, the polynomial is computed 312 | as X + ( S*B1 + Q ) where S = X*X and 313 | Q = X*S*(B2 + X*(B3 + ... + X*B12)) 314 | d) To fully utilize the pipeline, Q is separated into 315 | two independent pieces of roughly equal complexity 316 | Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + 317 | [ S*S*(B3 + S*(B5 + ... + S*B11)) ] 318 | 319 | Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. 320 | 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical 321 | purposes. Therefore, go to Step 1 of setox. 322 | 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes. 323 | ans := -1 324 | Restore user FPCR 325 | Return ans := ans + 2^(-126). Exit. 326 | Notes: 10.2 will always create an inexact and return -1 + tiny 327 | in the user rounding precision and mode. 328 | 329 | 330 331 | Copyright (C) Motorola, Inc. 1990 332 | All Rights Reserved 333 | 334 | For details on the license for this file, please see the 335 | file, README, in this same directory. 336 337 |setox idnt 2,1 | Motorola 040 Floating Point Software Package 338 339 |section 8 340 341 #include "fpsp.h" 342 343 L2: .long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 344 345 EXPA3: .long 0x3FA55555,0x55554431 346 EXPA2: .long 0x3FC55555,0x55554018 347 348 HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 349 TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000 350 351 EM1A4: .long 0x3F811111,0x11174385 352 EM1A3: .long 0x3FA55555,0x55554F5A 353 354 EM1A2: .long 0x3FC55555,0x55555555,0x00000000,0x00000000 355 356 EM1B8: .long 0x3EC71DE3,0xA5774682 357 EM1B7: .long 0x3EFA01A0,0x19D7CB68 358 359 EM1B6: .long 0x3F2A01A0,0x1A019DF3 360 EM1B5: .long 0x3F56C16C,0x16C170E2 361 362 EM1B4: .long 0x3F811111,0x11111111 363 EM1B3: .long 0x3FA55555,0x55555555 364 365 EM1B2: .long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB 366 .long 0x00000000 367 368 TWO140: .long 0x48B00000,0x00000000 369 TWON140: .long 0x37300000,0x00000000 370 371 EXPTBL: 372 .long 0x3FFF0000,0x80000000,0x00000000,0x00000000 373 .long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B 374 .long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 375 .long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 376 .long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C 377 .long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F 378 .long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 379 .long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF 380 .long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF 381 .long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA 382 .long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 383 .long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 384 .long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 385 .long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 386 .long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D 387 .long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 388 .long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD 389 .long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 390 .long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 391 .long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D 392 .long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 393 .long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C 394 .long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 395 .long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 396 .long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 397 .long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA 398 .long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A 399 .long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC 400 .long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC 401 .long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 402 .long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 403 .long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A 404 .long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 405 .long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 406 .long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC 407 .long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 408 .long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 409 .long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 410 .long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 411 .long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B 412 .long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 413 .long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E 414 .long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 415 .long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D 416 .long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 417 .long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C 418 .long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 419 .long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 420 .long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F 421 .long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F 422 .long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 423 .long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 424 .long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B 425 .long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 426 .long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A 427 .long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 428 .long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 429 .long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B 430 .long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 431 .long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 432 .long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 433 .long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 434 .long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 435 .long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A 436 437 .set ADJFLAG,L_SCR2 438 .set SCALE,FP_SCR1 439 .set ADJSCALE,FP_SCR2 440 .set SC,FP_SCR3 441 .set ONEBYSC,FP_SCR4 442 443 | xref t_frcinx 444 |xref t_extdnrm 445 |xref t_unfl 446 |xref t_ovfl 447 448 .global setoxd 449 setoxd: 450 |--entry point for EXP(X), X is denormalized 451 movel (%a0),%d0 452 andil #0x80000000,%d0 453 oril #0x00800000,%d0 | ...sign(X)*2^(-126) 454 movel %d0,-(%sp) 455 fmoves #0x3F800000,%fp0 456 fmovel %d1,%fpcr 457 fadds (%sp)+,%fp0 458 bra t_frcinx 459 460 .global setox 461 setox: 462 |--entry point for EXP(X), here X is finite, non-zero, and not NaN's 463 464 |--Step 1. 465 movel (%a0),%d0 | ...load part of input X 466 andil #0x7FFF0000,%d0 | ...biased expo. of X 467 cmpil #0x3FBE0000,%d0 | ...2^(-65) 468 bges EXPC1 | ...normal case 469 bra EXPSM 470 471 EXPC1: 472 |--The case |X| >= 2^(-65) 473 movew 4(%a0),%d0 | ...expo. and partial sig. of |X| 474 cmpil #0x400CB167,%d0 | ...16380 log2 trunc. 16 bits 475 blts EXPMAIN | ...normal case 476 bra EXPBIG 477 478 EXPMAIN: 479 |--Step 2. 480 |--This is the normal branch: 2^(-65) <= |X| < 16380 log2. 481 fmovex (%a0),%fp0 | ...load input from (a0) 482 483 fmovex %fp0,%fp1 484 fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X 485 fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 486 movel #0,ADJFLAG(%a6) 487 fmovel %fp0,%d0 | ...N = int( X * 64/log2 ) 488 lea EXPTBL,%a1 489 fmovel %d0,%fp0 | ...convert to floating-format 490 491 movel %d0,L_SCR1(%a6) | ...save N temporarily 492 andil #0x3F,%d0 | ...D0 is J = N mod 64 493 lsll #4,%d0 494 addal %d0,%a1 | ...address of 2^(J/64) 495 movel L_SCR1(%a6),%d0 496 asrl #6,%d0 | ...D0 is M 497 addiw #0x3FFF,%d0 | ...biased expo. of 2^(M) 498 movew L2,L_SCR1(%a6) | ...prefetch L2, no need in CB 499 500 EXPCONT1: 501 |--Step 3. 502 |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, 503 |--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) 504 fmovex %fp0,%fp2 505 fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64) 506 fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64 507 faddx %fp1,%fp0 | ...X + N*L1 508 faddx %fp2,%fp0 | ...fp0 is R, reduced arg. 509 | MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache 510 511 |--Step 4. 512 |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL 513 |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) 514 |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R 515 |--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] 516 517 fmovex %fp0,%fp1 518 fmulx %fp1,%fp1 | ...fp1 IS S = R*R 519 520 fmoves #0x3AB60B70,%fp2 | ...fp2 IS A5 521 | MOVE.W #0,2(%a1) ...load 2^(J/64) in cache 522 523 fmulx %fp1,%fp2 | ...fp2 IS S*A5 524 fmovex %fp1,%fp3 525 fmuls #0x3C088895,%fp3 | ...fp3 IS S*A4 526 527 faddd EXPA3,%fp2 | ...fp2 IS A3+S*A5 528 faddd EXPA2,%fp3 | ...fp3 IS A2+S*A4 529 530 fmulx %fp1,%fp2 | ...fp2 IS S*(A3+S*A5) 531 movew %d0,SCALE(%a6) | ...SCALE is 2^(M) in extended 532 clrw SCALE+2(%a6) 533 movel #0x80000000,SCALE+4(%a6) 534 clrl SCALE+8(%a6) 535 536 fmulx %fp1,%fp3 | ...fp3 IS S*(A2+S*A4) 537 538 fadds #0x3F000000,%fp2 | ...fp2 IS A1+S*(A3+S*A5) 539 fmulx %fp0,%fp3 | ...fp3 IS R*S*(A2+S*A4) 540 541 fmulx %fp1,%fp2 | ...fp2 IS S*(A1+S*(A3+S*A5)) 542 faddx %fp3,%fp0 | ...fp0 IS R+R*S*(A2+S*A4), 543 | ...fp3 released 544 545 fmovex (%a1)+,%fp1 | ...fp1 is lead. pt. of 2^(J/64) 546 faddx %fp2,%fp0 | ...fp0 is EXP(R) - 1 547 | ...fp2 released 548 549 |--Step 5 550 |--final reconstruction process 551 |--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) 552 553 fmulx %fp1,%fp0 | ...2^(J/64)*(Exp(R)-1) 554 fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored 555 fadds (%a1),%fp0 | ...accurate 2^(J/64) 556 557 faddx %fp1,%fp0 | ...2^(J/64) + 2^(J/64)*... 558 movel ADJFLAG(%a6),%d0 559 560 |--Step 6 561 tstl %d0 562 beqs NORMAL 563 ADJUST: 564 fmulx ADJSCALE(%a6),%fp0 565 NORMAL: 566 fmovel %d1,%FPCR | ...restore user FPCR 567 fmulx SCALE(%a6),%fp0 | ...multiply 2^(M) 568 bra t_frcinx 569 570 EXPSM: 571 |--Step 7 572 fmovemx (%a0),%fp0-%fp0 | ...in case X is denormalized 573 fmovel %d1,%FPCR 574 fadds #0x3F800000,%fp0 | ...1+X in user mode 575 bra t_frcinx 576 577 EXPBIG: 578 |--Step 8 579 cmpil #0x400CB27C,%d0 | ...16480 log2 580 bgts EXP2BIG 581 |--Steps 8.2 -- 8.6 582 fmovex (%a0),%fp0 | ...load input from (a0) 583 584 fmovex %fp0,%fp1 585 fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X 586 fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 587 movel #1,ADJFLAG(%a6) 588 fmovel %fp0,%d0 | ...N = int( X * 64/log2 ) 589 lea EXPTBL,%a1 590 fmovel %d0,%fp0 | ...convert to floating-format 591 movel %d0,L_SCR1(%a6) | ...save N temporarily 592 andil #0x3F,%d0 | ...D0 is J = N mod 64 593 lsll #4,%d0 594 addal %d0,%a1 | ...address of 2^(J/64) 595 movel L_SCR1(%a6),%d0 596 asrl #6,%d0 | ...D0 is K 597 movel %d0,L_SCR1(%a6) | ...save K temporarily 598 asrl #1,%d0 | ...D0 is M1 599 subl %d0,L_SCR1(%a6) | ...a1 is M 600 addiw #0x3FFF,%d0 | ...biased expo. of 2^(M1) 601 movew %d0,ADJSCALE(%a6) | ...ADJSCALE := 2^(M1) 602 clrw ADJSCALE+2(%a6) 603 movel #0x80000000,ADJSCALE+4(%a6) 604 clrl ADJSCALE+8(%a6) 605 movel L_SCR1(%a6),%d0 | ...D0 is M 606 addiw #0x3FFF,%d0 | ...biased expo. of 2^(M) 607 bra EXPCONT1 | ...go back to Step 3 608 609 EXP2BIG: 610 |--Step 9 611 fmovel %d1,%FPCR 612 movel (%a0),%d0 613 bclrb #sign_bit,(%a0) | ...setox always returns positive 614 cmpil #0,%d0 615 blt t_unfl 616 bra t_ovfl 617 618 .global setoxm1d 619 setoxm1d: 620 |--entry point for EXPM1(X), here X is denormalized 621 |--Step 0. 622 bra t_extdnrm 623 624 625 .global setoxm1 626 setoxm1: 627 |--entry point for EXPM1(X), here X is finite, non-zero, non-NaN 628 629 |--Step 1. 630 |--Step 1.1 631 movel (%a0),%d0 | ...load part of input X 632 andil #0x7FFF0000,%d0 | ...biased expo. of X 633 cmpil #0x3FFD0000,%d0 | ...1/4 634 bges EM1CON1 | ...|X| >= 1/4 635 bra EM1SM 636 637 EM1CON1: 638 |--Step 1.3 639 |--The case |X| >= 1/4 640 movew 4(%a0),%d0 | ...expo. and partial sig. of |X| 641 cmpil #0x4004C215,%d0 | ...70log2 rounded up to 16 bits 642 bles EM1MAIN | ...1/4 <= |X| <= 70log2 643 bra EM1BIG 644 645 EM1MAIN: 646 |--Step 2. 647 |--This is the case: 1/4 <= |X| <= 70 log2. 648 fmovex (%a0),%fp0 | ...load input from (a0) 649 650 fmovex %fp0,%fp1 651 fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X 652 fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 653 | MOVE.W #$3F81,EM1A4 ...prefetch in CB mode 654 fmovel %fp0,%d0 | ...N = int( X * 64/log2 ) 655 lea EXPTBL,%a1 656 fmovel %d0,%fp0 | ...convert to floating-format 657 658 movel %d0,L_SCR1(%a6) | ...save N temporarily 659 andil #0x3F,%d0 | ...D0 is J = N mod 64 660 lsll #4,%d0 661 addal %d0,%a1 | ...address of 2^(J/64) 662 movel L_SCR1(%a6),%d0 663 asrl #6,%d0 | ...D0 is M 664 movel %d0,L_SCR1(%a6) | ...save a copy of M 665 | MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode 666 667 |--Step 3. 668 |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, 669 |--a0 points to 2^(J/64), D0 and a1 both contain M 670 fmovex %fp0,%fp2 671 fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64) 672 fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64 673 faddx %fp1,%fp0 | ...X + N*L1 674 faddx %fp2,%fp0 | ...fp0 is R, reduced arg. 675 | MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache 676 addiw #0x3FFF,%d0 | ...D0 is biased expo. of 2^M 677 678 |--Step 4. 679 |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL 680 |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) 681 |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R 682 |--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] 683 684 fmovex %fp0,%fp1 685 fmulx %fp1,%fp1 | ...fp1 IS S = R*R 686 687 fmoves #0x3950097B,%fp2 | ...fp2 IS a6 688 | MOVE.W #0,2(%a1) ...load 2^(J/64) in cache 689 690 fmulx %fp1,%fp2 | ...fp2 IS S*A6 691 fmovex %fp1,%fp3 692 fmuls #0x3AB60B6A,%fp3 | ...fp3 IS S*A5 693 694 faddd EM1A4,%fp2 | ...fp2 IS A4+S*A6 695 faddd EM1A3,%fp3 | ...fp3 IS A3+S*A5 696 movew %d0,SC(%a6) | ...SC is 2^(M) in extended 697 clrw SC+2(%a6) 698 movel #0x80000000,SC+4(%a6) 699 clrl SC+8(%a6) 700 701 fmulx %fp1,%fp2 | ...fp2 IS S*(A4+S*A6) 702 movel L_SCR1(%a6),%d0 | ...D0 is M 703 negw %d0 | ...D0 is -M 704 fmulx %fp1,%fp3 | ...fp3 IS S*(A3+S*A5) 705 addiw #0x3FFF,%d0 | ...biased expo. of 2^(-M) 706 faddd EM1A2,%fp2 | ...fp2 IS A2+S*(A4+S*A6) 707 fadds #0x3F000000,%fp3 | ...fp3 IS A1+S*(A3+S*A5) 708 709 fmulx %fp1,%fp2 | ...fp2 IS S*(A2+S*(A4+S*A6)) 710 oriw #0x8000,%d0 | ...signed/expo. of -2^(-M) 711 movew %d0,ONEBYSC(%a6) | ...OnebySc is -2^(-M) 712 clrw ONEBYSC+2(%a6) 713 movel #0x80000000,ONEBYSC+4(%a6) 714 clrl ONEBYSC+8(%a6) 715 fmulx %fp3,%fp1 | ...fp1 IS S*(A1+S*(A3+S*A5)) 716 | ...fp3 released 717 718 fmulx %fp0,%fp2 | ...fp2 IS R*S*(A2+S*(A4+S*A6)) 719 faddx %fp1,%fp0 | ...fp0 IS R+S*(A1+S*(A3+S*A5)) 720 | ...fp1 released 721 722 faddx %fp2,%fp0 | ...fp0 IS EXP(R)-1 723 | ...fp2 released 724 fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored 725 726 |--Step 5 727 |--Compute 2^(J/64)*p 728 729 fmulx (%a1),%fp0 | ...2^(J/64)*(Exp(R)-1) 730 731 |--Step 6 732 |--Step 6.1 733 movel L_SCR1(%a6),%d0 | ...retrieve M 734 cmpil #63,%d0 735 bles MLE63 736 |--Step 6.2 M >= 64 737 fmoves 12(%a1),%fp1 | ...fp1 is t 738 faddx ONEBYSC(%a6),%fp1 | ...fp1 is t+OnebySc 739 faddx %fp1,%fp0 | ...p+(t+OnebySc), fp1 released 740 faddx (%a1),%fp0 | ...T+(p+(t+OnebySc)) 741 bras EM1SCALE 742 MLE63: 743 |--Step 6.3 M <= 63 744 cmpil #-3,%d0 745 bges MGEN3 746 MLTN3: 747 |--Step 6.4 M <= -4 748 fadds 12(%a1),%fp0 | ...p+t 749 faddx (%a1),%fp0 | ...T+(p+t) 750 faddx ONEBYSC(%a6),%fp0 | ...OnebySc + (T+(p+t)) 751 bras EM1SCALE 752 MGEN3: 753 |--Step 6.5 -3 <= M <= 63 754 fmovex (%a1)+,%fp1 | ...fp1 is T 755 fadds (%a1),%fp0 | ...fp0 is p+t 756 faddx ONEBYSC(%a6),%fp1 | ...fp1 is T+OnebySc 757 faddx %fp1,%fp0 | ...(T+OnebySc)+(p+t) 758 759 EM1SCALE: 760 |--Step 6.6 761 fmovel %d1,%FPCR 762 fmulx SC(%a6),%fp0 763 764 bra t_frcinx 765 766 EM1SM: 767 |--Step 7 |X| < 1/4. 768 cmpil #0x3FBE0000,%d0 | ...2^(-65) 769 bges EM1POLY 770 771 EM1TINY: 772 |--Step 8 |X| < 2^(-65) 773 cmpil #0x00330000,%d0 | ...2^(-16312) 774 blts EM12TINY 775 |--Step 8.2 776 movel #0x80010000,SC(%a6) | ...SC is -2^(-16382) 777 movel #0x80000000,SC+4(%a6) 778 clrl SC+8(%a6) 779 fmovex (%a0),%fp0 780 fmovel %d1,%FPCR 781 faddx SC(%a6),%fp0 782 783 bra t_frcinx 784 785 EM12TINY: 786 |--Step 8.3 787 fmovex (%a0),%fp0 788 fmuld TWO140,%fp0 789 movel #0x80010000,SC(%a6) 790 movel #0x80000000,SC+4(%a6) 791 clrl SC+8(%a6) 792 faddx SC(%a6),%fp0 793 fmovel %d1,%FPCR 794 fmuld TWON140,%fp0 795 796 bra t_frcinx 797 798 EM1POLY: 799 |--Step 9 exp(X)-1 by a simple polynomial 800 fmovex (%a0),%fp0 | ...fp0 is X 801 fmulx %fp0,%fp0 | ...fp0 is S := X*X 802 fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2 803 fmoves #0x2F30CAA8,%fp1 | ...fp1 is B12 804 fmulx %fp0,%fp1 | ...fp1 is S*B12 805 fmoves #0x310F8290,%fp2 | ...fp2 is B11 806 fadds #0x32D73220,%fp1 | ...fp1 is B10+S*B12 807 808 fmulx %fp0,%fp2 | ...fp2 is S*B11 809 fmulx %fp0,%fp1 | ...fp1 is S*(B10 + ... 810 811 fadds #0x3493F281,%fp2 | ...fp2 is B9+S*... 812 faddd EM1B8,%fp1 | ...fp1 is B8+S*... 813 814 fmulx %fp0,%fp2 | ...fp2 is S*(B9+... 815 fmulx %fp0,%fp1 | ...fp1 is S*(B8+... 816 817 faddd EM1B7,%fp2 | ...fp2 is B7+S*... 818 faddd EM1B6,%fp1 | ...fp1 is B6+S*... 819 820 fmulx %fp0,%fp2 | ...fp2 is S*(B7+... 821 fmulx %fp0,%fp1 | ...fp1 is S*(B6+... 822 823 faddd EM1B5,%fp2 | ...fp2 is B5+S*... 824 faddd EM1B4,%fp1 | ...fp1 is B4+S*... 825 826 fmulx %fp0,%fp2 | ...fp2 is S*(B5+... 827 fmulx %fp0,%fp1 | ...fp1 is S*(B4+... 828 829 faddd EM1B3,%fp2 | ...fp2 is B3+S*... 830 faddx EM1B2,%fp1 | ...fp1 is B2+S*... 831 832 fmulx %fp0,%fp2 | ...fp2 is S*(B3+... 833 fmulx %fp0,%fp1 | ...fp1 is S*(B2+... 834 835 fmulx %fp0,%fp2 | ...fp2 is S*S*(B3+...) 836 fmulx (%a0),%fp1 | ...fp1 is X*S*(B2... 837 838 fmuls #0x3F000000,%fp0 | ...fp0 is S*B1 839 faddx %fp2,%fp1 | ...fp1 is Q 840 | ...fp2 released 841 842 fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored 843 844 faddx %fp1,%fp0 | ...fp0 is S*B1+Q 845 | ...fp1 released 846 847 fmovel %d1,%FPCR 848 faddx (%a0),%fp0 849 850 bra t_frcinx 851 852 EM1BIG: 853 |--Step 10 |X| > 70 log2 854 movel (%a0),%d0 855 cmpil #0,%d0 856 bgt EXPC1 857 |--Step 10.2 858 fmoves #0xBF800000,%fp0 | ...fp0 is -1 859 fmovel %d1,%FPCR 860 fadds #0x00800000,%fp0 | ...-1 + 2^(-126) 861 862 bra t_frcinx 863 864 |end
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.