1 /***********************license start*************** 2 * Author: Cavium Networks 3 * 4 * Contact: support@caviumnetworks.com 5 * This file is part of the OCTEON SDK 6 * 7 * Copyright (c) 2003-2008 Cavium Networks 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more 17 * details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this file; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * or visit http://www.gnu.org/licenses/. 23 * 24 * This file may also be available under a different license from Cavium. 25 * Contact Cavium Networks for more information 26 ***********************license end**************************************/ 27 28 /* 29 * 30 * Support library for the SPI 31 */ 32 #include <asm/octeon/octeon.h> 33 34 #include <asm/octeon/cvmx-config.h> 35 36 #include <asm/octeon/cvmx-pko.h> 37 #include <asm/octeon/cvmx-spi.h> 38 39 #include <asm/octeon/cvmx-spxx-defs.h> 40 #include <asm/octeon/cvmx-stxx-defs.h> 41 #include <asm/octeon/cvmx-srxx-defs.h> 42 43 #define INVOKE_CB(function_p, args...) \ 44 do { \ 45 if (function_p) { \ 46 res = function_p(args); \ 47 if (res) \ 48 return res; \ 49 } \ 50 } while (0) 51 52 #if CVMX_ENABLE_DEBUG_PRINTS 53 static const char *modes[] = 54 { "UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex" }; 55 #endif 56 57 /* Default callbacks, can be overridden 58 * using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks 59 */ 60 static cvmx_spi_callbacks_t cvmx_spi_callbacks = { 61 .reset_cb = cvmx_spi_reset_cb, 62 .calendar_setup_cb = cvmx_spi_calendar_setup_cb, 63 .clock_detect_cb = cvmx_spi_clock_detect_cb, 64 .training_cb = cvmx_spi_training_cb, 65 .calendar_sync_cb = cvmx_spi_calendar_sync_cb, 66 .interface_up_cb = cvmx_spi_interface_up_cb 67 }; 68 69 /* 70 * Get current SPI4 initialization callbacks 71 * 72 * @callbacks: Pointer to the callbacks structure.to fill 73 * 74 * Returns Pointer to cvmx_spi_callbacks_t structure. 75 */ 76 void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t *callbacks) 77 { 78 memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks)); 79 } 80 81 /* 82 * Set new SPI4 initialization callbacks 83 * 84 * @new_callbacks: Pointer to an updated callbacks structure. 85 */ 86 void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t *new_callbacks) 87 { 88 memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks)); 89 } 90 91 /* 92 * Initialize and start the SPI interface. 93 * 94 * @interface: The identifier of the packet interface to configure and 95 * use as a SPI interface. 96 * @mode: The operating mode for the SPI interface. The interface 97 * can operate as a full duplex (both Tx and Rx data paths 98 * active) or as a halfplex (either the Tx data path is 99 * active or the Rx data path is active, but not both). 100 * @timeout: Timeout to wait for clock synchronization in seconds 101 * @num_ports: Number of SPI ports to configure 102 * 103 * Returns Zero on success, negative of failure. 104 */ 105 int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout, 106 int num_ports) 107 { 108 int res = -1; 109 110 if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) 111 return res; 112 113 /* Callback to perform SPI4 reset */ 114 INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode); 115 116 /* Callback to perform calendar setup */ 117 INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode, 118 num_ports); 119 120 /* Callback to perform clock detection */ 121 INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout); 122 123 /* Callback to perform SPI4 link training */ 124 INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout); 125 126 /* Callback to perform calendar sync */ 127 INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, 128 timeout); 129 130 /* Callback to handle interface coming up */ 131 INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode); 132 133 return res; 134 } 135 136 /* 137 * This routine restarts the SPI interface after it has lost synchronization 138 * with its correspondent system. 139 * 140 * @interface: The identifier of the packet interface to configure and 141 * use as a SPI interface. 142 * @mode: The operating mode for the SPI interface. The interface 143 * can operate as a full duplex (both Tx and Rx data paths 144 * active) or as a halfplex (either the Tx data path is 145 * active or the Rx data path is active, but not both). 146 * @timeout: Timeout to wait for clock synchronization in seconds 147 * 148 * Returns Zero on success, negative of failure. 149 */ 150 int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout) 151 { 152 int res = -1; 153 154 if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) 155 return res; 156 157 cvmx_dprintf("SPI%d: Restart %s\n", interface, modes[mode]); 158 159 /* Callback to perform SPI4 reset */ 160 INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode); 161 162 /* NOTE: Calendar setup is not performed during restart */ 163 /* Refer to cvmx_spi_start_interface() for the full sequence */ 164 165 /* Callback to perform clock detection */ 166 INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout); 167 168 /* Callback to perform SPI4 link training */ 169 INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout); 170 171 /* Callback to perform calendar sync */ 172 INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, 173 timeout); 174 175 /* Callback to handle interface coming up */ 176 INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode); 177 178 return res; 179 } 180 EXPORT_SYMBOL_GPL(cvmx_spi_restart_interface); 181 182 /* 183 * Callback to perform SPI4 reset 184 * 185 * @interface: The identifier of the packet interface to configure and 186 * use as a SPI interface. 187 * @mode: The operating mode for the SPI interface. The interface 188 * can operate as a full duplex (both Tx and Rx data paths 189 * active) or as a halfplex (either the Tx data path is 190 * active or the Rx data path is active, but not both). 191 * 192 * Returns Zero on success, non-zero error code on failure (will cause 193 * SPI initialization to abort) 194 */ 195 int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode) 196 { 197 union cvmx_spxx_dbg_deskew_ctl spxx_dbg_deskew_ctl; 198 union cvmx_spxx_clk_ctl spxx_clk_ctl; 199 union cvmx_spxx_bist_stat spxx_bist_stat; 200 union cvmx_spxx_int_msk spxx_int_msk; 201 union cvmx_stxx_int_msk stxx_int_msk; 202 union cvmx_spxx_trn4_ctl spxx_trn4_ctl; 203 int index; 204 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; 205 206 /* Disable SPI error events while we run BIST */ 207 spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface)); 208 cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0); 209 stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface)); 210 cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0); 211 212 /* Run BIST in the SPI interface */ 213 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0); 214 cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0); 215 spxx_clk_ctl.u64 = 0; 216 spxx_clk_ctl.s.runbist = 1; 217 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); 218 __delay(10 * MS); 219 spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface)); 220 if (spxx_bist_stat.s.stat0) 221 cvmx_dprintf 222 ("ERROR SPI%d: BIST failed on receive datapath FIFO\n", 223 interface); 224 if (spxx_bist_stat.s.stat1) 225 cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n", 226 interface); 227 if (spxx_bist_stat.s.stat2) 228 cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n", 229 interface); 230 231 /* Clear the calendar table after BIST to fix parity errors */ 232 for (index = 0; index < 32; index++) { 233 union cvmx_srxx_spi4_calx srxx_spi4_calx; 234 union cvmx_stxx_spi4_calx stxx_spi4_calx; 235 236 srxx_spi4_calx.u64 = 0; 237 srxx_spi4_calx.s.oddpar = 1; 238 cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), 239 srxx_spi4_calx.u64); 240 241 stxx_spi4_calx.u64 = 0; 242 stxx_spi4_calx.s.oddpar = 1; 243 cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), 244 stxx_spi4_calx.u64); 245 } 246 247 /* Re enable reporting of error interrupts */ 248 cvmx_write_csr(CVMX_SPXX_INT_REG(interface), 249 cvmx_read_csr(CVMX_SPXX_INT_REG(interface))); 250 cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64); 251 cvmx_write_csr(CVMX_STXX_INT_REG(interface), 252 cvmx_read_csr(CVMX_STXX_INT_REG(interface))); 253 cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64); 254 255 /* Setup the CLKDLY right in the middle */ 256 spxx_clk_ctl.u64 = 0; 257 spxx_clk_ctl.s.seetrn = 0; 258 spxx_clk_ctl.s.clkdly = 0x10; 259 spxx_clk_ctl.s.runbist = 0; 260 spxx_clk_ctl.s.statdrv = 0; 261 /* This should always be on the opposite edge as statdrv */ 262 spxx_clk_ctl.s.statrcv = 1; 263 spxx_clk_ctl.s.sndtrn = 0; 264 spxx_clk_ctl.s.drptrn = 0; 265 spxx_clk_ctl.s.rcvtrn = 0; 266 spxx_clk_ctl.s.srxdlck = 0; 267 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); 268 __delay(100 * MS); 269 270 /* Reset SRX0 DLL */ 271 spxx_clk_ctl.s.srxdlck = 1; 272 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); 273 274 /* Waiting for Inf0 Spi4 RX DLL to lock */ 275 __delay(100 * MS); 276 277 /* Enable dynamic alignment */ 278 spxx_trn4_ctl.s.trntest = 0; 279 spxx_trn4_ctl.s.jitter = 1; 280 spxx_trn4_ctl.s.clr_boot = 1; 281 spxx_trn4_ctl.s.set_boot = 0; 282 if (OCTEON_IS_MODEL(OCTEON_CN58XX)) 283 spxx_trn4_ctl.s.maxdist = 3; 284 else 285 spxx_trn4_ctl.s.maxdist = 8; 286 spxx_trn4_ctl.s.macro_en = 1; 287 spxx_trn4_ctl.s.mux_en = 1; 288 cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64); 289 290 spxx_dbg_deskew_ctl.u64 = 0; 291 cvmx_write_csr(CVMX_SPXX_DBG_DESKEW_CTL(interface), 292 spxx_dbg_deskew_ctl.u64); 293 294 return 0; 295 } 296 297 /* 298 * Callback to setup calendar and miscellaneous settings before clock detection 299 * 300 * @interface: The identifier of the packet interface to configure and 301 * use as a SPI interface. 302 * @mode: The operating mode for the SPI interface. The interface 303 * can operate as a full duplex (both Tx and Rx data paths 304 * active) or as a halfplex (either the Tx data path is 305 * active or the Rx data path is active, but not both). 306 * @num_ports: Number of ports to configure on SPI 307 * 308 * Returns Zero on success, non-zero error code on failure (will cause 309 * SPI initialization to abort) 310 */ 311 int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode, 312 int num_ports) 313 { 314 int port; 315 int index; 316 if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { 317 union cvmx_srxx_com_ctl srxx_com_ctl; 318 union cvmx_srxx_spi4_stat srxx_spi4_stat; 319 320 /* SRX0 number of Ports */ 321 srxx_com_ctl.u64 = 0; 322 srxx_com_ctl.s.prts = num_ports - 1; 323 srxx_com_ctl.s.st_en = 0; 324 srxx_com_ctl.s.inf_en = 0; 325 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); 326 327 /* SRX0 Calendar Table. This round robbins through all ports */ 328 port = 0; 329 index = 0; 330 while (port < num_ports) { 331 union cvmx_srxx_spi4_calx srxx_spi4_calx; 332 srxx_spi4_calx.u64 = 0; 333 srxx_spi4_calx.s.prt0 = port++; 334 srxx_spi4_calx.s.prt1 = port++; 335 srxx_spi4_calx.s.prt2 = port++; 336 srxx_spi4_calx.s.prt3 = port++; 337 srxx_spi4_calx.s.oddpar = 338 ~(cvmx_dpop(srxx_spi4_calx.u64) & 1); 339 cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), 340 srxx_spi4_calx.u64); 341 index++; 342 } 343 srxx_spi4_stat.u64 = 0; 344 srxx_spi4_stat.s.len = num_ports; 345 srxx_spi4_stat.s.m = 1; 346 cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface), 347 srxx_spi4_stat.u64); 348 } 349 350 if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { 351 union cvmx_stxx_arb_ctl stxx_arb_ctl; 352 union cvmx_gmxx_tx_spi_max gmxx_tx_spi_max; 353 union cvmx_gmxx_tx_spi_thresh gmxx_tx_spi_thresh; 354 union cvmx_gmxx_tx_spi_ctl gmxx_tx_spi_ctl; 355 union cvmx_stxx_spi4_stat stxx_spi4_stat; 356 union cvmx_stxx_spi4_dat stxx_spi4_dat; 357 358 /* STX0 Config */ 359 stxx_arb_ctl.u64 = 0; 360 stxx_arb_ctl.s.igntpa = 0; 361 stxx_arb_ctl.s.mintrn = 0; 362 cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64); 363 364 gmxx_tx_spi_max.u64 = 0; 365 gmxx_tx_spi_max.s.max1 = 8; 366 gmxx_tx_spi_max.s.max2 = 4; 367 gmxx_tx_spi_max.s.slice = 0; 368 cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface), 369 gmxx_tx_spi_max.u64); 370 371 gmxx_tx_spi_thresh.u64 = 0; 372 gmxx_tx_spi_thresh.s.thresh = 4; 373 cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface), 374 gmxx_tx_spi_thresh.u64); 375 376 gmxx_tx_spi_ctl.u64 = 0; 377 gmxx_tx_spi_ctl.s.tpa_clr = 0; 378 gmxx_tx_spi_ctl.s.cont_pkt = 0; 379 cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface), 380 gmxx_tx_spi_ctl.u64); 381 382 /* STX0 Training Control */ 383 stxx_spi4_dat.u64 = 0; 384 /*Minimum needed by dynamic alignment */ 385 stxx_spi4_dat.s.alpha = 32; 386 stxx_spi4_dat.s.max_t = 0xFFFF; /*Minimum interval is 0x20 */ 387 cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface), 388 stxx_spi4_dat.u64); 389 390 /* STX0 Calendar Table. This round robbins through all ports */ 391 port = 0; 392 index = 0; 393 while (port < num_ports) { 394 union cvmx_stxx_spi4_calx stxx_spi4_calx; 395 stxx_spi4_calx.u64 = 0; 396 stxx_spi4_calx.s.prt0 = port++; 397 stxx_spi4_calx.s.prt1 = port++; 398 stxx_spi4_calx.s.prt2 = port++; 399 stxx_spi4_calx.s.prt3 = port++; 400 stxx_spi4_calx.s.oddpar = 401 ~(cvmx_dpop(stxx_spi4_calx.u64) & 1); 402 cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), 403 stxx_spi4_calx.u64); 404 index++; 405 } 406 stxx_spi4_stat.u64 = 0; 407 stxx_spi4_stat.s.len = num_ports; 408 stxx_spi4_stat.s.m = 1; 409 cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface), 410 stxx_spi4_stat.u64); 411 } 412 413 return 0; 414 } 415 416 /* 417 * Callback to perform clock detection 418 * 419 * @interface: The identifier of the packet interface to configure and 420 * use as a SPI interface. 421 * @mode: The operating mode for the SPI interface. The interface 422 * can operate as a full duplex (both Tx and Rx data paths 423 * active) or as a halfplex (either the Tx data path is 424 * active or the Rx data path is active, but not both). 425 * @timeout: Timeout to wait for clock synchronization in seconds 426 * 427 * Returns Zero on success, non-zero error code on failure (will cause 428 * SPI initialization to abort) 429 */ 430 int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout) 431 { 432 int clock_transitions; 433 union cvmx_spxx_clk_stat stat; 434 uint64_t timeout_time; 435 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; 436 437 /* 438 * Regardless of operating mode, both Tx and Rx clocks must be 439 * present for the SPI interface to operate. 440 */ 441 cvmx_dprintf("SPI%d: Waiting to see TsClk...\n", interface); 442 timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; 443 /* 444 * Require 100 clock transitions in order to avoid any noise 445 * in the beginning. 446 */ 447 clock_transitions = 100; 448 do { 449 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); 450 if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions) { 451 /* 452 * We've seen a clock transition, so decrement 453 * the number we still need. 454 */ 455 clock_transitions--; 456 cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); 457 stat.s.s4clk0 = 0; 458 stat.s.s4clk1 = 0; 459 } 460 if (cvmx_get_cycle() > timeout_time) { 461 cvmx_dprintf("SPI%d: Timeout\n", interface); 462 return -1; 463 } 464 } while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0); 465 466 cvmx_dprintf("SPI%d: Waiting to see RsClk...\n", interface); 467 timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; 468 /* 469 * Require 100 clock transitions in order to avoid any noise in the 470 * beginning. 471 */ 472 clock_transitions = 100; 473 do { 474 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); 475 if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions) { 476 /* 477 * We've seen a clock transition, so decrement 478 * the number we still need 479 */ 480 clock_transitions--; 481 cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); 482 stat.s.d4clk0 = 0; 483 stat.s.d4clk1 = 0; 484 } 485 if (cvmx_get_cycle() > timeout_time) { 486 cvmx_dprintf("SPI%d: Timeout\n", interface); 487 return -1; 488 } 489 } while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0); 490 491 return 0; 492 } 493 494 /* 495 * Callback to perform link training 496 * 497 * @interface: The identifier of the packet interface to configure and 498 * use as a SPI interface. 499 * @mode: The operating mode for the SPI interface. The interface 500 * can operate as a full duplex (both Tx and Rx data paths 501 * active) or as a halfplex (either the Tx data path is 502 * active or the Rx data path is active, but not both). 503 * @timeout: Timeout to wait for link to be trained (in seconds) 504 * 505 * Returns Zero on success, non-zero error code on failure (will cause 506 * SPI initialization to abort) 507 */ 508 int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout) 509 { 510 union cvmx_spxx_trn4_ctl spxx_trn4_ctl; 511 union cvmx_spxx_clk_stat stat; 512 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; 513 uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; 514 int rx_training_needed; 515 516 /* SRX0 & STX0 Inf0 Links are configured - begin training */ 517 union cvmx_spxx_clk_ctl spxx_clk_ctl; 518 spxx_clk_ctl.u64 = 0; 519 spxx_clk_ctl.s.seetrn = 0; 520 spxx_clk_ctl.s.clkdly = 0x10; 521 spxx_clk_ctl.s.runbist = 0; 522 spxx_clk_ctl.s.statdrv = 0; 523 /* This should always be on the opposite edge as statdrv */ 524 spxx_clk_ctl.s.statrcv = 1; 525 spxx_clk_ctl.s.sndtrn = 1; 526 spxx_clk_ctl.s.drptrn = 1; 527 spxx_clk_ctl.s.rcvtrn = 1; 528 spxx_clk_ctl.s.srxdlck = 1; 529 cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); 530 __delay(1000 * MS); 531 532 /* SRX0 clear the boot bit */ 533 spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface)); 534 spxx_trn4_ctl.s.clr_boot = 1; 535 cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64); 536 537 /* Wait for the training sequence to complete */ 538 cvmx_dprintf("SPI%d: Waiting for training\n", interface); 539 __delay(1000 * MS); 540 /* Wait a really long time here */ 541 timeout_time = cvmx_get_cycle() + 1000ull * MS * 600; 542 /* 543 * The HRM says we must wait for 34 + 16 * MAXDIST training sequences. 544 * We'll be pessimistic and wait for a lot more. 545 */ 546 rx_training_needed = 500; 547 do { 548 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); 549 if (stat.s.srxtrn && rx_training_needed) { 550 rx_training_needed--; 551 cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); 552 stat.s.srxtrn = 0; 553 } 554 if (cvmx_get_cycle() > timeout_time) { 555 cvmx_dprintf("SPI%d: Timeout\n", interface); 556 return -1; 557 } 558 } while (stat.s.srxtrn == 0); 559 560 return 0; 561 } 562 563 /* 564 * Callback to perform calendar data synchronization 565 * 566 * @interface: The identifier of the packet interface to configure and 567 * use as a SPI interface. 568 * @mode: The operating mode for the SPI interface. The interface 569 * can operate as a full duplex (both Tx and Rx data paths 570 * active) or as a halfplex (either the Tx data path is 571 * active or the Rx data path is active, but not both). 572 * @timeout: Timeout to wait for calendar data in seconds 573 * 574 * Returns Zero on success, non-zero error code on failure (will cause 575 * SPI initialization to abort) 576 */ 577 int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout) 578 { 579 uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; 580 if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { 581 /* SRX0 interface should be good, send calendar data */ 582 union cvmx_srxx_com_ctl srxx_com_ctl; 583 cvmx_dprintf 584 ("SPI%d: Rx is synchronized, start sending calendar data\n", 585 interface); 586 srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface)); 587 srxx_com_ctl.s.inf_en = 1; 588 srxx_com_ctl.s.st_en = 1; 589 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); 590 } 591 592 if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { 593 /* STX0 has achieved sync */ 594 /* The corespondant board should be sending calendar data */ 595 /* Enable the STX0 STAT receiver. */ 596 union cvmx_spxx_clk_stat stat; 597 uint64_t timeout_time; 598 union cvmx_stxx_com_ctl stxx_com_ctl; 599 stxx_com_ctl.u64 = 0; 600 stxx_com_ctl.s.st_en = 1; 601 cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64); 602 603 /* Waiting for calendar sync on STX0 STAT */ 604 cvmx_dprintf("SPI%d: Waiting to sync on STX[%d] STAT\n", 605 interface, interface); 606 timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; 607 /* SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10) */ 608 do { 609 stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); 610 if (cvmx_get_cycle() > timeout_time) { 611 cvmx_dprintf("SPI%d: Timeout\n", interface); 612 return -1; 613 } 614 } while (stat.s.stxcal == 0); 615 } 616 617 return 0; 618 } 619 620 /* 621 * Callback to handle interface up 622 * 623 * @interface: The identifier of the packet interface to configure and 624 * use as a SPI interface. 625 * @mode: The operating mode for the SPI interface. The interface 626 * can operate as a full duplex (both Tx and Rx data paths 627 * active) or as a halfplex (either the Tx data path is 628 * active or the Rx data path is active, but not both). 629 * 630 * Returns Zero on success, non-zero error code on failure (will cause 631 * SPI initialization to abort) 632 */ 633 int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode) 634 { 635 union cvmx_gmxx_rxx_frm_min gmxx_rxx_frm_min; 636 union cvmx_gmxx_rxx_frm_max gmxx_rxx_frm_max; 637 union cvmx_gmxx_rxx_jabber gmxx_rxx_jabber; 638 639 if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { 640 union cvmx_srxx_com_ctl srxx_com_ctl; 641 srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface)); 642 srxx_com_ctl.s.inf_en = 1; 643 cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); 644 cvmx_dprintf("SPI%d: Rx is now up\n", interface); 645 } 646 647 if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { 648 union cvmx_stxx_com_ctl stxx_com_ctl; 649 stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface)); 650 stxx_com_ctl.s.inf_en = 1; 651 cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64); 652 cvmx_dprintf("SPI%d: Tx is now up\n", interface); 653 } 654 655 gmxx_rxx_frm_min.u64 = 0; 656 gmxx_rxx_frm_min.s.len = 64; 657 cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0, interface), 658 gmxx_rxx_frm_min.u64); 659 gmxx_rxx_frm_max.u64 = 0; 660 gmxx_rxx_frm_max.s.len = 64 * 1024 - 4; 661 cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0, interface), 662 gmxx_rxx_frm_max.u64); 663 gmxx_rxx_jabber.u64 = 0; 664 gmxx_rxx_jabber.s.cnt = 64 * 1024 - 4; 665 cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0, interface), gmxx_rxx_jabber.u64); 666 667 return 0; 668 } 669
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.