1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2004-2017 Cavium, Inc. 7 * Copyright (C) 2008 Wind River Systems 8 */ 9 10 #include <linux/etherdevice.h> 11 #include <linux/of.h> 12 #include <linux/of_platform.h> 13 #include <linux/of_fdt.h> 14 #include <linux/platform_device.h> 15 #include <linux/libfdt.h> 16 17 #include <asm/octeon/octeon.h> 18 #include <asm/octeon/cvmx-helper-board.h> 19 20 #ifdef CONFIG_USB 21 #include <linux/usb/ehci_def.h> 22 #include <linux/usb/ehci_pdriver.h> 23 #include <linux/usb/ohci_pdriver.h> 24 #include <asm/octeon/cvmx-uctlx-defs.h> 25 26 #define CVMX_UAHCX_EHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000010ull)) 27 #define CVMX_UAHCX_OHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000408ull)) 28 29 static DEFINE_MUTEX(octeon2_usb_clocks_mutex); 30 31 static int octeon2_usb_clock_start_cnt; 32 33 static int __init octeon2_usb_reset(void) 34 { 35 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl; 36 u32 ucmd; 37 38 if (!OCTEON_IS_OCTEON2()) 39 return 0; 40 41 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); 42 if (clk_rst_ctl.s.hrst) { 43 ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD); 44 ucmd &= ~CMD_RUN; 45 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd); 46 mdelay(2); 47 ucmd |= CMD_RESET; 48 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd); 49 ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD); 50 ucmd |= CMD_RUN; 51 cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd); 52 } 53 54 return 0; 55 } 56 arch_initcall(octeon2_usb_reset); 57 58 static void octeon2_usb_clocks_start(struct device *dev) 59 { 60 u64 div; 61 union cvmx_uctlx_if_ena if_ena; 62 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl; 63 union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status; 64 int i; 65 unsigned long io_clk_64_to_ns; 66 u32 clock_rate = 12000000; 67 bool is_crystal_clock = false; 68 69 70 mutex_lock(&octeon2_usb_clocks_mutex); 71 72 octeon2_usb_clock_start_cnt++; 73 if (octeon2_usb_clock_start_cnt != 1) 74 goto exit; 75 76 io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate(); 77 78 if (dev->of_node) { 79 struct device_node *uctl_node; 80 const char *clock_type; 81 82 uctl_node = of_get_parent(dev->of_node); 83 if (!uctl_node) { 84 dev_err(dev, "No UCTL device node\n"); 85 goto exit; 86 } 87 i = of_property_read_u32(uctl_node, 88 "refclk-frequency", &clock_rate); 89 if (i) { 90 dev_err(dev, "No UCTL \"refclk-frequency\"\n"); 91 of_node_put(uctl_node); 92 goto exit; 93 } 94 i = of_property_read_string(uctl_node, 95 "refclk-type", &clock_type); 96 of_node_put(uctl_node); 97 if (!i && strcmp("crystal", clock_type) == 0) 98 is_crystal_clock = true; 99 } 100 101 /* 102 * Step 1: Wait for voltages stable. That surely happened 103 * before starting the kernel. 104 * 105 * Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1 106 */ 107 if_ena.u64 = 0; 108 if_ena.s.en = 1; 109 cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64); 110 111 for (i = 0; i <= 1; i++) { 112 port_ctl_status.u64 = 113 cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0)); 114 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */ 115 port_ctl_status.s.txvreftune = 15; 116 port_ctl_status.s.txrisetune = 1; 117 port_ctl_status.s.txpreemphasistune = 1; 118 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0), 119 port_ctl_status.u64); 120 } 121 122 /* Step 3: Configure the reference clock, PHY, and HCLK */ 123 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); 124 125 /* 126 * If the UCTL looks like it has already been started, skip 127 * the initialization, otherwise bus errors are obtained. 128 */ 129 if (clk_rst_ctl.s.hrst) 130 goto end_clock; 131 /* 3a */ 132 clk_rst_ctl.s.p_por = 1; 133 clk_rst_ctl.s.hrst = 0; 134 clk_rst_ctl.s.p_prst = 0; 135 clk_rst_ctl.s.h_clkdiv_rst = 0; 136 clk_rst_ctl.s.o_clkdiv_rst = 0; 137 clk_rst_ctl.s.h_clkdiv_en = 0; 138 clk_rst_ctl.s.o_clkdiv_en = 0; 139 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 140 141 /* 3b */ 142 clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1; 143 switch (clock_rate) { 144 default: 145 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n", 146 clock_rate); 147 fallthrough; 148 case 12000000: 149 clk_rst_ctl.s.p_refclk_div = 0; 150 break; 151 case 24000000: 152 clk_rst_ctl.s.p_refclk_div = 1; 153 break; 154 case 48000000: 155 clk_rst_ctl.s.p_refclk_div = 2; 156 break; 157 } 158 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 159 160 /* 3c */ 161 div = octeon_get_io_clock_rate() / 130000000ull; 162 163 switch (div) { 164 case 0: 165 div = 1; 166 break; 167 case 1: 168 case 2: 169 case 3: 170 case 4: 171 break; 172 case 5: 173 div = 4; 174 break; 175 case 6: 176 case 7: 177 div = 6; 178 break; 179 case 8: 180 case 9: 181 case 10: 182 case 11: 183 div = 8; 184 break; 185 default: 186 div = 12; 187 break; 188 } 189 clk_rst_ctl.s.h_div = div; 190 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 191 /* Read it back, */ 192 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); 193 clk_rst_ctl.s.h_clkdiv_en = 1; 194 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 195 /* 3d */ 196 clk_rst_ctl.s.h_clkdiv_rst = 1; 197 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 198 199 /* 3e: delay 64 io clocks */ 200 ndelay(io_clk_64_to_ns); 201 202 /* 203 * Step 4: Program the power-on reset field in the UCTL 204 * clock-reset-control register. 205 */ 206 clk_rst_ctl.s.p_por = 0; 207 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 208 209 /* Step 5: Wait 3 ms for the PHY clock to start. */ 210 mdelay(3); 211 212 /* Steps 6..9 for ATE only, are skipped. */ 213 214 /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */ 215 /* 10a */ 216 clk_rst_ctl.s.o_clkdiv_rst = 1; 217 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 218 219 /* 10b */ 220 clk_rst_ctl.s.o_clkdiv_en = 1; 221 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 222 223 /* 10c */ 224 ndelay(io_clk_64_to_ns); 225 226 /* 227 * Step 11: Program the PHY reset field: 228 * UCTL0_CLK_RST_CTL[P_PRST] = 1 229 */ 230 clk_rst_ctl.s.p_prst = 1; 231 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 232 233 /* Step 11b */ 234 udelay(1); 235 236 /* Step 11c */ 237 clk_rst_ctl.s.p_prst = 0; 238 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 239 240 /* Step 11d */ 241 mdelay(1); 242 243 /* Step 11e */ 244 clk_rst_ctl.s.p_prst = 1; 245 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 246 247 /* Step 12: Wait 1 uS. */ 248 udelay(1); 249 250 /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */ 251 clk_rst_ctl.s.hrst = 1; 252 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 253 254 end_clock: 255 /* Set uSOF cycle period to 60,000 bits. */ 256 cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull); 257 258 exit: 259 mutex_unlock(&octeon2_usb_clocks_mutex); 260 } 261 262 static void octeon2_usb_clocks_stop(void) 263 { 264 mutex_lock(&octeon2_usb_clocks_mutex); 265 octeon2_usb_clock_start_cnt--; 266 mutex_unlock(&octeon2_usb_clocks_mutex); 267 } 268 269 static int octeon_ehci_power_on(struct platform_device *pdev) 270 { 271 octeon2_usb_clocks_start(&pdev->dev); 272 return 0; 273 } 274 275 static void octeon_ehci_power_off(struct platform_device *pdev) 276 { 277 octeon2_usb_clocks_stop(); 278 } 279 280 static struct usb_ehci_pdata octeon_ehci_pdata = { 281 /* Octeon EHCI matches CPU endianness. */ 282 #ifdef __BIG_ENDIAN 283 .big_endian_mmio = 1, 284 #endif 285 /* 286 * We can DMA from anywhere. But the descriptors must be in 287 * the lower 4GB. 288 */ 289 .dma_mask_64 = 0, 290 .power_on = octeon_ehci_power_on, 291 .power_off = octeon_ehci_power_off, 292 }; 293 294 static void __init octeon_ehci_hw_start(struct device *dev) 295 { 296 union cvmx_uctlx_ehci_ctl ehci_ctl; 297 298 octeon2_usb_clocks_start(dev); 299 300 ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0)); 301 /* Use 64-bit addressing. */ 302 ehci_ctl.s.ehci_64b_addr_en = 1; 303 ehci_ctl.s.l2c_addr_msb = 0; 304 #ifdef __BIG_ENDIAN 305 ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */ 306 ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */ 307 #else 308 ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */ 309 ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */ 310 ehci_ctl.s.inv_reg_a2 = 1; 311 #endif 312 cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64); 313 314 octeon2_usb_clocks_stop(); 315 } 316 317 static int __init octeon_ehci_device_init(void) 318 { 319 struct platform_device *pd; 320 struct device_node *ehci_node; 321 int ret = 0; 322 323 ehci_node = of_find_node_by_name(NULL, "ehci"); 324 if (!ehci_node) 325 return 0; 326 327 pd = of_find_device_by_node(ehci_node); 328 of_node_put(ehci_node); 329 if (!pd) 330 return 0; 331 332 pd->dev.platform_data = &octeon_ehci_pdata; 333 octeon_ehci_hw_start(&pd->dev); 334 put_device(&pd->dev); 335 336 return ret; 337 } 338 device_initcall(octeon_ehci_device_init); 339 340 static int octeon_ohci_power_on(struct platform_device *pdev) 341 { 342 octeon2_usb_clocks_start(&pdev->dev); 343 return 0; 344 } 345 346 static void octeon_ohci_power_off(struct platform_device *pdev) 347 { 348 octeon2_usb_clocks_stop(); 349 } 350 351 static struct usb_ohci_pdata octeon_ohci_pdata = { 352 /* Octeon OHCI matches CPU endianness. */ 353 #ifdef __BIG_ENDIAN 354 .big_endian_mmio = 1, 355 #endif 356 .power_on = octeon_ohci_power_on, 357 .power_off = octeon_ohci_power_off, 358 }; 359 360 static void __init octeon_ohci_hw_start(struct device *dev) 361 { 362 union cvmx_uctlx_ohci_ctl ohci_ctl; 363 364 octeon2_usb_clocks_start(dev); 365 366 ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0)); 367 ohci_ctl.s.l2c_addr_msb = 0; 368 #ifdef __BIG_ENDIAN 369 ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */ 370 ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */ 371 #else 372 ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */ 373 ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */ 374 ohci_ctl.s.inv_reg_a2 = 1; 375 #endif 376 cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64); 377 378 octeon2_usb_clocks_stop(); 379 } 380 381 static int __init octeon_ohci_device_init(void) 382 { 383 struct platform_device *pd; 384 struct device_node *ohci_node; 385 int ret = 0; 386 387 ohci_node = of_find_node_by_name(NULL, "ohci"); 388 if (!ohci_node) 389 return 0; 390 391 pd = of_find_device_by_node(ohci_node); 392 of_node_put(ohci_node); 393 if (!pd) 394 return 0; 395 396 pd->dev.platform_data = &octeon_ohci_pdata; 397 octeon_ohci_hw_start(&pd->dev); 398 put_device(&pd->dev); 399 400 return ret; 401 } 402 device_initcall(octeon_ohci_device_init); 403 404 #endif /* CONFIG_USB */ 405 406 /* Octeon Random Number Generator. */ 407 static int __init octeon_rng_device_init(void) 408 { 409 struct platform_device *pd; 410 int ret = 0; 411 412 struct resource rng_resources[] = { 413 { 414 .flags = IORESOURCE_MEM, 415 .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS), 416 .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf 417 }, { 418 .flags = IORESOURCE_MEM, 419 .start = cvmx_build_io_address(8, 0), 420 .end = cvmx_build_io_address(8, 0) + 0x7 421 } 422 }; 423 424 pd = platform_device_alloc("octeon_rng", -1); 425 if (!pd) { 426 ret = -ENOMEM; 427 goto out; 428 } 429 430 ret = platform_device_add_resources(pd, rng_resources, 431 ARRAY_SIZE(rng_resources)); 432 if (ret) 433 goto fail; 434 435 ret = platform_device_add(pd); 436 if (ret) 437 goto fail; 438 439 return ret; 440 fail: 441 platform_device_put(pd); 442 443 out: 444 return ret; 445 } 446 device_initcall(octeon_rng_device_init); 447 448 static const struct of_device_id octeon_ids[] __initconst = { 449 { .compatible = "simple-bus", }, 450 { .compatible = "cavium,octeon-6335-uctl", }, 451 { .compatible = "cavium,octeon-5750-usbn", }, 452 { .compatible = "cavium,octeon-3860-bootbus", }, 453 { .compatible = "cavium,mdio-mux", }, 454 { .compatible = "gpio-leds", }, 455 {}, 456 }; 457 458 static bool __init octeon_has_88e1145(void) 459 { 460 return !OCTEON_IS_MODEL(OCTEON_CN52XX) && 461 !OCTEON_IS_MODEL(OCTEON_CN6XXX) && 462 !OCTEON_IS_MODEL(OCTEON_CN56XX); 463 } 464 465 static bool __init octeon_has_fixed_link(int ipd_port) 466 { 467 switch (cvmx_sysinfo_get()->board_type) { 468 case CVMX_BOARD_TYPE_CN3005_EVB_HS5: 469 case CVMX_BOARD_TYPE_CN3010_EVB_HS5: 470 case CVMX_BOARD_TYPE_CN3020_EVB_HS5: 471 case CVMX_BOARD_TYPE_CUST_NB5: 472 case CVMX_BOARD_TYPE_EBH3100: 473 /* Port 1 on these boards is always gigabit. */ 474 return ipd_port == 1; 475 case CVMX_BOARD_TYPE_BBGW_REF: 476 /* Ports 0 and 1 connect to the switch. */ 477 return ipd_port == 0 || ipd_port == 1; 478 } 479 return false; 480 } 481 482 static void __init octeon_fdt_set_phy(int eth, int phy_addr) 483 { 484 const __be32 *phy_handle; 485 const __be32 *alt_phy_handle; 486 const __be32 *reg; 487 u32 phandle; 488 int phy; 489 int alt_phy; 490 const char *p; 491 int current_len; 492 char new_name[20]; 493 494 phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL); 495 if (!phy_handle) 496 return; 497 498 phandle = be32_to_cpup(phy_handle); 499 phy = fdt_node_offset_by_phandle(initial_boot_params, phandle); 500 501 alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL); 502 if (alt_phy_handle) { 503 u32 alt_phandle = be32_to_cpup(alt_phy_handle); 504 505 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle); 506 } else { 507 alt_phy = -1; 508 } 509 510 if (phy_addr < 0 || phy < 0) { 511 /* Delete the PHY things */ 512 fdt_nop_property(initial_boot_params, eth, "phy-handle"); 513 /* This one may fail */ 514 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle"); 515 if (phy >= 0) 516 fdt_nop_node(initial_boot_params, phy); 517 if (alt_phy >= 0) 518 fdt_nop_node(initial_boot_params, alt_phy); 519 return; 520 } 521 522 if (phy_addr >= 256 && alt_phy > 0) { 523 const struct fdt_property *phy_prop; 524 struct fdt_property *alt_prop; 525 fdt32_t phy_handle_name; 526 527 /* Use the alt phy node instead.*/ 528 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL); 529 phy_handle_name = phy_prop->nameoff; 530 fdt_nop_node(initial_boot_params, phy); 531 fdt_nop_property(initial_boot_params, eth, "phy-handle"); 532 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL); 533 alt_prop->nameoff = phy_handle_name; 534 phy = alt_phy; 535 } 536 537 phy_addr &= 0xff; 538 539 if (octeon_has_88e1145()) { 540 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init"); 541 memset(new_name, 0, sizeof(new_name)); 542 strcpy(new_name, "marvell,88e1145"); 543 p = fdt_getprop(initial_boot_params, phy, "compatible", 544 ¤t_len); 545 if (p && current_len >= strlen(new_name)) 546 fdt_setprop_inplace(initial_boot_params, phy, 547 "compatible", new_name, current_len); 548 } 549 550 reg = fdt_getprop(initial_boot_params, phy, "reg", NULL); 551 if (phy_addr == be32_to_cpup(reg)) 552 return; 553 554 fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr); 555 556 snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr); 557 558 p = fdt_get_name(initial_boot_params, phy, ¤t_len); 559 if (p && current_len == strlen(new_name)) 560 fdt_set_name(initial_boot_params, phy, new_name); 561 else 562 pr_err("Error: could not rename ethernet phy: <%s>", p); 563 } 564 565 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac) 566 { 567 const u8 *old_mac; 568 int old_len; 569 u8 new_mac[6]; 570 u64 mac = *pmac; 571 int r; 572 573 old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address", 574 &old_len); 575 if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac)) 576 return; 577 578 new_mac[0] = (mac >> 40) & 0xff; 579 new_mac[1] = (mac >> 32) & 0xff; 580 new_mac[2] = (mac >> 24) & 0xff; 581 new_mac[3] = (mac >> 16) & 0xff; 582 new_mac[4] = (mac >> 8) & 0xff; 583 new_mac[5] = mac & 0xff; 584 585 r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address", 586 new_mac, sizeof(new_mac)); 587 588 if (r) { 589 pr_err("Setting \"local-mac-address\" failed %d", r); 590 return; 591 } 592 *pmac = mac + 1; 593 } 594 595 static void __init octeon_fdt_rm_ethernet(int node) 596 { 597 const __be32 *phy_handle; 598 599 phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL); 600 if (phy_handle) { 601 u32 ph = be32_to_cpup(phy_handle); 602 int p = fdt_node_offset_by_phandle(initial_boot_params, ph); 603 604 if (p >= 0) 605 fdt_nop_node(initial_boot_params, p); 606 } 607 fdt_nop_node(initial_boot_params, node); 608 } 609 610 static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay) 611 { 612 fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay", 613 rx_delay); 614 fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay", 615 tx_delay); 616 } 617 618 static void __init octeon_rx_tx_delay(int eth, int iface, int port) 619 { 620 switch (cvmx_sysinfo_get()->board_type) { 621 case CVMX_BOARD_TYPE_CN3005_EVB_HS5: 622 if (iface == 0) { 623 if (port == 0) { 624 /* 625 * Boards with gigabit WAN ports need a 626 * different setting that is compatible with 627 * 100 Mbit settings 628 */ 629 _octeon_rx_tx_delay(eth, 0xc, 0x0c); 630 return; 631 } else if (port == 1) { 632 /* Different config for switch port. */ 633 _octeon_rx_tx_delay(eth, 0x0, 0x0); 634 return; 635 } 636 } 637 break; 638 case CVMX_BOARD_TYPE_UBNT_E100: 639 if (iface == 0 && port <= 2) { 640 _octeon_rx_tx_delay(eth, 0x0, 0x10); 641 return; 642 } 643 break; 644 } 645 fdt_nop_property(initial_boot_params, eth, "rx-delay"); 646 fdt_nop_property(initial_boot_params, eth, "tx-delay"); 647 } 648 649 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max) 650 { 651 char name_buffer[20]; 652 int eth; 653 int phy_addr; 654 int ipd_port; 655 int fixed_link; 656 657 snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p); 658 eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer); 659 if (eth < 0) 660 return; 661 if (p > max) { 662 pr_debug("Deleting port %x:%x\n", i, p); 663 octeon_fdt_rm_ethernet(eth); 664 return; 665 } 666 if (OCTEON_IS_MODEL(OCTEON_CN68XX)) 667 ipd_port = (0x100 * i) + (0x10 * p) + 0x800; 668 else 669 ipd_port = 16 * i + p; 670 671 phy_addr = cvmx_helper_board_get_mii_address(ipd_port); 672 octeon_fdt_set_phy(eth, phy_addr); 673 674 fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link"); 675 if (fixed_link < 0) 676 WARN_ON(octeon_has_fixed_link(ipd_port)); 677 else if (!octeon_has_fixed_link(ipd_port)) 678 fdt_nop_node(initial_boot_params, fixed_link); 679 octeon_rx_tx_delay(eth, i, p); 680 } 681 682 static void __init octeon_fdt_pip_iface(int pip, int idx) 683 { 684 char name_buffer[20]; 685 int iface; 686 int p; 687 int count = 0; 688 689 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx); 690 iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer); 691 if (iface < 0) 692 return; 693 694 if (cvmx_helper_interface_enumerate(idx) == 0) 695 count = cvmx_helper_ports_on_interface(idx); 696 697 for (p = 0; p < 16; p++) 698 octeon_fdt_pip_port(iface, idx, p, count - 1); 699 } 700 701 void __init octeon_fill_mac_addresses(void) 702 { 703 const char *alias_prop; 704 char name_buffer[20]; 705 u64 mac_addr_base; 706 int aliases; 707 int pip; 708 int i; 709 710 aliases = fdt_path_offset(initial_boot_params, "/aliases"); 711 if (aliases < 0) 712 return; 713 714 mac_addr_base = 715 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 | 716 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 | 717 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 | 718 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 | 719 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 | 720 (octeon_bootinfo->mac_addr_base[5] & 0xffull); 721 722 for (i = 0; i < 2; i++) { 723 int mgmt; 724 725 snprintf(name_buffer, sizeof(name_buffer), "mix%d", i); 726 alias_prop = fdt_getprop(initial_boot_params, aliases, 727 name_buffer, NULL); 728 if (!alias_prop) 729 continue; 730 mgmt = fdt_path_offset(initial_boot_params, alias_prop); 731 if (mgmt < 0) 732 continue; 733 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base); 734 } 735 736 alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL); 737 if (!alias_prop) 738 return; 739 740 pip = fdt_path_offset(initial_boot_params, alias_prop); 741 if (pip < 0) 742 return; 743 744 for (i = 0; i <= 4; i++) { 745 int iface; 746 int p; 747 748 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i); 749 iface = fdt_subnode_offset(initial_boot_params, pip, 750 name_buffer); 751 if (iface < 0) 752 continue; 753 for (p = 0; p < 16; p++) { 754 int eth; 755 756 snprintf(name_buffer, sizeof(name_buffer), 757 "ethernet@%x", p); 758 eth = fdt_subnode_offset(initial_boot_params, iface, 759 name_buffer); 760 if (eth < 0) 761 continue; 762 octeon_fdt_set_mac_addr(eth, &mac_addr_base); 763 } 764 } 765 } 766 767 int __init octeon_prune_device_tree(void) 768 { 769 int i, max_port, uart_mask; 770 const char *pip_path; 771 const char *alias_prop; 772 char name_buffer[20]; 773 int aliases; 774 775 if (fdt_check_header(initial_boot_params)) 776 panic("Corrupt Device Tree."); 777 778 WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N, 779 "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.", 780 cvmx_board_type_to_string(octeon_bootinfo->board_type)); 781 782 aliases = fdt_path_offset(initial_boot_params, "/aliases"); 783 if (aliases < 0) { 784 pr_err("Error: No /aliases node in device tree."); 785 return -EINVAL; 786 } 787 788 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)) 789 max_port = 2; 790 else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)) 791 max_port = 1; 792 else 793 max_port = 0; 794 795 if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E) 796 max_port = 0; 797 798 for (i = 0; i < 2; i++) { 799 int mgmt; 800 801 snprintf(name_buffer, sizeof(name_buffer), 802 "mix%d", i); 803 alias_prop = fdt_getprop(initial_boot_params, aliases, 804 name_buffer, NULL); 805 if (alias_prop) { 806 mgmt = fdt_path_offset(initial_boot_params, alias_prop); 807 if (mgmt < 0) 808 continue; 809 if (i >= max_port) { 810 pr_debug("Deleting mix%d\n", i); 811 octeon_fdt_rm_ethernet(mgmt); 812 fdt_nop_property(initial_boot_params, aliases, 813 name_buffer); 814 } else { 815 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i); 816 817 octeon_fdt_set_phy(mgmt, phy_addr); 818 } 819 } 820 } 821 822 pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL); 823 if (pip_path) { 824 int pip = fdt_path_offset(initial_boot_params, pip_path); 825 826 if (pip >= 0) 827 for (i = 0; i <= 4; i++) 828 octeon_fdt_pip_iface(pip, i); 829 } 830 831 /* I2C */ 832 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || 833 OCTEON_IS_MODEL(OCTEON_CN63XX) || 834 OCTEON_IS_MODEL(OCTEON_CN68XX) || 835 OCTEON_IS_MODEL(OCTEON_CN56XX)) 836 max_port = 2; 837 else 838 max_port = 1; 839 840 for (i = 0; i < 2; i++) { 841 int i2c; 842 843 snprintf(name_buffer, sizeof(name_buffer), 844 "twsi%d", i); 845 alias_prop = fdt_getprop(initial_boot_params, aliases, 846 name_buffer, NULL); 847 848 if (alias_prop) { 849 i2c = fdt_path_offset(initial_boot_params, alias_prop); 850 if (i2c < 0) 851 continue; 852 if (i >= max_port) { 853 pr_debug("Deleting twsi%d\n", i); 854 fdt_nop_node(initial_boot_params, i2c); 855 fdt_nop_property(initial_boot_params, aliases, 856 name_buffer); 857 } 858 } 859 } 860 861 /* SMI/MDIO */ 862 if (OCTEON_IS_MODEL(OCTEON_CN68XX)) 863 max_port = 4; 864 else if (OCTEON_IS_MODEL(OCTEON_CN52XX) || 865 OCTEON_IS_MODEL(OCTEON_CN63XX) || 866 OCTEON_IS_MODEL(OCTEON_CN56XX)) 867 max_port = 2; 868 else 869 max_port = 1; 870 871 for (i = 0; i < 2; i++) { 872 int i2c; 873 874 snprintf(name_buffer, sizeof(name_buffer), 875 "smi%d", i); 876 alias_prop = fdt_getprop(initial_boot_params, aliases, 877 name_buffer, NULL); 878 if (alias_prop) { 879 i2c = fdt_path_offset(initial_boot_params, alias_prop); 880 if (i2c < 0) 881 continue; 882 if (i >= max_port) { 883 pr_debug("Deleting smi%d\n", i); 884 fdt_nop_node(initial_boot_params, i2c); 885 fdt_nop_property(initial_boot_params, aliases, 886 name_buffer); 887 } 888 } 889 } 890 891 /* Serial */ 892 uart_mask = 3; 893 894 /* Right now CN52XX is the only chip with a third uart */ 895 if (OCTEON_IS_MODEL(OCTEON_CN52XX)) 896 uart_mask |= 4; /* uart2 */ 897 898 for (i = 0; i < 3; i++) { 899 int uart; 900 901 snprintf(name_buffer, sizeof(name_buffer), 902 "uart%d", i); 903 alias_prop = fdt_getprop(initial_boot_params, aliases, 904 name_buffer, NULL); 905 906 if (alias_prop) { 907 uart = fdt_path_offset(initial_boot_params, alias_prop); 908 if (uart_mask & (1 << i)) { 909 __be32 f; 910 911 f = cpu_to_be32(octeon_get_io_clock_rate()); 912 fdt_setprop_inplace(initial_boot_params, 913 uart, "clock-frequency", 914 &f, sizeof(f)); 915 continue; 916 } 917 pr_debug("Deleting uart%d\n", i); 918 fdt_nop_node(initial_boot_params, uart); 919 fdt_nop_property(initial_boot_params, aliases, 920 name_buffer); 921 } 922 } 923 924 /* Compact Flash */ 925 alias_prop = fdt_getprop(initial_boot_params, aliases, 926 "cf0", NULL); 927 if (alias_prop) { 928 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; 929 unsigned long base_ptr, region_base, region_size; 930 unsigned long region1_base = 0; 931 unsigned long region1_size = 0; 932 int cs, bootbus; 933 bool is_16bit = false; 934 bool is_true_ide = false; 935 __be32 new_reg[6]; 936 __be32 *ranges; 937 int len; 938 939 int cf = fdt_path_offset(initial_boot_params, alias_prop); 940 941 base_ptr = 0; 942 if (octeon_bootinfo->major_version == 1 943 && octeon_bootinfo->minor_version >= 1) { 944 if (octeon_bootinfo->compact_flash_common_base_addr) 945 base_ptr = octeon_bootinfo->compact_flash_common_base_addr; 946 } else { 947 base_ptr = 0x1d000800; 948 } 949 950 if (!base_ptr) 951 goto no_cf; 952 953 /* Find CS0 region. */ 954 for (cs = 0; cs < 8; cs++) { 955 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 956 region_base = mio_boot_reg_cfg.s.base << 16; 957 region_size = (mio_boot_reg_cfg.s.size + 1) << 16; 958 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base 959 && base_ptr < region_base + region_size) { 960 is_16bit = mio_boot_reg_cfg.s.width; 961 break; 962 } 963 } 964 if (cs >= 7) { 965 /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */ 966 goto no_cf; 967 } 968 969 if (!(base_ptr & 0xfffful)) { 970 /* 971 * Boot loader signals availability of DMA (true_ide 972 * mode) by setting low order bits of base_ptr to 973 * zero. 974 */ 975 976 /* Assume that CS1 immediately follows. */ 977 mio_boot_reg_cfg.u64 = 978 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1)); 979 region1_base = mio_boot_reg_cfg.s.base << 16; 980 region1_size = (mio_boot_reg_cfg.s.size + 1) << 16; 981 if (!mio_boot_reg_cfg.s.en) 982 goto no_cf; 983 is_true_ide = true; 984 985 } else { 986 fdt_nop_property(initial_boot_params, cf, "cavium,true-ide"); 987 fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle"); 988 if (!is_16bit) { 989 __be32 width = cpu_to_be32(8); 990 991 fdt_setprop_inplace(initial_boot_params, cf, 992 "cavium,bus-width", &width, sizeof(width)); 993 } 994 } 995 new_reg[0] = cpu_to_be32(cs); 996 new_reg[1] = cpu_to_be32(0); 997 new_reg[2] = cpu_to_be32(0x10000); 998 new_reg[3] = cpu_to_be32(cs + 1); 999 new_reg[4] = cpu_to_be32(0); 1000 new_reg[5] = cpu_to_be32(0x10000); 1001 fdt_setprop_inplace(initial_boot_params, cf, 1002 "reg", new_reg, sizeof(new_reg)); 1003 1004 bootbus = fdt_parent_offset(initial_boot_params, cf); 1005 if (bootbus < 0) 1006 goto no_cf; 1007 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len); 1008 if (!ranges || len < (5 * 8 * sizeof(__be32))) 1009 goto no_cf; 1010 1011 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32); 1012 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff); 1013 ranges[(cs * 5) + 4] = cpu_to_be32(region_size); 1014 if (is_true_ide) { 1015 cs++; 1016 ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32); 1017 ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff); 1018 ranges[(cs * 5) + 4] = cpu_to_be32(region1_size); 1019 } 1020 goto end_cf; 1021 no_cf: 1022 fdt_nop_node(initial_boot_params, cf); 1023 1024 end_cf: 1025 ; 1026 } 1027 1028 /* 8 char LED */ 1029 alias_prop = fdt_getprop(initial_boot_params, aliases, 1030 "led0", NULL); 1031 if (alias_prop) { 1032 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; 1033 unsigned long base_ptr, region_base, region_size; 1034 int cs, bootbus; 1035 __be32 new_reg[6]; 1036 __be32 *ranges; 1037 int len; 1038 int led = fdt_path_offset(initial_boot_params, alias_prop); 1039 1040 base_ptr = octeon_bootinfo->led_display_base_addr; 1041 if (base_ptr == 0) 1042 goto no_led; 1043 /* Find CS0 region. */ 1044 for (cs = 0; cs < 8; cs++) { 1045 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 1046 region_base = mio_boot_reg_cfg.s.base << 16; 1047 region_size = (mio_boot_reg_cfg.s.size + 1) << 16; 1048 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base 1049 && base_ptr < region_base + region_size) 1050 break; 1051 } 1052 1053 if (cs > 7) 1054 goto no_led; 1055 1056 new_reg[0] = cpu_to_be32(cs); 1057 new_reg[1] = cpu_to_be32(0x20); 1058 new_reg[2] = cpu_to_be32(0x20); 1059 new_reg[3] = cpu_to_be32(cs); 1060 new_reg[4] = cpu_to_be32(0); 1061 new_reg[5] = cpu_to_be32(0x20); 1062 fdt_setprop_inplace(initial_boot_params, led, 1063 "reg", new_reg, sizeof(new_reg)); 1064 1065 bootbus = fdt_parent_offset(initial_boot_params, led); 1066 if (bootbus < 0) 1067 goto no_led; 1068 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len); 1069 if (!ranges || len < (5 * 8 * sizeof(__be32))) 1070 goto no_led; 1071 1072 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32); 1073 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff); 1074 ranges[(cs * 5) + 4] = cpu_to_be32(region_size); 1075 goto end_led; 1076 1077 no_led: 1078 fdt_nop_node(initial_boot_params, led); 1079 end_led: 1080 ; 1081 } 1082 1083 #ifdef CONFIG_USB 1084 /* OHCI/UHCI USB */ 1085 alias_prop = fdt_getprop(initial_boot_params, aliases, 1086 "uctl", NULL); 1087 if (alias_prop) { 1088 int uctl = fdt_path_offset(initial_boot_params, alias_prop); 1089 1090 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) || 1091 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) { 1092 pr_debug("Deleting uctl\n"); 1093 fdt_nop_node(initial_boot_params, uctl); 1094 fdt_nop_property(initial_boot_params, aliases, "uctl"); 1095 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E || 1096 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) { 1097 /* Missing "refclk-type" defaults to crystal. */ 1098 fdt_nop_property(initial_boot_params, uctl, "refclk-type"); 1099 } 1100 } 1101 1102 /* DWC2 USB */ 1103 alias_prop = fdt_getprop(initial_boot_params, aliases, 1104 "usbn", NULL); 1105 if (alias_prop) { 1106 int usbn = fdt_path_offset(initial_boot_params, alias_prop); 1107 1108 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 || 1109 !octeon_has_feature(OCTEON_FEATURE_USB))) { 1110 pr_debug("Deleting usbn\n"); 1111 fdt_nop_node(initial_boot_params, usbn); 1112 fdt_nop_property(initial_boot_params, aliases, "usbn"); 1113 } else { 1114 __be32 new_f[1]; 1115 enum cvmx_helper_board_usb_clock_types c; 1116 1117 c = __cvmx_helper_board_usb_get_clock_type(); 1118 switch (c) { 1119 case USB_CLOCK_TYPE_REF_48: 1120 new_f[0] = cpu_to_be32(48000000); 1121 fdt_setprop_inplace(initial_boot_params, usbn, 1122 "refclk-frequency", new_f, sizeof(new_f)); 1123 fallthrough; 1124 case USB_CLOCK_TYPE_REF_12: 1125 /* Missing "refclk-type" defaults to external. */ 1126 fdt_nop_property(initial_boot_params, usbn, "refclk-type"); 1127 break; 1128 default: 1129 break; 1130 } 1131 } 1132 } 1133 #endif 1134 1135 return 0; 1136 } 1137 1138 static int __init octeon_publish_devices(void) 1139 { 1140 return of_platform_populate(NULL, octeon_ids, NULL, NULL); 1141 } 1142 arch_initcall(octeon_publish_devices); 1143
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.