~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/cavium-octeon/setup.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This file is subject to the terms and conditions of the GNU General Public
  3  * License.  See the file "COPYING" in the main directory of this archive
  4  * for more details.
  5  *
  6  * Copyright (C) 2004-2007 Cavium Networks
  7  * Copyright (C) 2008, 2009 Wind River Systems
  8  *   written by Ralf Baechle <ralf@linux-mips.org>
  9  */
 10 #include <linux/compiler.h>
 11 #include <linux/vmalloc.h>
 12 #include <linux/init.h>
 13 #include <linux/kernel.h>
 14 #include <linux/console.h>
 15 #include <linux/delay.h>
 16 #include <linux/export.h>
 17 #include <linux/interrupt.h>
 18 #include <linux/io.h>
 19 #include <linux/memblock.h>
 20 #include <linux/serial.h>
 21 #include <linux/smp.h>
 22 #include <linux/types.h>
 23 #include <linux/string.h>       /* for memset */
 24 #include <linux/tty.h>
 25 #include <linux/time.h>
 26 #include <linux/platform_device.h>
 27 #include <linux/serial_core.h>
 28 #include <linux/serial_8250.h>
 29 #include <linux/of_fdt.h>
 30 #include <linux/libfdt.h>
 31 #include <linux/kexec.h>
 32 
 33 #include <asm/processor.h>
 34 #include <asm/reboot.h>
 35 #include <asm/smp-ops.h>
 36 #include <asm/irq_cpu.h>
 37 #include <asm/mipsregs.h>
 38 #include <asm/bootinfo.h>
 39 #include <asm/sections.h>
 40 #include <asm/fw/fw.h>
 41 #include <asm/setup.h>
 42 #include <asm/prom.h>
 43 #include <asm/time.h>
 44 
 45 #include <asm/octeon/octeon.h>
 46 #include <asm/octeon/pci-octeon.h>
 47 #include <asm/octeon/cvmx-rst-defs.h>
 48 
 49 /*
 50  * TRUE for devices having registers with little-endian byte
 51  * order, FALSE for registers with native-endian byte order.
 52  * PCI mandates little-endian, USB and SATA are configuraable,
 53  * but we chose little-endian for these.
 54  */
 55 const bool octeon_should_swizzle_table[256] = {
 56         [0x00] = true,  /* bootbus/CF */
 57         [0x1b] = true,  /* PCI mmio window */
 58         [0x1c] = true,  /* PCI mmio window */
 59         [0x1d] = true,  /* PCI mmio window */
 60         [0x1e] = true,  /* PCI mmio window */
 61         [0x68] = true,  /* OCTEON III USB */
 62         [0x69] = true,  /* OCTEON III USB */
 63         [0x6c] = true,  /* OCTEON III SATA */
 64         [0x6f] = true,  /* OCTEON II USB */
 65 };
 66 EXPORT_SYMBOL(octeon_should_swizzle_table);
 67 
 68 #ifdef CONFIG_PCI
 69 extern void pci_console_init(const char *arg);
 70 #endif
 71 
 72 static unsigned long long max_memory = ULLONG_MAX;
 73 static unsigned long long reserve_low_mem;
 74 
 75 DEFINE_SEMAPHORE(octeon_bootbus_sem, 1);
 76 EXPORT_SYMBOL(octeon_bootbus_sem);
 77 
 78 static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
 79 
 80 struct cvmx_bootinfo *octeon_bootinfo;
 81 EXPORT_SYMBOL(octeon_bootinfo);
 82 
 83 #ifdef CONFIG_KEXEC
 84 #ifdef CONFIG_SMP
 85 /*
 86  * Wait for relocation code is prepared and send
 87  * secondary CPUs to spin until kernel is relocated.
 88  */
 89 static void octeon_kexec_smp_down(void *ignored)
 90 {
 91         int cpu = smp_processor_id();
 92 
 93         local_irq_disable();
 94         set_cpu_online(cpu, false);
 95         while (!atomic_read(&kexec_ready_to_reboot))
 96                 cpu_relax();
 97 
 98         asm volatile (
 99         "       sync                                            \n"
100         "       synci   ($0)                                    \n");
101 
102         kexec_reboot();
103 }
104 #endif
105 
106 #define OCTEON_DDR0_BASE    (0x0ULL)
107 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
108 #define OCTEON_DDR1_BASE    (0x410000000ULL)
109 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
110 #define OCTEON_DDR2_BASE    (0x020000000ULL)
111 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
112 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
113 
114 static struct kimage *kimage_ptr;
115 
116 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
117 {
118         int64_t addr;
119         struct cvmx_bootmem_desc *bootmem_desc;
120 
121         bootmem_desc = cvmx_bootmem_get_desc();
122 
123         if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
124                 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
125                 pr_err("Error: requested memory too large,"
126                        "truncating to maximum size\n");
127         }
128 
129         bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
130         bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
131 
132         addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
133         bootmem_desc->head_addr = 0;
134 
135         if (mem_size <= OCTEON_DDR0_SIZE) {
136                 __cvmx_bootmem_phy_free(addr,
137                                 mem_size - reserve_low_mem -
138                                 low_reserved_bytes, 0);
139                 return;
140         }
141 
142         __cvmx_bootmem_phy_free(addr,
143                         OCTEON_DDR0_SIZE - reserve_low_mem -
144                         low_reserved_bytes, 0);
145 
146         mem_size -= OCTEON_DDR0_SIZE;
147 
148         if (mem_size > OCTEON_DDR1_SIZE) {
149                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
150                 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
151                                 mem_size - OCTEON_DDR1_SIZE, 0);
152         } else
153                 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
154 }
155 
156 static int octeon_kexec_prepare(struct kimage *image)
157 {
158         int i;
159         char *bootloader = "kexec";
160 
161         octeon_boot_desc_ptr->argc = 0;
162         for (i = 0; i < image->nr_segments; i++) {
163                 if (!strncmp(bootloader, (char *)image->segment[i].buf,
164                                 strlen(bootloader))) {
165                         /*
166                          * convert command line string to array
167                          * of parameters (as bootloader does).
168                          */
169                         int argc = 0, offt;
170                         char *str = (char *)image->segment[i].buf;
171                         char *ptr = strchr(str, ' ');
172                         while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
173                                 *ptr = '\0';
174                                 if (ptr[1] != ' ') {
175                                         offt = (int)(ptr - str + 1);
176                                         octeon_boot_desc_ptr->argv[argc] =
177                                                 image->segment[i].mem + offt;
178                                         argc++;
179                                 }
180                                 ptr = strchr(ptr + 1, ' ');
181                         }
182                         octeon_boot_desc_ptr->argc = argc;
183                         break;
184                 }
185         }
186 
187         /*
188          * Information about segments will be needed during pre-boot memory
189          * initialization.
190          */
191         kimage_ptr = image;
192         return 0;
193 }
194 
195 static void octeon_generic_shutdown(void)
196 {
197         int i;
198 #ifdef CONFIG_SMP
199         int cpu;
200 #endif
201         struct cvmx_bootmem_desc *bootmem_desc;
202         void *named_block_array_ptr;
203 
204         bootmem_desc = cvmx_bootmem_get_desc();
205         named_block_array_ptr =
206                 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
207 
208 #ifdef CONFIG_SMP
209         /* disable watchdogs */
210         for_each_online_cpu(cpu)
211                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
212 #else
213         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
214 #endif
215         if (kimage_ptr != kexec_crash_image) {
216                 memset(named_block_array_ptr,
217                         0x0,
218                         CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
219                         sizeof(struct cvmx_bootmem_named_block_desc));
220                 /*
221                  * Mark all memory (except low 0x100000 bytes) as free.
222                  * It is the same thing that bootloader does.
223                  */
224                 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
225                                 0x100000);
226                 /*
227                  * Allocate all segments to avoid their corruption during boot.
228                  */
229                 for (i = 0; i < kimage_ptr->nr_segments; i++)
230                         cvmx_bootmem_alloc_address(
231                                 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
232                                 kimage_ptr->segment[i].mem - PAGE_SIZE,
233                                 PAGE_SIZE);
234         } else {
235                 /*
236                  * Do not mark all memory as free. Free only named sections
237                  * leaving the rest of memory unchanged.
238                  */
239                 struct cvmx_bootmem_named_block_desc *ptr =
240                         (struct cvmx_bootmem_named_block_desc *)
241                         named_block_array_ptr;
242 
243                 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
244                         if (ptr[i].size)
245                                 cvmx_bootmem_free_named(ptr[i].name);
246         }
247         kexec_args[2] = 1UL; /* running on octeon_main_processor */
248         kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249 #ifdef CONFIG_SMP
250         secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
251         secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
252 #endif
253 }
254 
255 static void octeon_shutdown(void)
256 {
257         octeon_generic_shutdown();
258 #ifdef CONFIG_SMP
259         smp_call_function(octeon_kexec_smp_down, NULL, 0);
260         smp_wmb();
261         while (num_online_cpus() > 1) {
262                 cpu_relax();
263                 mdelay(1);
264         }
265 #endif
266 }
267 
268 static void octeon_crash_shutdown(struct pt_regs *regs)
269 {
270         octeon_generic_shutdown();
271         default_machine_crash_shutdown(regs);
272 }
273 
274 #ifdef CONFIG_SMP
275 void octeon_crash_smp_send_stop(void)
276 {
277         int cpu;
278 
279         /* disable watchdogs */
280         for_each_online_cpu(cpu)
281                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
282 }
283 #endif
284 
285 #endif /* CONFIG_KEXEC */
286 
287 uint64_t octeon_reserve32_memory;
288 EXPORT_SYMBOL(octeon_reserve32_memory);
289 
290 #ifdef CONFIG_KEXEC
291 /* crashkernel cmdline parameter is parsed _after_ memory setup
292  * we also parse it here (workaround for EHB5200) */
293 static uint64_t crashk_size, crashk_base;
294 #endif
295 
296 static int octeon_uart;
297 
298 extern asmlinkage void handle_int(void);
299 
300 /**
301  * octeon_is_simulation - Return non-zero if we are currently running
302  * in the Octeon simulator
303  *
304  * Return: non-0 if running in the Octeon simulator, 0 otherwise
305  */
306 int octeon_is_simulation(void)
307 {
308         return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
309 }
310 EXPORT_SYMBOL(octeon_is_simulation);
311 
312 /**
313  * octeon_is_pci_host - Return true if Octeon is in PCI Host mode. This means
314  * Linux can control the PCI bus.
315  *
316  * Return: Non-zero if Octeon is in host mode.
317  */
318 int octeon_is_pci_host(void)
319 {
320 #ifdef CONFIG_PCI
321         return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
322 #else
323         return 0;
324 #endif
325 }
326 
327 /**
328  * octeon_get_clock_rate - Get the clock rate of Octeon
329  *
330  * Return: Clock rate in HZ
331  */
332 uint64_t octeon_get_clock_rate(void)
333 {
334         struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
335 
336         return sysinfo->cpu_clock_hz;
337 }
338 EXPORT_SYMBOL(octeon_get_clock_rate);
339 
340 static u64 octeon_io_clock_rate;
341 
342 u64 octeon_get_io_clock_rate(void)
343 {
344         return octeon_io_clock_rate;
345 }
346 EXPORT_SYMBOL(octeon_get_io_clock_rate);
347 
348 
349 /**
350  * octeon_write_lcd - Write to the LCD display connected to the bootbus.
351  * @s:      String to write
352  *
353  * This display exists on most Cavium evaluation boards. If it doesn't exist,
354  * then this function doesn't do anything.
355  */
356 static void octeon_write_lcd(const char *s)
357 {
358         if (octeon_bootinfo->led_display_base_addr) {
359                 void __iomem *lcd_address =
360                         ioremap(octeon_bootinfo->led_display_base_addr,
361                                         8);
362                 int i;
363                 for (i = 0; i < 8; i++, s++) {
364                         if (*s)
365                                 iowrite8(*s, lcd_address + i);
366                         else
367                                 iowrite8(' ', lcd_address + i);
368                 }
369                 iounmap(lcd_address);
370         }
371 }
372 
373 /**
374  * octeon_get_boot_uart - Return the console uart passed by the bootloader
375  *
376  * Return: uart number (0 or 1)
377  */
378 static int octeon_get_boot_uart(void)
379 {
380         return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
381                 1 : 0;
382 }
383 
384 /**
385  * octeon_get_boot_coremask - Get the coremask Linux was booted on.
386  *
387  * Return: Core mask
388  */
389 int octeon_get_boot_coremask(void)
390 {
391         return octeon_boot_desc_ptr->core_mask;
392 }
393 
394 /**
395  * octeon_check_cpu_bist - Check the hardware BIST results for a CPU
396  */
397 void octeon_check_cpu_bist(void)
398 {
399         const int coreid = cvmx_get_core_num();
400         unsigned long long mask;
401         unsigned long long bist_val;
402 
403         /* Check BIST results for COP0 registers */
404         mask = 0x1f00000000ull;
405         bist_val = read_octeon_c0_icacheerr();
406         if (bist_val & mask)
407                 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
408                        coreid, bist_val);
409 
410         bist_val = read_octeon_c0_dcacheerr();
411         if (bist_val & 1)
412                 pr_err("Core%d L1 Dcache parity error: "
413                        "CacheErr(dcache) = 0x%llx\n",
414                        coreid, bist_val);
415 
416         mask = 0xfc00000000000000ull;
417         bist_val = read_c0_cvmmemctl();
418         if (bist_val & mask)
419                 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
420                        coreid, bist_val);
421 
422         write_octeon_c0_dcacheerr(0);
423 }
424 
425 /**
426  * octeon_restart - Reboot Octeon
427  *
428  * @command: Command to pass to the bootloader. Currently ignored.
429  */
430 static void octeon_restart(char *command)
431 {
432         /* Disable all watchdogs before soft reset. They don't get cleared */
433 #ifdef CONFIG_SMP
434         int cpu;
435         for_each_online_cpu(cpu)
436                 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
437 #else
438         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
439 #endif
440 
441         mb();
442         while (1)
443                 if (OCTEON_IS_OCTEON3())
444                         cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
445                 else
446                         cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
447 }
448 
449 
450 /**
451  * octeon_kill_core - Permanently stop a core.
452  *
453  * @arg: Ignored.
454  */
455 static void octeon_kill_core(void *arg)
456 {
457         if (octeon_is_simulation())
458                 /* A break instruction causes the simulator stop a core */
459                 asm volatile ("break" ::: "memory");
460 
461         local_irq_disable();
462         /* Disable watchdog on this core. */
463         cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
464         /* Spin in a low power mode. */
465         while (true)
466                 asm volatile ("wait" ::: "memory");
467 }
468 
469 
470 /**
471  * octeon_halt - Halt the system
472  */
473 static void octeon_halt(void)
474 {
475         smp_call_function(octeon_kill_core, NULL, 0);
476 
477         switch (octeon_bootinfo->board_type) {
478         case CVMX_BOARD_TYPE_NAO38:
479                 /* Driving a 1 to GPIO 12 shuts off this board */
480                 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
481                 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
482                 break;
483         default:
484                 octeon_write_lcd("PowerOff");
485                 break;
486         }
487 
488         octeon_kill_core(NULL);
489 }
490 
491 static char __read_mostly octeon_system_type[80];
492 
493 static void __init init_octeon_system_type(void)
494 {
495         char const *board_type;
496 
497         board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
498         if (board_type == NULL) {
499                 struct device_node *root;
500                 int ret;
501 
502                 root = of_find_node_by_path("/");
503                 ret = of_property_read_string(root, "model", &board_type);
504                 of_node_put(root);
505                 if (ret)
506                         board_type = "Unsupported Board";
507         }
508 
509         snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
510                  board_type, octeon_model_get_string(read_c0_prid()));
511 }
512 
513 /**
514  * octeon_board_type_string - Return a string representing the system type
515  *
516  * Return: system type string
517  */
518 const char *octeon_board_type_string(void)
519 {
520         return octeon_system_type;
521 }
522 
523 const char *get_system_type(void)
524         __attribute__ ((alias("octeon_board_type_string")));
525 
526 void octeon_user_io_init(void)
527 {
528         union octeon_cvmemctl cvmmemctl;
529 
530         /* Get the current settings for CP0_CVMMEMCTL_REG */
531         cvmmemctl.u64 = read_c0_cvmmemctl();
532         /* R/W If set, marked write-buffer entries time out the same
533          * as other entries; if clear, marked write-buffer entries
534          * use the maximum timeout. */
535         cvmmemctl.s.dismarkwblongto = 1;
536         /* R/W If set, a merged store does not clear the write-buffer
537          * entry timeout state. */
538         cvmmemctl.s.dismrgclrwbto = 0;
539         /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
540          * word location for an IOBDMA. The other 8 bits come from the
541          * SCRADDR field of the IOBDMA. */
542         cvmmemctl.s.iobdmascrmsb = 0;
543         /* R/W If set, SYNCWS and SYNCS only order marked stores; if
544          * clear, SYNCWS and SYNCS only order unmarked
545          * stores. SYNCWSMARKED has no effect when DISSYNCWS is
546          * set. */
547         cvmmemctl.s.syncwsmarked = 0;
548         /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
549         cvmmemctl.s.dissyncws = 0;
550         /* R/W If set, no stall happens on write buffer full. */
551         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
552                 cvmmemctl.s.diswbfst = 1;
553         else
554                 cvmmemctl.s.diswbfst = 0;
555         /* R/W If set (and SX set), supervisor-level loads/stores can
556          * use XKPHYS addresses with <48>==0 */
557         cvmmemctl.s.xkmemenas = 0;
558 
559         /* R/W If set (and UX set), user-level loads/stores can use
560          * XKPHYS addresses with VA<48>==0 */
561         cvmmemctl.s.xkmemenau = 0;
562 
563         /* R/W If set (and SX set), supervisor-level loads/stores can
564          * use XKPHYS addresses with VA<48>==1 */
565         cvmmemctl.s.xkioenas = 0;
566 
567         /* R/W If set (and UX set), user-level loads/stores can use
568          * XKPHYS addresses with VA<48>==1 */
569         cvmmemctl.s.xkioenau = 0;
570 
571         /* R/W If set, all stores act as SYNCW (NOMERGE must be set
572          * when this is set) RW, reset to 0. */
573         cvmmemctl.s.allsyncw = 0;
574 
575         /* R/W If set, no stores merge, and all stores reach the
576          * coherent bus in order. */
577         cvmmemctl.s.nomerge = 0;
578         /* R/W Selects the bit in the counter used for DID time-outs 0
579          * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
580          * between 1x and 2x this interval. For example, with
581          * DIDTTO=3, expiration interval is between 16K and 32K. */
582         cvmmemctl.s.didtto = 0;
583         /* R/W If set, the (mem) CSR clock never turns off. */
584         cvmmemctl.s.csrckalwys = 0;
585         /* R/W If set, mclk never turns off. */
586         cvmmemctl.s.mclkalwys = 0;
587         /* R/W Selects the bit in the counter used for write buffer
588          * flush time-outs (WBFLT+11) is the bit position in an
589          * internal counter used to determine expiration. The write
590          * buffer expires between 1x and 2x this interval. For
591          * example, with WBFLT = 0, a write buffer expires between 2K
592          * and 4K cycles after the write buffer entry is allocated. */
593         cvmmemctl.s.wbfltime = 0;
594         /* R/W If set, do not put Istream in the L2 cache. */
595         cvmmemctl.s.istrnol2 = 0;
596 
597         /*
598          * R/W The write buffer threshold. As per erratum Core-14752
599          * for CN63XX, a sc/scd might fail if the write buffer is
600          * full.  Lowering WBTHRESH greatly lowers the chances of the
601          * write buffer ever being full and triggering the erratum.
602          */
603         if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
604                 cvmmemctl.s.wbthresh = 4;
605         else
606                 cvmmemctl.s.wbthresh = 10;
607 
608         /* R/W If set, CVMSEG is available for loads/stores in
609          * kernel/debug mode. */
610 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
611         cvmmemctl.s.cvmsegenak = 1;
612 #else
613         cvmmemctl.s.cvmsegenak = 0;
614 #endif
615         /* R/W If set, CVMSEG is available for loads/stores in
616          * supervisor mode. */
617         cvmmemctl.s.cvmsegenas = 0;
618         /* R/W If set, CVMSEG is available for loads/stores in user
619          * mode. */
620         cvmmemctl.s.cvmsegenau = 0;
621 
622         write_c0_cvmmemctl(cvmmemctl.u64);
623 
624         /* Setup of CVMSEG is done in kernel-entry-init.h */
625         if (smp_processor_id() == 0)
626                 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
627                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
628                           CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
629 
630         if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
631                 union cvmx_iob_fau_timeout fau_timeout;
632 
633                 /* Set a default for the hardware timeouts */
634                 fau_timeout.u64 = 0;
635                 fau_timeout.s.tout_val = 0xfff;
636                 /* Disable tagwait FAU timeout */
637                 fau_timeout.s.tout_enb = 0;
638                 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
639         }
640 
641         if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
642              !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
643             OCTEON_IS_MODEL(OCTEON_CN70XX)) {
644                 union cvmx_pow_nw_tim nm_tim;
645 
646                 nm_tim.u64 = 0;
647                 /* 4096 cycles */
648                 nm_tim.s.nw_tim = 3;
649                 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
650         }
651 
652         write_octeon_c0_icacheerr(0);
653         write_c0_derraddr1(0);
654 }
655 
656 /**
657  * prom_init - Early entry point for arch setup
658  */
659 void __init prom_init(void)
660 {
661         struct cvmx_sysinfo *sysinfo;
662         const char *arg;
663         char *p;
664         int i;
665         u64 t;
666         int argc;
667         /*
668          * The bootloader passes a pointer to the boot descriptor in
669          * $a3, this is available as fw_arg3.
670          */
671         octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
672         octeon_bootinfo =
673                 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
674         cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
675 
676         sysinfo = cvmx_sysinfo_get();
677         memset(sysinfo, 0, sizeof(*sysinfo));
678         sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
679         sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
680 
681         if ((octeon_bootinfo->major_version > 1) ||
682             (octeon_bootinfo->major_version == 1 &&
683              octeon_bootinfo->minor_version >= 4))
684                 cvmx_coremask_copy(&sysinfo->core_mask,
685                                    &octeon_bootinfo->ext_core_mask);
686         else
687                 cvmx_coremask_set64(&sysinfo->core_mask,
688                                     octeon_bootinfo->core_mask);
689 
690         /* Some broken u-boot pass garbage in upper bits, clear them out */
691         if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
692                 for (i = 512; i < 1024; i++)
693                         cvmx_coremask_clear_core(&sysinfo->core_mask, i);
694 
695         sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
696         sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
697         sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
698         sysinfo->board_type = octeon_bootinfo->board_type;
699         sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
700         sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
701         memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
702                sizeof(sysinfo->mac_addr_base));
703         sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
704         memcpy(sysinfo->board_serial_number,
705                octeon_bootinfo->board_serial_number,
706                sizeof(sysinfo->board_serial_number));
707         sysinfo->compact_flash_common_base_addr =
708                 octeon_bootinfo->compact_flash_common_base_addr;
709         sysinfo->compact_flash_attribute_base_addr =
710                 octeon_bootinfo->compact_flash_attribute_base_addr;
711         sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
712         sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
713         sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
714 
715         if (OCTEON_IS_OCTEON2()) {
716                 /* I/O clock runs at a different rate than the CPU. */
717                 union cvmx_mio_rst_boot rst_boot;
718                 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
719                 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720         } else if (OCTEON_IS_OCTEON3()) {
721                 /* I/O clock runs at a different rate than the CPU. */
722                 union cvmx_rst_boot rst_boot;
723                 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
724                 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
725         } else {
726                 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
727         }
728 
729         t = read_c0_cvmctl();
730         if ((t & (1ull << 27)) == 0) {
731                 /*
732                  * Setup the multiplier save/restore code if
733                  * CvmCtl[NOMUL] clear.
734                  */
735                 void *save;
736                 void *save_end;
737                 void *restore;
738                 void *restore_end;
739                 int save_len;
740                 int restore_len;
741                 int save_max = (char *)octeon_mult_save_end -
742                         (char *)octeon_mult_save;
743                 int restore_max = (char *)octeon_mult_restore_end -
744                         (char *)octeon_mult_restore;
745                 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
746                         save = octeon_mult_save3;
747                         save_end = octeon_mult_save3_end;
748                         restore = octeon_mult_restore3;
749                         restore_end = octeon_mult_restore3_end;
750                 } else {
751                         save = octeon_mult_save2;
752                         save_end = octeon_mult_save2_end;
753                         restore = octeon_mult_restore2;
754                         restore_end = octeon_mult_restore2_end;
755                 }
756                 save_len = (char *)save_end - (char *)save;
757                 restore_len = (char *)restore_end - (char *)restore;
758                 if (!WARN_ON(save_len > save_max ||
759                                 restore_len > restore_max)) {
760                         memcpy(octeon_mult_save, save, save_len);
761                         memcpy(octeon_mult_restore, restore, restore_len);
762                 }
763         }
764 
765         /*
766          * Only enable the LED controller if we're running on a CN38XX, CN58XX,
767          * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
768          */
769         if (!octeon_is_simulation() &&
770             octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
771                 cvmx_write_csr(CVMX_LED_EN, 0);
772                 cvmx_write_csr(CVMX_LED_PRT, 0);
773                 cvmx_write_csr(CVMX_LED_DBG, 0);
774                 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
775                 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
776                 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
777                 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
778                 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
779                 cvmx_write_csr(CVMX_LED_EN, 1);
780         }
781 
782         /*
783          * We need to temporarily allocate all memory in the reserve32
784          * region. This makes sure the kernel doesn't allocate this
785          * memory when it is getting memory from the
786          * bootloader. Later, after the memory allocations are
787          * complete, the reserve32 will be freed.
788          *
789          * Allocate memory for RESERVED32 aligned on 2MB boundary. This
790          * is in case we later use hugetlb entries with it.
791          */
792         if (CONFIG_CAVIUM_RESERVE32) {
793                 int64_t addr =
794                         cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
795                                                            0, 0, 2 << 20,
796                                                            "CAVIUM_RESERVE32", 0);
797                 if (addr < 0)
798                         pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
799                 else
800                         octeon_reserve32_memory = addr;
801         }
802 
803 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
804         if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
805                 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
806         } else {
807                 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
808 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
809                 /* TLB refill */
810                 cvmx_l2c_lock_mem_region(ebase, 0x100);
811 #endif
812 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
813                 /* General exception */
814                 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
815 #endif
816 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
817                 /* Interrupt handler */
818                 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
819 #endif
820 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
821                 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
822                 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
823 #endif
824 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
825                 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
826 #endif
827         }
828 #endif
829 
830         octeon_check_cpu_bist();
831 
832         octeon_uart = octeon_get_boot_uart();
833 
834 #ifdef CONFIG_SMP
835         octeon_write_lcd("LinuxSMP");
836 #else
837         octeon_write_lcd("Linux");
838 #endif
839 
840         octeon_setup_delays();
841 
842         /*
843          * BIST should always be enabled when doing a soft reset. L2
844          * Cache locking for instance is not cleared unless BIST is
845          * enabled.  Unfortunately due to a chip errata G-200 for
846          * Cn38XX and CN31XX, BIST must be disabled on these parts.
847          */
848         if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
849             OCTEON_IS_MODEL(OCTEON_CN31XX))
850                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
851         else
852                 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
853 
854         /* Default to 64MB in the simulator to speed things up */
855         if (octeon_is_simulation())
856                 max_memory = 64ull << 20;
857 
858         arg = strstr(arcs_cmdline, "mem=");
859         if (arg) {
860                 max_memory = memparse(arg + 4, &p);
861                 if (max_memory == 0)
862                         max_memory = 32ull << 30;
863                 if (*p == '@')
864                         reserve_low_mem = memparse(p + 1, &p);
865         }
866 
867         arcs_cmdline[0] = 0;
868         argc = octeon_boot_desc_ptr->argc;
869         for (i = 0; i < argc; i++) {
870                 const char *arg =
871                         cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
872                 if ((strncmp(arg, "MEM=", 4) == 0) ||
873                     (strncmp(arg, "mem=", 4) == 0)) {
874                         max_memory = memparse(arg + 4, &p);
875                         if (max_memory == 0)
876                                 max_memory = 32ull << 30;
877                         if (*p == '@')
878                                 reserve_low_mem = memparse(p + 1, &p);
879 #ifdef CONFIG_KEXEC
880                 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
881                         crashk_size = memparse(arg+12, &p);
882                         if (*p == '@')
883                                 crashk_base = memparse(p+1, &p);
884                         strcat(arcs_cmdline, " ");
885                         strcat(arcs_cmdline, arg);
886                         /*
887                          * To do: switch parsing to new style, something like:
888                          * parse_crashkernel(arg, sysinfo->system_dram_size,
889                          *                &crashk_size, &crashk_base);
890                          */
891 #endif
892                 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
893                            sizeof(arcs_cmdline) - 1) {
894                         strcat(arcs_cmdline, " ");
895                         strcat(arcs_cmdline, arg);
896                 }
897         }
898 
899         if (strstr(arcs_cmdline, "console=") == NULL) {
900                 if (octeon_uart == 1)
901                         strcat(arcs_cmdline, " console=ttyS1,115200");
902                 else
903                         strcat(arcs_cmdline, " console=ttyS0,115200");
904         }
905 
906         mips_hpt_frequency = octeon_get_clock_rate();
907 
908         octeon_init_cvmcount();
909 
910         _machine_restart = octeon_restart;
911         _machine_halt = octeon_halt;
912 
913 #ifdef CONFIG_KEXEC
914         _machine_kexec_shutdown = octeon_shutdown;
915         _machine_crash_shutdown = octeon_crash_shutdown;
916         _machine_kexec_prepare = octeon_kexec_prepare;
917 #ifdef CONFIG_SMP
918         _crash_smp_send_stop = octeon_crash_smp_send_stop;
919 #endif
920 #endif
921 
922         octeon_user_io_init();
923         octeon_setup_smp();
924 }
925 
926 /* Exclude a single page from the regions obtained in plat_mem_setup. */
927 #ifndef CONFIG_CRASH_DUMP
928 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
929 {
930         if (addr > *mem && addr < *mem + *size) {
931                 u64 inc = addr - *mem;
932                 memblock_add(*mem, inc);
933                 *mem += inc;
934                 *size -= inc;
935         }
936 
937         if (addr == *mem && *size > PAGE_SIZE) {
938                 *mem += PAGE_SIZE;
939                 *size -= PAGE_SIZE;
940         }
941 }
942 #endif /* CONFIG_CRASH_DUMP */
943 
944 void __init fw_init_cmdline(void)
945 {
946         int i;
947 
948         octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
949         for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
950                 const char *arg =
951                         cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
952                 if (strlen(arcs_cmdline) + strlen(arg) + 1 <
953                            sizeof(arcs_cmdline) - 1) {
954                         strcat(arcs_cmdline, " ");
955                         strcat(arcs_cmdline, arg);
956                 }
957         }
958 }
959 
960 void __init *plat_get_fdt(void)
961 {
962         octeon_bootinfo =
963                 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
964         return phys_to_virt(octeon_bootinfo->fdt_addr);
965 }
966 
967 void __init plat_mem_setup(void)
968 {
969         uint64_t mem_alloc_size;
970         uint64_t total;
971         uint64_t crashk_end;
972 #ifndef CONFIG_CRASH_DUMP
973         int64_t memory;
974 #endif
975 
976         total = 0;
977         crashk_end = 0;
978 
979         /*
980          * The Mips memory init uses the first memory location for
981          * some memory vectors. When SPARSEMEM is in use, it doesn't
982          * verify that the size is big enough for the final
983          * vectors. Making the smallest chuck 4MB seems to be enough
984          * to consistently work.
985          */
986         mem_alloc_size = 4 << 20;
987         if (mem_alloc_size > max_memory)
988                 mem_alloc_size = max_memory;
989 
990 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
991 #ifdef CONFIG_CRASH_DUMP
992         memblock_add(reserve_low_mem, max_memory);
993         total += max_memory;
994 #else
995 #ifdef CONFIG_KEXEC
996         if (crashk_size > 0) {
997                 memblock_add(crashk_base, crashk_size);
998                 crashk_end = crashk_base + crashk_size;
999         }
1000 #endif
1001         /*
1002          * When allocating memory, we want incrementing addresses,
1003          * which is handled by memblock
1004          */
1005         cvmx_bootmem_lock();
1006         while (total < max_memory) {
1007                 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1008                                                 __pa_symbol(&_end), -1,
1009                                                 0x100000,
1010                                                 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1011                 if (memory >= 0) {
1012                         u64 size = mem_alloc_size;
1013 #ifdef CONFIG_KEXEC
1014                         uint64_t end;
1015 #endif
1016 
1017                         /*
1018                          * exclude a page at the beginning and end of
1019                          * the 256MB PCIe 'hole' so the kernel will not
1020                          * try to allocate multi-page buffers that
1021                          * span the discontinuity.
1022                          */
1023                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1024                                             &memory, &size);
1025                         memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1026                                             CVMX_PCIE_BAR1_PHYS_SIZE,
1027                                             &memory, &size);
1028 #ifdef CONFIG_KEXEC
1029                         end = memory + mem_alloc_size;
1030 
1031                         /*
1032                          * This function automatically merges address regions
1033                          * next to each other if they are received in
1034                          * incrementing order
1035                          */
1036                         if (memory < crashk_base && end >  crashk_end) {
1037                                 /* region is fully in */
1038                                 memblock_add(memory, crashk_base - memory);
1039                                 total += crashk_base - memory;
1040                                 memblock_add(crashk_end, end - crashk_end);
1041                                 total += end - crashk_end;
1042                                 continue;
1043                         }
1044 
1045                         if (memory >= crashk_base && end <= crashk_end)
1046                                 /*
1047                                  * Entire memory region is within the new
1048                                  *  kernel's memory, ignore it.
1049                                  */
1050                                 continue;
1051 
1052                         if (memory > crashk_base && memory < crashk_end &&
1053                             end > crashk_end) {
1054                                 /*
1055                                  * Overlap with the beginning of the region,
1056                                  * reserve the beginning.
1057                                   */
1058                                 mem_alloc_size -= crashk_end - memory;
1059                                 memory = crashk_end;
1060                         } else if (memory < crashk_base && end > crashk_base &&
1061                                    end < crashk_end)
1062                                 /*
1063                                  * Overlap with the beginning of the region,
1064                                  * chop of end.
1065                                  */
1066                                 mem_alloc_size -= end - crashk_base;
1067 #endif
1068                         memblock_add(memory, mem_alloc_size);
1069                         total += mem_alloc_size;
1070                         /* Recovering mem_alloc_size */
1071                         mem_alloc_size = 4 << 20;
1072                 } else {
1073                         break;
1074                 }
1075         }
1076         cvmx_bootmem_unlock();
1077 #endif /* CONFIG_CRASH_DUMP */
1078 
1079         /*
1080          * Now that we've allocated the kernel memory it is safe to
1081          * free the reserved region. We free it here so that builtin
1082          * drivers can use the memory.
1083          */
1084         if (octeon_reserve32_memory)
1085                 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1086 
1087         if (total == 0)
1088                 panic("Unable to allocate memory from "
1089                       "cvmx_bootmem_phy_alloc");
1090 }
1091 
1092 /*
1093  * Emit one character to the boot UART.  Exported for use by the
1094  * watchdog timer.
1095  */
1096 void prom_putchar(char c)
1097 {
1098         uint64_t lsrval;
1099 
1100         /* Spin until there is room */
1101         do {
1102                 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1103         } while ((lsrval & 0x20) == 0);
1104 
1105         /* Write the byte */
1106         cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1107 }
1108 EXPORT_SYMBOL(prom_putchar);
1109 
1110 void __init prom_free_prom_memory(void)
1111 {
1112         if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
1113                 /* Check for presence of Core-14449 fix.  */
1114                 u32 insn;
1115                 u32 *foo;
1116 
1117                 foo = &insn;
1118 
1119                 asm volatile("# before" : : : "memory");
1120                 prefetch(foo);
1121                 asm volatile(
1122                         ".set push\n\t"
1123                         ".set noreorder\n\t"
1124                         "bal 1f\n\t"
1125                         "nop\n"
1126                         "1:\tlw %0,-12($31)\n\t"
1127                         ".set pop\n\t"
1128                         : "=r" (insn) : : "$31", "memory");
1129 
1130                 if ((insn >> 26) != 0x33)
1131                         panic("No PREF instruction at Core-14449 probe point.");
1132 
1133                 if (((insn >> 16) & 0x1f) != 28)
1134                         panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1135                               "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1136                               insn);
1137         }
1138 }
1139 
1140 void __init octeon_fill_mac_addresses(void);
1141 
1142 void __init device_tree_init(void)
1143 {
1144         const void *fdt;
1145         bool do_prune;
1146         bool fill_mac;
1147 
1148 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1149         if (!fdt_check_header(&__appended_dtb)) {
1150                 fdt = &__appended_dtb;
1151                 do_prune = false;
1152                 fill_mac = true;
1153                 pr_info("Using appended Device Tree.\n");
1154         } else
1155 #endif
1156         if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1157                 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1158                 if (fdt_check_header(fdt))
1159                         panic("Corrupt Device Tree passed to kernel.");
1160                 do_prune = false;
1161                 fill_mac = false;
1162                 pr_info("Using passed Device Tree.\n");
1163         } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1164                 fdt = &__dtb_octeon_68xx_begin;
1165                 do_prune = true;
1166                 fill_mac = true;
1167         } else {
1168                 fdt = &__dtb_octeon_3xxx_begin;
1169                 do_prune = true;
1170                 fill_mac = true;
1171         }
1172 
1173         initial_boot_params = (void *)fdt;
1174 
1175         if (do_prune) {
1176                 octeon_prune_device_tree();
1177                 pr_info("Using internal Device Tree.\n");
1178         }
1179         if (fill_mac)
1180                 octeon_fill_mac_addresses();
1181         unflatten_and_copy_device_tree();
1182         init_octeon_system_type();
1183 }
1184 
1185 static int __initdata disable_octeon_edac_p;
1186 
1187 static int __init disable_octeon_edac(char *str)
1188 {
1189         disable_octeon_edac_p = 1;
1190         return 0;
1191 }
1192 early_param("disable_octeon_edac", disable_octeon_edac);
1193 
1194 static char *edac_device_names[] = {
1195         "octeon_l2c_edac",
1196         "octeon_pc_edac",
1197 };
1198 
1199 static int __init edac_devinit(void)
1200 {
1201         struct platform_device *dev;
1202         int i, err = 0;
1203         int num_lmc;
1204         char *name;
1205 
1206         if (disable_octeon_edac_p)
1207                 return 0;
1208 
1209         for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1210                 name = edac_device_names[i];
1211                 dev = platform_device_register_simple(name, -1, NULL, 0);
1212                 if (IS_ERR(dev)) {
1213                         pr_err("Registration of %s failed!\n", name);
1214                         err = PTR_ERR(dev);
1215                 }
1216         }
1217 
1218         num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1219                 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1220         for (i = 0; i < num_lmc; i++) {
1221                 dev = platform_device_register_simple("octeon_lmc_edac",
1222                                                       i, NULL, 0);
1223                 if (IS_ERR(dev)) {
1224                         pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1225                         err = PTR_ERR(dev);
1226                 }
1227         }
1228 
1229         return err;
1230 }
1231 device_initcall(edac_devinit);
1232 
1233 static void __initdata *octeon_dummy_iospace;
1234 
1235 static int __init octeon_no_pci_init(void)
1236 {
1237         /*
1238          * Initially assume there is no PCI. The PCI/PCIe platform code will
1239          * later re-initialize these to correct values if they are present.
1240          */
1241         octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1242         set_io_port_base((unsigned long)octeon_dummy_iospace);
1243         ioport_resource.start = RESOURCE_SIZE_MAX;
1244         ioport_resource.end = 0;
1245         return 0;
1246 }
1247 core_initcall(octeon_no_pci_init);
1248 
1249 static int __init octeon_no_pci_release(void)
1250 {
1251         /*
1252          * Release the allocated memory if a real IO space is there.
1253          */
1254         if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1255                 vfree(octeon_dummy_iospace);
1256         return 0;
1257 }
1258 late_initcall(octeon_no_pci_release);
1259 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php