1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle 7 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. 8 */ 9 #ifndef _ASM_PGTABLE_32_H 10 #define _ASM_PGTABLE_32_H 11 12 #include <asm/addrspace.h> 13 #include <asm/page.h> 14 15 #include <linux/linkage.h> 16 #include <asm/cachectl.h> 17 #include <asm/fixmap.h> 18 19 #include <asm-generic/pgtable-nopmd.h> 20 21 #ifdef CONFIG_HIGHMEM 22 #include <asm/highmem.h> 23 #endif 24 25 /* 26 * Regarding 32-bit MIPS huge page support (and the tradeoff it entails): 27 * 28 * We use the same huge page sizes as 64-bit MIPS. Assuming a 4KB page size, 29 * our 2-level table layout would normally have a PGD entry cover a contiguous 30 * 4MB virtual address region (pointing to a 4KB PTE page of 1,024 32-bit pte_t 31 * pointers, each pointing to a 4KB physical page). The problem is that 4MB, 32 * spanning both halves of a TLB EntryLo0,1 pair, requires 2MB hardware page 33 * support, not one of the standard supported sizes (1MB,4MB,16MB,...). 34 * To correct for this, when huge pages are enabled, we halve the number of 35 * pointers a PTE page holds, making its last half go to waste. Correspondingly, 36 * we double the number of PGD pages. Overall, page table memory overhead 37 * increases to match 64-bit MIPS, but PTE lookups remain CPU cache-friendly. 38 * 39 * NOTE: We don't yet support huge pages if extended-addressing is enabled 40 * (i.e. EVA, XPA, 36-bit Alchemy/Netlogic). 41 */ 42 43 extern int temp_tlb_entry; 44 45 /* 46 * - add_temporary_entry() add a temporary TLB entry. We use TLB entries 47 * starting at the top and working down. This is for populating the 48 * TLB before trap_init() puts the TLB miss handler in place. It 49 * should be used only for entries matching the actual page tables, 50 * to prevent inconsistencies. 51 */ 52 extern int add_temporary_entry(unsigned long entrylo0, unsigned long entrylo1, 53 unsigned long entryhi, unsigned long pagemask); 54 55 /* 56 * Basically we have the same two-level (which is the logical three level 57 * Linux page table layout folded) page tables as the i386. Some day 58 * when we have proper page coloring support we can have a 1% quicker 59 * tlb refill handling mechanism, but for now it is a bit slower but 60 * works even with the cache aliasing problem the R4k and above have. 61 */ 62 63 /* PGDIR_SHIFT determines what a third-level page table entry can map */ 64 #if defined(CONFIG_MIPS_HUGE_TLB_SUPPORT) && !defined(CONFIG_PHYS_ADDR_T_64BIT) 65 # define PGDIR_SHIFT (2 * PAGE_SHIFT - PTE_T_LOG2 - 1) 66 #else 67 # define PGDIR_SHIFT (2 * PAGE_SHIFT - PTE_T_LOG2) 68 #endif 69 70 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 71 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 72 73 /* 74 * Entries per page directory level: we use two-level, so 75 * we don't really have any PUD/PMD directory physically. 76 */ 77 #if defined(CONFIG_MIPS_HUGE_TLB_SUPPORT) && !defined(CONFIG_PHYS_ADDR_T_64BIT) 78 # define __PGD_TABLE_ORDER (32 - 3 * PAGE_SHIFT + PGD_T_LOG2 + PTE_T_LOG2 + 1) 79 #else 80 # define __PGD_TABLE_ORDER (32 - 3 * PAGE_SHIFT + PGD_T_LOG2 + PTE_T_LOG2) 81 #endif 82 83 #define PGD_TABLE_ORDER (__PGD_TABLE_ORDER >= 0 ? __PGD_TABLE_ORDER : 0) 84 #define PUD_TABLE_ORDER aieeee_attempt_to_allocate_pud 85 #define PMD_TABLE_ORDER aieeee_attempt_to_allocate_pmd 86 87 #define PTRS_PER_PGD (USER_PTRS_PER_PGD * 2) 88 #if defined(CONFIG_MIPS_HUGE_TLB_SUPPORT) && !defined(CONFIG_PHYS_ADDR_T_64BIT) 89 # define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t) / 2) 90 #else 91 # define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 92 #endif 93 94 #define USER_PTRS_PER_PGD (0x80000000UL/PGDIR_SIZE) 95 96 #define VMALLOC_START MAP_BASE 97 98 #define PKMAP_END ((FIXADDR_START) & ~((LAST_PKMAP << PAGE_SHIFT)-1)) 99 #define PKMAP_BASE (PKMAP_END - PAGE_SIZE * LAST_PKMAP) 100 101 #ifdef CONFIG_HIGHMEM 102 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) 103 #else 104 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) 105 #endif 106 107 #ifdef CONFIG_PHYS_ADDR_T_64BIT 108 #define pte_ERROR(e) \ 109 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) 110 #else 111 #define pte_ERROR(e) \ 112 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 113 #endif 114 #define pgd_ERROR(e) \ 115 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 116 117 extern void load_pgd(unsigned long pg_dir); 118 119 extern pte_t invalid_pte_table[PTRS_PER_PTE]; 120 121 /* 122 * Empty pgd/pmd entries point to the invalid_pte_table. 123 */ 124 static inline int pmd_none(pmd_t pmd) 125 { 126 return pmd_val(pmd) == (unsigned long) invalid_pte_table; 127 } 128 129 static inline int pmd_bad(pmd_t pmd) 130 { 131 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 132 /* pmd_leaf(pmd) but inline */ 133 if (unlikely(pmd_val(pmd) & _PAGE_HUGE)) 134 return 0; 135 #endif 136 137 if (unlikely(pmd_val(pmd) & ~PAGE_MASK)) 138 return 1; 139 140 return 0; 141 } 142 143 static inline int pmd_present(pmd_t pmd) 144 { 145 return pmd_val(pmd) != (unsigned long) invalid_pte_table; 146 } 147 148 static inline void pmd_clear(pmd_t *pmdp) 149 { 150 pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); 151 } 152 153 #if defined(CONFIG_XPA) 154 155 #define MAX_POSSIBLE_PHYSMEM_BITS 40 156 #define pte_pfn(x) (((unsigned long)((x).pte_high >> PFN_PTE_SHIFT)) | (unsigned long)((x).pte_low << _PAGE_PRESENT_SHIFT)) 157 static inline pte_t 158 pfn_pte(unsigned long pfn, pgprot_t prot) 159 { 160 pte_t pte; 161 162 pte.pte_low = (pfn >> _PAGE_PRESENT_SHIFT) | 163 (pgprot_val(prot) & ~_PFNX_MASK); 164 pte.pte_high = (pfn << PFN_PTE_SHIFT) | 165 (pgprot_val(prot) & ~_PFN_MASK); 166 return pte; 167 } 168 169 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) 170 171 #define MAX_POSSIBLE_PHYSMEM_BITS 36 172 #define pte_pfn(x) ((unsigned long)((x).pte_high >> 6)) 173 174 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 175 { 176 pte_t pte; 177 178 pte.pte_high = (pfn << 6) | (pgprot_val(prot) & 0x3f); 179 pte.pte_low = pgprot_val(prot); 180 181 return pte; 182 } 183 184 #else 185 186 #define MAX_POSSIBLE_PHYSMEM_BITS 32 187 #define pte_pfn(x) ((unsigned long)((x).pte >> PFN_PTE_SHIFT)) 188 #define pfn_pte(pfn, prot) __pte(((unsigned long long)(pfn) << PFN_PTE_SHIFT) | pgprot_val(prot)) 189 #define pfn_pmd(pfn, prot) __pmd(((unsigned long long)(pfn) << PFN_PTE_SHIFT) | pgprot_val(prot)) 190 #endif /* defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) */ 191 192 #define pte_page(x) pfn_to_page(pte_pfn(x)) 193 194 /* 195 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 196 * are !pte_none() && !pte_present(). 197 */ 198 #if defined(CONFIG_CPU_R3K_TLB) 199 200 /* 201 * Format of swap PTEs: 202 * 203 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 204 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 205 * <----------- offset ------------> < type -> V G E 0 0 0 0 0 0 P 206 * 207 * E is the exclusive marker that is not stored in swap entries. 208 * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain 209 * unused. 210 */ 211 #define __swp_type(x) (((x).val >> 10) & 0x1f) 212 #define __swp_offset(x) ((x).val >> 15) 213 #define __swp_entry(type, offset) ((swp_entry_t) { (((type) & 0x1f) << 10) | ((offset) << 15) }) 214 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 215 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 216 217 /* We borrow bit 7 to store the exclusive marker in swap PTEs. */ 218 #define _PAGE_SWP_EXCLUSIVE (1 << 7) 219 220 #else 221 222 #if defined(CONFIG_XPA) 223 224 /* 225 * Format of swap PTEs: 226 * 227 * 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 228 * 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 229 * 0 0 0 0 0 0 E P <------------------ zeroes -------------------> 230 * 231 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 232 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 233 * <----------------- offset ------------------> < type -> V G 0 0 234 * 235 * E is the exclusive marker that is not stored in swap entries. 236 * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain 237 * unused. 238 */ 239 #define __swp_type(x) (((x).val >> 4) & 0x1f) 240 #define __swp_offset(x) ((x).val >> 9) 241 #define __swp_entry(type, offset) ((swp_entry_t) { (((type) & 0x1f) << 4) | ((offset) << 9) }) 242 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_high }) 243 #define __swp_entry_to_pte(x) ((pte_t) { 0, (x).val }) 244 245 /* 246 * We borrow bit 57 (bit 25 in the low PTE) to store the exclusive marker in 247 * swap PTEs. 248 */ 249 #define _PAGE_SWP_EXCLUSIVE (1 << 25) 250 251 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) 252 253 /* 254 * Format of swap PTEs: 255 * 256 * 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 257 * 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 258 * <------------------ zeroes -------------------> E P 0 0 0 0 0 0 259 * 260 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 261 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 262 * <------------------- offset --------------------> < type -> V G 263 * 264 * E is the exclusive marker that is not stored in swap entries. 265 * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain 266 * unused. 267 */ 268 #define __swp_type(x) (((x).val >> 2) & 0x1f) 269 #define __swp_offset(x) ((x).val >> 7) 270 #define __swp_entry(type, offset) ((swp_entry_t) { (((type) & 0x1f) << 2) | ((offset) << 7) }) 271 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_high }) 272 #define __swp_entry_to_pte(x) ((pte_t) { 0, (x).val }) 273 274 /* 275 * We borrow bit 39 (bit 7 in the low PTE) to store the exclusive marker in swap 276 * PTEs. 277 */ 278 #define _PAGE_SWP_EXCLUSIVE (1 << 7) 279 280 #else 281 /* 282 * Format of swap PTEs: 283 * 284 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 285 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 286 * <------------- offset --------------> < type -> 0 0 0 0 0 0 E P 287 * 288 * E is the exclusive marker that is not stored in swap entries. 289 * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain 290 * unused. The location of V and G varies. 291 */ 292 #define __swp_type(x) (((x).val >> 8) & 0x1f) 293 #define __swp_offset(x) ((x).val >> 13) 294 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 8) | ((offset) << 13) }) 295 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 296 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 297 298 /* We borrow bit 1 to store the exclusive marker in swap PTEs. */ 299 #define _PAGE_SWP_EXCLUSIVE (1 << 1) 300 301 #endif /* defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) */ 302 303 #endif /* defined(CONFIG_CPU_R3K_TLB) */ 304 305 #endif /* _ASM_PGTABLE_32_H */ 306
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.