1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Mips Jazz DMA controller support 4 * Copyright (C) 1995, 1996 by Andreas Busse 5 * 6 * NOTE: Some of the argument checking could be removed when 7 * things have settled down. Also, instead of returning 0xffffffff 8 * on failure of vdma_alloc() one could leave page #0 unused 9 * and return the more usual NULL pointer as logical address. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/mm.h> 16 #include <linux/memblock.h> 17 #include <linux/spinlock.h> 18 #include <linux/gfp.h> 19 #include <linux/dma-map-ops.h> 20 #include <asm/mipsregs.h> 21 #include <asm/jazz.h> 22 #include <asm/io.h> 23 #include <linux/uaccess.h> 24 #include <asm/dma.h> 25 #include <asm/jazzdma.h> 26 27 /* 28 * Set this to one to enable additional vdma debug code. 29 */ 30 #define CONF_DEBUG_VDMA 0 31 32 static VDMA_PGTBL_ENTRY *pgtbl; 33 34 static DEFINE_SPINLOCK(vdma_lock); 35 36 /* 37 * Debug stuff 38 */ 39 #define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0) 40 41 static int debuglvl = 3; 42 43 /* 44 * Initialize the pagetable with a one-to-one mapping of 45 * the first 16 Mbytes of main memory and declare all 46 * entries to be unused. Using this method will at least 47 * allow some early device driver operations to work. 48 */ 49 static inline void vdma_pgtbl_init(void) 50 { 51 unsigned long paddr = 0; 52 int i; 53 54 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) { 55 pgtbl[i].frame = paddr; 56 pgtbl[i].owner = VDMA_PAGE_EMPTY; 57 paddr += VDMA_PAGESIZE; 58 } 59 } 60 61 /* 62 * Initialize the Jazz R4030 dma controller 63 */ 64 static int __init vdma_init(void) 65 { 66 /* 67 * Allocate 32k of memory for DMA page tables. This needs to be page 68 * aligned and should be uncached to avoid cache flushing after every 69 * update. 70 */ 71 pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA, 72 get_order(VDMA_PGTBL_SIZE)); 73 BUG_ON(!pgtbl); 74 dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE); 75 pgtbl = (VDMA_PGTBL_ENTRY *)CKSEG1ADDR((unsigned long)pgtbl); 76 77 /* 78 * Clear the R4030 translation table 79 */ 80 vdma_pgtbl_init(); 81 82 r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, 83 CPHYSADDR((unsigned long)pgtbl)); 84 r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE); 85 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0); 86 87 printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n"); 88 return 0; 89 } 90 arch_initcall(vdma_init); 91 92 /* 93 * Allocate DMA pagetables using a simple first-fit algorithm 94 */ 95 unsigned long vdma_alloc(unsigned long paddr, unsigned long size) 96 { 97 int first, last, pages, frame, i; 98 unsigned long laddr, flags; 99 100 /* check arguments */ 101 102 if (paddr > 0x1fffffff) { 103 if (vdma_debug) 104 printk("vdma_alloc: Invalid physical address: %08lx\n", 105 paddr); 106 return DMA_MAPPING_ERROR; /* invalid physical address */ 107 } 108 if (size > 0x400000 || size == 0) { 109 if (vdma_debug) 110 printk("vdma_alloc: Invalid size: %08lx\n", size); 111 return DMA_MAPPING_ERROR; /* invalid physical address */ 112 } 113 114 spin_lock_irqsave(&vdma_lock, flags); 115 /* 116 * Find free chunk 117 */ 118 pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1; 119 first = 0; 120 while (1) { 121 while (pgtbl[first].owner != VDMA_PAGE_EMPTY && 122 first < VDMA_PGTBL_ENTRIES) first++; 123 if (first + pages > VDMA_PGTBL_ENTRIES) { /* nothing free */ 124 spin_unlock_irqrestore(&vdma_lock, flags); 125 return DMA_MAPPING_ERROR; 126 } 127 128 last = first + 1; 129 while (pgtbl[last].owner == VDMA_PAGE_EMPTY 130 && last - first < pages) 131 last++; 132 133 if (last - first == pages) 134 break; /* found */ 135 first = last + 1; 136 } 137 138 /* 139 * Mark pages as allocated 140 */ 141 laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1)); 142 frame = paddr & ~(VDMA_PAGESIZE - 1); 143 144 for (i = first; i < last; i++) { 145 pgtbl[i].frame = frame; 146 pgtbl[i].owner = laddr; 147 frame += VDMA_PAGESIZE; 148 } 149 150 /* 151 * Update translation table and return logical start address 152 */ 153 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0); 154 155 if (vdma_debug > 1) 156 printk("vdma_alloc: Allocated %d pages starting from %08lx\n", 157 pages, laddr); 158 159 if (vdma_debug > 2) { 160 printk("LADDR: "); 161 for (i = first; i < last; i++) 162 printk("%08x ", i << 12); 163 printk("\nPADDR: "); 164 for (i = first; i < last; i++) 165 printk("%08x ", pgtbl[i].frame); 166 printk("\nOWNER: "); 167 for (i = first; i < last; i++) 168 printk("%08x ", pgtbl[i].owner); 169 printk("\n"); 170 } 171 172 spin_unlock_irqrestore(&vdma_lock, flags); 173 174 return laddr; 175 } 176 177 EXPORT_SYMBOL(vdma_alloc); 178 179 /* 180 * Free previously allocated dma translation pages 181 * Note that this does NOT change the translation table, 182 * it just marks the free'd pages as unused! 183 */ 184 int vdma_free(unsigned long laddr) 185 { 186 int i; 187 188 i = laddr >> 12; 189 190 if (pgtbl[i].owner != laddr) { 191 printk 192 ("vdma_free: trying to free other's dma pages, laddr=%8lx\n", 193 laddr); 194 return -1; 195 } 196 197 while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) { 198 pgtbl[i].owner = VDMA_PAGE_EMPTY; 199 i++; 200 } 201 202 if (vdma_debug > 1) 203 printk("vdma_free: freed %ld pages starting from %08lx\n", 204 i - (laddr >> 12), laddr); 205 206 return 0; 207 } 208 209 EXPORT_SYMBOL(vdma_free); 210 211 /* 212 * Translate a physical address to a logical address. 213 * This will return the logical address of the first 214 * match. 215 */ 216 unsigned long vdma_phys2log(unsigned long paddr) 217 { 218 int i; 219 int frame; 220 221 frame = paddr & ~(VDMA_PAGESIZE - 1); 222 223 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) { 224 if (pgtbl[i].frame == frame) 225 break; 226 } 227 228 if (i == VDMA_PGTBL_ENTRIES) 229 return ~0UL; 230 231 return (i << 12) + (paddr & (VDMA_PAGESIZE - 1)); 232 } 233 234 EXPORT_SYMBOL(vdma_phys2log); 235 236 /* 237 * Translate a logical DMA address to a physical address 238 */ 239 unsigned long vdma_log2phys(unsigned long laddr) 240 { 241 return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1)); 242 } 243 244 EXPORT_SYMBOL(vdma_log2phys); 245 246 /* 247 * Print DMA statistics 248 */ 249 void vdma_stats(void) 250 { 251 int i; 252 253 printk("vdma_stats: CONFIG: %08x\n", 254 r4030_read_reg32(JAZZ_R4030_CONFIG)); 255 printk("R4030 translation table base: %08x\n", 256 r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE)); 257 printk("R4030 translation table limit: %08x\n", 258 r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM)); 259 printk("vdma_stats: INV_ADDR: %08x\n", 260 r4030_read_reg32(JAZZ_R4030_INV_ADDR)); 261 printk("vdma_stats: R_FAIL_ADDR: %08x\n", 262 r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR)); 263 printk("vdma_stats: M_FAIL_ADDR: %08x\n", 264 r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR)); 265 printk("vdma_stats: IRQ_SOURCE: %08x\n", 266 r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE)); 267 printk("vdma_stats: I386_ERROR: %08x\n", 268 r4030_read_reg32(JAZZ_R4030_I386_ERROR)); 269 printk("vdma_chnl_modes: "); 270 for (i = 0; i < 8; i++) 271 printk("%04x ", 272 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE + 273 (i << 5))); 274 printk("\n"); 275 printk("vdma_chnl_enables: "); 276 for (i = 0; i < 8; i++) 277 printk("%04x ", 278 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + 279 (i << 5))); 280 printk("\n"); 281 } 282 283 /* 284 * DMA transfer functions 285 */ 286 287 /* 288 * Enable a DMA channel. Also clear any error conditions. 289 */ 290 void vdma_enable(int channel) 291 { 292 int status; 293 294 if (vdma_debug) 295 printk("vdma_enable: channel %d\n", channel); 296 297 /* 298 * Check error conditions first 299 */ 300 status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5)); 301 if (status & 0x400) 302 printk("VDMA: Channel %d: Address error!\n", channel); 303 if (status & 0x200) 304 printk("VDMA: Channel %d: Memory error!\n", channel); 305 306 /* 307 * Clear all interrupt flags 308 */ 309 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), 310 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + 311 (channel << 5)) | R4030_TC_INTR 312 | R4030_MEM_INTR | R4030_ADDR_INTR); 313 314 /* 315 * Enable the desired channel 316 */ 317 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), 318 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + 319 (channel << 5)) | 320 R4030_CHNL_ENABLE); 321 } 322 323 EXPORT_SYMBOL(vdma_enable); 324 325 /* 326 * Disable a DMA channel 327 */ 328 void vdma_disable(int channel) 329 { 330 if (vdma_debug) { 331 int status = 332 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + 333 (channel << 5)); 334 335 printk("vdma_disable: channel %d\n", channel); 336 printk("VDMA: channel %d status: %04x (%s) mode: " 337 "%02x addr: %06x count: %06x\n", 338 channel, status, 339 ((status & 0x600) ? "ERROR" : "OK"), 340 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE + 341 (channel << 5)), 342 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR + 343 (channel << 5)), 344 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + 345 (channel << 5))); 346 } 347 348 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), 349 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + 350 (channel << 5)) & 351 ~R4030_CHNL_ENABLE); 352 353 /* 354 * After disabling a DMA channel a remote bus register should be 355 * read to ensure that the current DMA acknowledge cycle is completed. 356 */ 357 *((volatile unsigned int *) JAZZ_DUMMY_DEVICE); 358 } 359 360 EXPORT_SYMBOL(vdma_disable); 361 362 /* 363 * Set DMA mode. This function accepts the mode values used 364 * to set a PC-style DMA controller. For the SCSI and FDC 365 * channels, we also set the default modes each time we're 366 * called. 367 * NOTE: The FAST and BURST dma modes are supported by the 368 * R4030 Rev. 2 and PICA chipsets only. I leave them disabled 369 * for now. 370 */ 371 void vdma_set_mode(int channel, int mode) 372 { 373 if (vdma_debug) 374 printk("vdma_set_mode: channel %d, mode 0x%x\n", channel, 375 mode); 376 377 switch (channel) { 378 case JAZZ_SCSI_DMA: /* scsi */ 379 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5), 380 /* R4030_MODE_FAST | */ 381 /* R4030_MODE_BURST | */ 382 R4030_MODE_INTR_EN | 383 R4030_MODE_WIDTH_16 | 384 R4030_MODE_ATIME_80); 385 break; 386 387 case JAZZ_FLOPPY_DMA: /* floppy */ 388 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5), 389 /* R4030_MODE_FAST | */ 390 /* R4030_MODE_BURST | */ 391 R4030_MODE_INTR_EN | 392 R4030_MODE_WIDTH_8 | 393 R4030_MODE_ATIME_120); 394 break; 395 396 case JAZZ_AUDIOL_DMA: 397 case JAZZ_AUDIOR_DMA: 398 printk("VDMA: Audio DMA not supported yet.\n"); 399 break; 400 401 default: 402 printk 403 ("VDMA: vdma_set_mode() called with unsupported channel %d!\n", 404 channel); 405 } 406 407 switch (mode) { 408 case DMA_MODE_READ: 409 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), 410 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + 411 (channel << 5)) & 412 ~R4030_CHNL_WRITE); 413 break; 414 415 case DMA_MODE_WRITE: 416 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), 417 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + 418 (channel << 5)) | 419 R4030_CHNL_WRITE); 420 break; 421 422 default: 423 printk 424 ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n", 425 mode); 426 } 427 } 428 429 EXPORT_SYMBOL(vdma_set_mode); 430 431 /* 432 * Set Transfer Address 433 */ 434 void vdma_set_addr(int channel, long addr) 435 { 436 if (vdma_debug) 437 printk("vdma_set_addr: channel %d, addr %lx\n", channel, 438 addr); 439 440 r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr); 441 } 442 443 EXPORT_SYMBOL(vdma_set_addr); 444 445 /* 446 * Set Transfer Count 447 */ 448 void vdma_set_count(int channel, int count) 449 { 450 if (vdma_debug) 451 printk("vdma_set_count: channel %d, count %08x\n", channel, 452 (unsigned) count); 453 454 r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count); 455 } 456 457 EXPORT_SYMBOL(vdma_set_count); 458 459 /* 460 * Get Residual 461 */ 462 int vdma_get_residue(int channel) 463 { 464 int residual; 465 466 residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5)); 467 468 if (vdma_debug) 469 printk("vdma_get_residual: channel %d: residual=%d\n", 470 channel, residual); 471 472 return residual; 473 } 474 475 /* 476 * Get DMA channel enable register 477 */ 478 int vdma_get_enable(int channel) 479 { 480 int enable; 481 482 enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5)); 483 484 if (vdma_debug) 485 printk("vdma_get_enable: channel %d: enable=%d\n", channel, 486 enable); 487 488 return enable; 489 } 490 491 static void *jazz_dma_alloc(struct device *dev, size_t size, 492 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 493 { 494 struct page *page; 495 void *ret; 496 497 if (attrs & DMA_ATTR_NO_WARN) 498 gfp |= __GFP_NOWARN; 499 500 size = PAGE_ALIGN(size); 501 page = alloc_pages(gfp, get_order(size)); 502 if (!page) 503 return NULL; 504 ret = page_address(page); 505 memset(ret, 0, size); 506 *dma_handle = vdma_alloc(virt_to_phys(ret), size); 507 if (*dma_handle == DMA_MAPPING_ERROR) 508 goto out_free_pages; 509 arch_dma_prep_coherent(page, size); 510 return (void *)(UNCAC_BASE + __pa(ret)); 511 512 out_free_pages: 513 __free_pages(page, get_order(size)); 514 return NULL; 515 } 516 517 static void jazz_dma_free(struct device *dev, size_t size, void *vaddr, 518 dma_addr_t dma_handle, unsigned long attrs) 519 { 520 vdma_free(dma_handle); 521 __free_pages(virt_to_page(vaddr), get_order(size)); 522 } 523 524 static dma_addr_t jazz_dma_map_page(struct device *dev, struct page *page, 525 unsigned long offset, size_t size, enum dma_data_direction dir, 526 unsigned long attrs) 527 { 528 phys_addr_t phys = page_to_phys(page) + offset; 529 530 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 531 arch_sync_dma_for_device(phys, size, dir); 532 return vdma_alloc(phys, size); 533 } 534 535 static void jazz_dma_unmap_page(struct device *dev, dma_addr_t dma_addr, 536 size_t size, enum dma_data_direction dir, unsigned long attrs) 537 { 538 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 539 arch_sync_dma_for_cpu(vdma_log2phys(dma_addr), size, dir); 540 vdma_free(dma_addr); 541 } 542 543 static int jazz_dma_map_sg(struct device *dev, struct scatterlist *sglist, 544 int nents, enum dma_data_direction dir, unsigned long attrs) 545 { 546 int i; 547 struct scatterlist *sg; 548 549 for_each_sg(sglist, sg, nents, i) { 550 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 551 arch_sync_dma_for_device(sg_phys(sg), sg->length, 552 dir); 553 sg->dma_address = vdma_alloc(sg_phys(sg), sg->length); 554 if (sg->dma_address == DMA_MAPPING_ERROR) 555 return -EIO; 556 sg_dma_len(sg) = sg->length; 557 } 558 559 return nents; 560 } 561 562 static void jazz_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, 563 int nents, enum dma_data_direction dir, unsigned long attrs) 564 { 565 int i; 566 struct scatterlist *sg; 567 568 for_each_sg(sglist, sg, nents, i) { 569 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 570 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 571 vdma_free(sg->dma_address); 572 } 573 } 574 575 static void jazz_dma_sync_single_for_device(struct device *dev, 576 dma_addr_t addr, size_t size, enum dma_data_direction dir) 577 { 578 arch_sync_dma_for_device(vdma_log2phys(addr), size, dir); 579 } 580 581 static void jazz_dma_sync_single_for_cpu(struct device *dev, 582 dma_addr_t addr, size_t size, enum dma_data_direction dir) 583 { 584 arch_sync_dma_for_cpu(vdma_log2phys(addr), size, dir); 585 } 586 587 static void jazz_dma_sync_sg_for_device(struct device *dev, 588 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 589 { 590 struct scatterlist *sg; 591 int i; 592 593 for_each_sg(sgl, sg, nents, i) 594 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); 595 } 596 597 static void jazz_dma_sync_sg_for_cpu(struct device *dev, 598 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 599 { 600 struct scatterlist *sg; 601 int i; 602 603 for_each_sg(sgl, sg, nents, i) 604 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); 605 } 606 607 const struct dma_map_ops jazz_dma_ops = { 608 .alloc = jazz_dma_alloc, 609 .free = jazz_dma_free, 610 .map_page = jazz_dma_map_page, 611 .unmap_page = jazz_dma_unmap_page, 612 .map_sg = jazz_dma_map_sg, 613 .unmap_sg = jazz_dma_unmap_sg, 614 .sync_single_for_cpu = jazz_dma_sync_single_for_cpu, 615 .sync_single_for_device = jazz_dma_sync_single_for_device, 616 .sync_sg_for_cpu = jazz_dma_sync_sg_for_cpu, 617 .sync_sg_for_device = jazz_dma_sync_sg_for_device, 618 .mmap = dma_common_mmap, 619 .get_sgtable = dma_common_get_sgtable, 620 .alloc_pages_op = dma_common_alloc_pages, 621 .free_pages = dma_common_free_pages, 622 }; 623 EXPORT_SYMBOL(jazz_dma_ops); 624
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.