~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/jazz/jazzdma.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Mips Jazz DMA controller support
  4  * Copyright (C) 1995, 1996 by Andreas Busse
  5  *
  6  * NOTE: Some of the argument checking could be removed when
  7  * things have settled down. Also, instead of returning 0xffffffff
  8  * on failure of vdma_alloc() one could leave page #0 unused
  9  * and return the more usual NULL pointer as logical address.
 10  */
 11 #include <linux/kernel.h>
 12 #include <linux/init.h>
 13 #include <linux/export.h>
 14 #include <linux/errno.h>
 15 #include <linux/mm.h>
 16 #include <linux/memblock.h>
 17 #include <linux/spinlock.h>
 18 #include <linux/gfp.h>
 19 #include <linux/dma-map-ops.h>
 20 #include <asm/mipsregs.h>
 21 #include <asm/jazz.h>
 22 #include <asm/io.h>
 23 #include <linux/uaccess.h>
 24 #include <asm/dma.h>
 25 #include <asm/jazzdma.h>
 26 
 27 /*
 28  * Set this to one to enable additional vdma debug code.
 29  */
 30 #define CONF_DEBUG_VDMA 0
 31 
 32 static VDMA_PGTBL_ENTRY *pgtbl;
 33 
 34 static DEFINE_SPINLOCK(vdma_lock);
 35 
 36 /*
 37  * Debug stuff
 38  */
 39 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
 40 
 41 static int debuglvl = 3;
 42 
 43 /*
 44  * Initialize the pagetable with a one-to-one mapping of
 45  * the first 16 Mbytes of main memory and declare all
 46  * entries to be unused. Using this method will at least
 47  * allow some early device driver operations to work.
 48  */
 49 static inline void vdma_pgtbl_init(void)
 50 {
 51         unsigned long paddr = 0;
 52         int i;
 53 
 54         for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
 55                 pgtbl[i].frame = paddr;
 56                 pgtbl[i].owner = VDMA_PAGE_EMPTY;
 57                 paddr += VDMA_PAGESIZE;
 58         }
 59 }
 60 
 61 /*
 62  * Initialize the Jazz R4030 dma controller
 63  */
 64 static int __init vdma_init(void)
 65 {
 66         /*
 67          * Allocate 32k of memory for DMA page tables.  This needs to be page
 68          * aligned and should be uncached to avoid cache flushing after every
 69          * update.
 70          */
 71         pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
 72                                                     get_order(VDMA_PGTBL_SIZE));
 73         BUG_ON(!pgtbl);
 74         dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
 75         pgtbl = (VDMA_PGTBL_ENTRY *)CKSEG1ADDR((unsigned long)pgtbl);
 76 
 77         /*
 78          * Clear the R4030 translation table
 79          */
 80         vdma_pgtbl_init();
 81 
 82         r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,
 83                           CPHYSADDR((unsigned long)pgtbl));
 84         r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
 85         r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
 86 
 87         printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
 88         return 0;
 89 }
 90 arch_initcall(vdma_init);
 91 
 92 /*
 93  * Allocate DMA pagetables using a simple first-fit algorithm
 94  */
 95 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
 96 {
 97         int first, last, pages, frame, i;
 98         unsigned long laddr, flags;
 99 
100         /* check arguments */
101 
102         if (paddr > 0x1fffffff) {
103                 if (vdma_debug)
104                         printk("vdma_alloc: Invalid physical address: %08lx\n",
105                                paddr);
106                 return DMA_MAPPING_ERROR;       /* invalid physical address */
107         }
108         if (size > 0x400000 || size == 0) {
109                 if (vdma_debug)
110                         printk("vdma_alloc: Invalid size: %08lx\n", size);
111                 return DMA_MAPPING_ERROR;       /* invalid physical address */
112         }
113 
114         spin_lock_irqsave(&vdma_lock, flags);
115         /*
116          * Find free chunk
117          */
118         pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
119         first = 0;
120         while (1) {
121                 while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
122                        first < VDMA_PGTBL_ENTRIES) first++;
123                 if (first + pages > VDMA_PGTBL_ENTRIES) {       /* nothing free */
124                         spin_unlock_irqrestore(&vdma_lock, flags);
125                         return DMA_MAPPING_ERROR;
126                 }
127 
128                 last = first + 1;
129                 while (pgtbl[last].owner == VDMA_PAGE_EMPTY
130                        && last - first < pages)
131                         last++;
132 
133                 if (last - first == pages)
134                         break;  /* found */
135                 first = last + 1;
136         }
137 
138         /*
139          * Mark pages as allocated
140          */
141         laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
142         frame = paddr & ~(VDMA_PAGESIZE - 1);
143 
144         for (i = first; i < last; i++) {
145                 pgtbl[i].frame = frame;
146                 pgtbl[i].owner = laddr;
147                 frame += VDMA_PAGESIZE;
148         }
149 
150         /*
151          * Update translation table and return logical start address
152          */
153         r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
154 
155         if (vdma_debug > 1)
156                 printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
157                      pages, laddr);
158 
159         if (vdma_debug > 2) {
160                 printk("LADDR: ");
161                 for (i = first; i < last; i++)
162                         printk("%08x ", i << 12);
163                 printk("\nPADDR: ");
164                 for (i = first; i < last; i++)
165                         printk("%08x ", pgtbl[i].frame);
166                 printk("\nOWNER: ");
167                 for (i = first; i < last; i++)
168                         printk("%08x ", pgtbl[i].owner);
169                 printk("\n");
170         }
171 
172         spin_unlock_irqrestore(&vdma_lock, flags);
173 
174         return laddr;
175 }
176 
177 EXPORT_SYMBOL(vdma_alloc);
178 
179 /*
180  * Free previously allocated dma translation pages
181  * Note that this does NOT change the translation table,
182  * it just marks the free'd pages as unused!
183  */
184 int vdma_free(unsigned long laddr)
185 {
186         int i;
187 
188         i = laddr >> 12;
189 
190         if (pgtbl[i].owner != laddr) {
191                 printk
192                     ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
193                      laddr);
194                 return -1;
195         }
196 
197         while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
198                 pgtbl[i].owner = VDMA_PAGE_EMPTY;
199                 i++;
200         }
201 
202         if (vdma_debug > 1)
203                 printk("vdma_free: freed %ld pages starting from %08lx\n",
204                        i - (laddr >> 12), laddr);
205 
206         return 0;
207 }
208 
209 EXPORT_SYMBOL(vdma_free);
210 
211 /*
212  * Translate a physical address to a logical address.
213  * This will return the logical address of the first
214  * match.
215  */
216 unsigned long vdma_phys2log(unsigned long paddr)
217 {
218         int i;
219         int frame;
220 
221         frame = paddr & ~(VDMA_PAGESIZE - 1);
222 
223         for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
224                 if (pgtbl[i].frame == frame)
225                         break;
226         }
227 
228         if (i == VDMA_PGTBL_ENTRIES)
229                 return ~0UL;
230 
231         return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
232 }
233 
234 EXPORT_SYMBOL(vdma_phys2log);
235 
236 /*
237  * Translate a logical DMA address to a physical address
238  */
239 unsigned long vdma_log2phys(unsigned long laddr)
240 {
241         return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
242 }
243 
244 EXPORT_SYMBOL(vdma_log2phys);
245 
246 /*
247  * Print DMA statistics
248  */
249 void vdma_stats(void)
250 {
251         int i;
252 
253         printk("vdma_stats: CONFIG: %08x\n",
254                r4030_read_reg32(JAZZ_R4030_CONFIG));
255         printk("R4030 translation table base: %08x\n",
256                r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
257         printk("R4030 translation table limit: %08x\n",
258                r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
259         printk("vdma_stats: INV_ADDR: %08x\n",
260                r4030_read_reg32(JAZZ_R4030_INV_ADDR));
261         printk("vdma_stats: R_FAIL_ADDR: %08x\n",
262                r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
263         printk("vdma_stats: M_FAIL_ADDR: %08x\n",
264                r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
265         printk("vdma_stats: IRQ_SOURCE: %08x\n",
266                r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
267         printk("vdma_stats: I386_ERROR: %08x\n",
268                r4030_read_reg32(JAZZ_R4030_I386_ERROR));
269         printk("vdma_chnl_modes:   ");
270         for (i = 0; i < 8; i++)
271                 printk("%04x ",
272                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
273                                                    (i << 5)));
274         printk("\n");
275         printk("vdma_chnl_enables: ");
276         for (i = 0; i < 8; i++)
277                 printk("%04x ",
278                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
279                                                    (i << 5)));
280         printk("\n");
281 }
282 
283 /*
284  * DMA transfer functions
285  */
286 
287 /*
288  * Enable a DMA channel. Also clear any error conditions.
289  */
290 void vdma_enable(int channel)
291 {
292         int status;
293 
294         if (vdma_debug)
295                 printk("vdma_enable: channel %d\n", channel);
296 
297         /*
298          * Check error conditions first
299          */
300         status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
301         if (status & 0x400)
302                 printk("VDMA: Channel %d: Address error!\n", channel);
303         if (status & 0x200)
304                 printk("VDMA: Channel %d: Memory error!\n", channel);
305 
306         /*
307          * Clear all interrupt flags
308          */
309         r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
310                           r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
311                                            (channel << 5)) | R4030_TC_INTR
312                           | R4030_MEM_INTR | R4030_ADDR_INTR);
313 
314         /*
315          * Enable the desired channel
316          */
317         r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
318                           r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
319                                            (channel << 5)) |
320                           R4030_CHNL_ENABLE);
321 }
322 
323 EXPORT_SYMBOL(vdma_enable);
324 
325 /*
326  * Disable a DMA channel
327  */
328 void vdma_disable(int channel)
329 {
330         if (vdma_debug) {
331                 int status =
332                     r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
333                                      (channel << 5));
334 
335                 printk("vdma_disable: channel %d\n", channel);
336                 printk("VDMA: channel %d status: %04x (%s) mode: "
337                        "%02x addr: %06x count: %06x\n",
338                        channel, status,
339                        ((status & 0x600) ? "ERROR" : "OK"),
340                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
341                                                    (channel << 5)),
342                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
343                                                    (channel << 5)),
344                        (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
345                                                    (channel << 5)));
346         }
347 
348         r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
349                           r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
350                                            (channel << 5)) &
351                           ~R4030_CHNL_ENABLE);
352 
353         /*
354          * After disabling a DMA channel a remote bus register should be
355          * read to ensure that the current DMA acknowledge cycle is completed.
356          */
357         *((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
358 }
359 
360 EXPORT_SYMBOL(vdma_disable);
361 
362 /*
363  * Set DMA mode. This function accepts the mode values used
364  * to set a PC-style DMA controller. For the SCSI and FDC
365  * channels, we also set the default modes each time we're
366  * called.
367  * NOTE: The FAST and BURST dma modes are supported by the
368  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
369  * for now.
370  */
371 void vdma_set_mode(int channel, int mode)
372 {
373         if (vdma_debug)
374                 printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
375                        mode);
376 
377         switch (channel) {
378         case JAZZ_SCSI_DMA:     /* scsi */
379                 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
380 /*                        R4030_MODE_FAST | */
381 /*                        R4030_MODE_BURST | */
382                                   R4030_MODE_INTR_EN |
383                                   R4030_MODE_WIDTH_16 |
384                                   R4030_MODE_ATIME_80);
385                 break;
386 
387         case JAZZ_FLOPPY_DMA:   /* floppy */
388                 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
389 /*                        R4030_MODE_FAST | */
390 /*                        R4030_MODE_BURST | */
391                                   R4030_MODE_INTR_EN |
392                                   R4030_MODE_WIDTH_8 |
393                                   R4030_MODE_ATIME_120);
394                 break;
395 
396         case JAZZ_AUDIOL_DMA:
397         case JAZZ_AUDIOR_DMA:
398                 printk("VDMA: Audio DMA not supported yet.\n");
399                 break;
400 
401         default:
402                 printk
403                     ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
404                      channel);
405         }
406 
407         switch (mode) {
408         case DMA_MODE_READ:
409                 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
410                                   r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
411                                                    (channel << 5)) &
412                                   ~R4030_CHNL_WRITE);
413                 break;
414 
415         case DMA_MODE_WRITE:
416                 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
417                                   r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
418                                                    (channel << 5)) |
419                                   R4030_CHNL_WRITE);
420                 break;
421 
422         default:
423                 printk
424                     ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
425                      mode);
426         }
427 }
428 
429 EXPORT_SYMBOL(vdma_set_mode);
430 
431 /*
432  * Set Transfer Address
433  */
434 void vdma_set_addr(int channel, long addr)
435 {
436         if (vdma_debug)
437                 printk("vdma_set_addr: channel %d, addr %lx\n", channel,
438                        addr);
439 
440         r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
441 }
442 
443 EXPORT_SYMBOL(vdma_set_addr);
444 
445 /*
446  * Set Transfer Count
447  */
448 void vdma_set_count(int channel, int count)
449 {
450         if (vdma_debug)
451                 printk("vdma_set_count: channel %d, count %08x\n", channel,
452                        (unsigned) count);
453 
454         r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
455 }
456 
457 EXPORT_SYMBOL(vdma_set_count);
458 
459 /*
460  * Get Residual
461  */
462 int vdma_get_residue(int channel)
463 {
464         int residual;
465 
466         residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
467 
468         if (vdma_debug)
469                 printk("vdma_get_residual: channel %d: residual=%d\n",
470                        channel, residual);
471 
472         return residual;
473 }
474 
475 /*
476  * Get DMA channel enable register
477  */
478 int vdma_get_enable(int channel)
479 {
480         int enable;
481 
482         enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
483 
484         if (vdma_debug)
485                 printk("vdma_get_enable: channel %d: enable=%d\n", channel,
486                        enable);
487 
488         return enable;
489 }
490 
491 static void *jazz_dma_alloc(struct device *dev, size_t size,
492                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
493 {
494         struct page *page;
495         void *ret;
496 
497         if (attrs & DMA_ATTR_NO_WARN)
498                 gfp |= __GFP_NOWARN;
499 
500         size = PAGE_ALIGN(size);
501         page = alloc_pages(gfp, get_order(size));
502         if (!page)
503                 return NULL;
504         ret = page_address(page);
505         memset(ret, 0, size);
506         *dma_handle = vdma_alloc(virt_to_phys(ret), size);
507         if (*dma_handle == DMA_MAPPING_ERROR)
508                 goto out_free_pages;
509         arch_dma_prep_coherent(page, size);
510         return (void *)(UNCAC_BASE + __pa(ret));
511 
512 out_free_pages:
513         __free_pages(page, get_order(size));
514         return NULL;
515 }
516 
517 static void jazz_dma_free(struct device *dev, size_t size, void *vaddr,
518                 dma_addr_t dma_handle, unsigned long attrs)
519 {
520         vdma_free(dma_handle);
521         __free_pages(virt_to_page(vaddr), get_order(size));
522 }
523 
524 static dma_addr_t jazz_dma_map_page(struct device *dev, struct page *page,
525                 unsigned long offset, size_t size, enum dma_data_direction dir,
526                 unsigned long attrs)
527 {
528         phys_addr_t phys = page_to_phys(page) + offset;
529 
530         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
531                 arch_sync_dma_for_device(phys, size, dir);
532         return vdma_alloc(phys, size);
533 }
534 
535 static void jazz_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
536                 size_t size, enum dma_data_direction dir, unsigned long attrs)
537 {
538         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
539                 arch_sync_dma_for_cpu(vdma_log2phys(dma_addr), size, dir);
540         vdma_free(dma_addr);
541 }
542 
543 static int jazz_dma_map_sg(struct device *dev, struct scatterlist *sglist,
544                 int nents, enum dma_data_direction dir, unsigned long attrs)
545 {
546         int i;
547         struct scatterlist *sg;
548 
549         for_each_sg(sglist, sg, nents, i) {
550                 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
551                         arch_sync_dma_for_device(sg_phys(sg), sg->length,
552                                 dir);
553                 sg->dma_address = vdma_alloc(sg_phys(sg), sg->length);
554                 if (sg->dma_address == DMA_MAPPING_ERROR)
555                         return -EIO;
556                 sg_dma_len(sg) = sg->length;
557         }
558 
559         return nents;
560 }
561 
562 static void jazz_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
563                 int nents, enum dma_data_direction dir, unsigned long attrs)
564 {
565         int i;
566         struct scatterlist *sg;
567 
568         for_each_sg(sglist, sg, nents, i) {
569                 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
570                         arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
571                 vdma_free(sg->dma_address);
572         }
573 }
574 
575 static void jazz_dma_sync_single_for_device(struct device *dev,
576                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
577 {
578         arch_sync_dma_for_device(vdma_log2phys(addr), size, dir);
579 }
580 
581 static void jazz_dma_sync_single_for_cpu(struct device *dev,
582                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
583 {
584         arch_sync_dma_for_cpu(vdma_log2phys(addr), size, dir);
585 }
586 
587 static void jazz_dma_sync_sg_for_device(struct device *dev,
588                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
589 {
590         struct scatterlist *sg;
591         int i;
592 
593         for_each_sg(sgl, sg, nents, i)
594                 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
595 }
596 
597 static void jazz_dma_sync_sg_for_cpu(struct device *dev,
598                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
599 {
600         struct scatterlist *sg;
601         int i;
602 
603         for_each_sg(sgl, sg, nents, i)
604                 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
605 }
606 
607 const struct dma_map_ops jazz_dma_ops = {
608         .alloc                  = jazz_dma_alloc,
609         .free                   = jazz_dma_free,
610         .map_page               = jazz_dma_map_page,
611         .unmap_page             = jazz_dma_unmap_page,
612         .map_sg                 = jazz_dma_map_sg,
613         .unmap_sg               = jazz_dma_unmap_sg,
614         .sync_single_for_cpu    = jazz_dma_sync_single_for_cpu,
615         .sync_single_for_device = jazz_dma_sync_single_for_device,
616         .sync_sg_for_cpu        = jazz_dma_sync_sg_for_cpu,
617         .sync_sg_for_device     = jazz_dma_sync_sg_for_device,
618         .mmap                   = dma_common_mmap,
619         .get_sgtable            = dma_common_get_sgtable,
620         .alloc_pages_op         = dma_common_alloc_pages,
621         .free_pages             = dma_common_free_pages,
622 };
623 EXPORT_SYMBOL(jazz_dma_ops);
624 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php