~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/kernel/elf.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright (C) 2014 Imagination Technologies
  4  * Author: Paul Burton <paul.burton@mips.com>
  5  */
  6 
  7 #include <linux/binfmts.h>
  8 #include <linux/elf.h>
  9 #include <linux/export.h>
 10 #include <linux/sched.h>
 11 
 12 #include <asm/cpu-features.h>
 13 #include <asm/cpu-info.h>
 14 #include <asm/fpu.h>
 15 
 16 #ifdef CONFIG_MIPS_FP_SUPPORT
 17 
 18 /* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
 19 bool mips_use_nan_legacy;
 20 bool mips_use_nan_2008;
 21 
 22 /* FPU modes */
 23 enum {
 24         FP_FRE,
 25         FP_FR0,
 26         FP_FR1,
 27 };
 28 
 29 /**
 30  * struct mode_req - ABI FPU mode requirements
 31  * @single:     The program being loaded needs an FPU but it will only issue
 32  *              single precision instructions meaning that it can execute in
 33  *              either FR0 or FR1.
 34  * @soft:       The soft(-float) requirement means that the program being
 35  *              loaded needs has no FPU dependency at all (i.e. it has no
 36  *              FPU instructions).
 37  * @fr1:        The program being loaded depends on FPU being in FR=1 mode.
 38  * @frdefault:  The program being loaded depends on the default FPU mode.
 39  *              That is FR0 for O32 and FR1 for N32/N64.
 40  * @fre:        The program being loaded depends on FPU with FRE=1. This mode is
 41  *              a bridge which uses FR=1 whilst still being able to maintain
 42  *              full compatibility with pre-existing code using the O32 FP32
 43  *              ABI.
 44  *
 45  * More information about the FP ABIs can be found here:
 46  *
 47  * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
 48  *
 49  */
 50 
 51 struct mode_req {
 52         bool single;
 53         bool soft;
 54         bool fr1;
 55         bool frdefault;
 56         bool fre;
 57 };
 58 
 59 static const struct mode_req fpu_reqs[] = {
 60         [MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
 61         [MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
 62         [MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
 63         [MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
 64         [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
 65         [MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
 66         [MIPS_ABI_FP_64]     = { false, false, true,  false, false },
 67         [MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
 68 };
 69 
 70 /*
 71  * Mode requirements when .MIPS.abiflags is not present in the ELF.
 72  * Not present means that everything is acceptable except FR1.
 73  */
 74 static struct mode_req none_req = { true, true, false, true, true };
 75 
 76 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
 77                      bool is_interp, struct arch_elf_state *state)
 78 {
 79         union {
 80                 struct elf32_hdr e32;
 81                 struct elf64_hdr e64;
 82         } *ehdr = _ehdr;
 83         struct elf32_phdr *phdr32 = _phdr;
 84         struct elf64_phdr *phdr64 = _phdr;
 85         struct mips_elf_abiflags_v0 abiflags;
 86         bool elf32;
 87         u32 flags;
 88         int ret;
 89         loff_t pos;
 90 
 91         elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
 92         flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
 93 
 94         /* Let's see if this is an O32 ELF */
 95         if (elf32) {
 96                 if (flags & EF_MIPS_FP64) {
 97                         /*
 98                          * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
 99                          * later if needed
100                          */
101                         if (is_interp)
102                                 state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
103                         else
104                                 state->fp_abi = MIPS_ABI_FP_OLD_64;
105                 }
106                 if (phdr32->p_type != PT_MIPS_ABIFLAGS)
107                         return 0;
108 
109                 if (phdr32->p_filesz < sizeof(abiflags))
110                         return -EINVAL;
111                 pos = phdr32->p_offset;
112         } else {
113                 if (phdr64->p_type != PT_MIPS_ABIFLAGS)
114                         return 0;
115                 if (phdr64->p_filesz < sizeof(abiflags))
116                         return -EINVAL;
117                 pos = phdr64->p_offset;
118         }
119 
120         ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
121         if (ret < 0)
122                 return ret;
123         if (ret != sizeof(abiflags))
124                 return -EIO;
125 
126         /* Record the required FP ABIs for use by mips_check_elf */
127         if (is_interp)
128                 state->interp_fp_abi = abiflags.fp_abi;
129         else
130                 state->fp_abi = abiflags.fp_abi;
131 
132         return 0;
133 }
134 
135 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
136                    struct arch_elf_state *state)
137 {
138         union {
139                 struct elf32_hdr e32;
140                 struct elf64_hdr e64;
141         } *ehdr = _ehdr;
142         union {
143                 struct elf32_hdr e32;
144                 struct elf64_hdr e64;
145         } *iehdr = _interp_ehdr;
146         struct mode_req prog_req, interp_req;
147         int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
148         bool elf32;
149         u32 flags;
150 
151         elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
152         flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
153 
154         /*
155          * Determine the NaN personality, reject the binary if not allowed.
156          * Also ensure that any interpreter matches the executable.
157          */
158         if (flags & EF_MIPS_NAN2008) {
159                 if (mips_use_nan_2008)
160                         state->nan_2008 = 1;
161                 else
162                         return -ENOEXEC;
163         } else {
164                 if (mips_use_nan_legacy)
165                         state->nan_2008 = 0;
166                 else
167                         return -ENOEXEC;
168         }
169         if (has_interpreter) {
170                 bool ielf32;
171                 u32 iflags;
172 
173                 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
174                 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
175 
176                 if ((flags ^ iflags) & EF_MIPS_NAN2008)
177                         return -ELIBBAD;
178         }
179 
180         if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
181                 return 0;
182 
183         fp_abi = state->fp_abi;
184 
185         if (has_interpreter) {
186                 interp_fp_abi = state->interp_fp_abi;
187 
188                 abi0 = min(fp_abi, interp_fp_abi);
189                 abi1 = max(fp_abi, interp_fp_abi);
190         } else {
191                 abi0 = abi1 = fp_abi;
192         }
193 
194         if (elf32 && !(flags & EF_MIPS_ABI2)) {
195                 /* Default to a mode capable of running code expecting FR=0 */
196                 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
197 
198                 /* Allow all ABIs we know about */
199                 max_abi = MIPS_ABI_FP_64A;
200         } else {
201                 /* MIPS64 code always uses FR=1, thus the default is easy */
202                 state->overall_fp_mode = FP_FR1;
203 
204                 /* Disallow access to the various FPXX & FP64 ABIs */
205                 max_abi = MIPS_ABI_FP_SOFT;
206         }
207 
208         if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
209             (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
210                 return -ELIBBAD;
211 
212         /* It's time to determine the FPU mode requirements */
213         prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
214         interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
215 
216         /*
217          * Check whether the program's and interp's ABIs have a matching FPU
218          * mode requirement.
219          */
220         prog_req.single = interp_req.single && prog_req.single;
221         prog_req.soft = interp_req.soft && prog_req.soft;
222         prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
223         prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
224         prog_req.fre = interp_req.fre && prog_req.fre;
225 
226         /*
227          * Determine the desired FPU mode
228          *
229          * Decision making:
230          *
231          * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
232          *   means that we have a combination of program and interpreter
233          *   that inherently require the hybrid FP mode.
234          * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
235          *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
236          *   instructions so we don't care about the mode. We will simply use
237          *   the one preferred by the hardware. In fpxx case, that ABI can
238          *   handle both FR=1 and FR=0, so, again, we simply choose the one
239          *   preferred by the hardware. Next, if we only use single-precision
240          *   FPU instructions, and the default ABI FPU mode is not good
241          *   (ie single + any ABI combination), we set again the FPU mode to the
242          *   one is preferred by the hardware. Next, if we know that the code
243          *   will only use single-precision instructions, shown by single being
244          *   true but frdefault being false, then we again set the FPU mode to
245          *   the one that is preferred by the hardware.
246          * - We want FP_FR1 if that's the only matching mode and the default one
247          *   is not good.
248          * - Return with -ELIBADD if we can't find a matching FPU mode.
249          */
250         if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
251                 state->overall_fp_mode = FP_FRE;
252         else if ((prog_req.fr1 && prog_req.frdefault) ||
253                  (prog_req.single && !prog_req.frdefault))
254                 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
255                 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
256                                           cpu_has_mips_r2_r6) ?
257                                           FP_FR1 : FP_FR0;
258         else if (prog_req.fr1)
259                 state->overall_fp_mode = FP_FR1;
260         else  if (!prog_req.fre && !prog_req.frdefault &&
261                   !prog_req.fr1 && !prog_req.single && !prog_req.soft)
262                 return -ELIBBAD;
263 
264         return 0;
265 }
266 
267 static inline void set_thread_fp_mode(int hybrid, int regs32)
268 {
269         if (hybrid)
270                 set_thread_flag(TIF_HYBRID_FPREGS);
271         else
272                 clear_thread_flag(TIF_HYBRID_FPREGS);
273         if (regs32)
274                 set_thread_flag(TIF_32BIT_FPREGS);
275         else
276                 clear_thread_flag(TIF_32BIT_FPREGS);
277 }
278 
279 void mips_set_personality_fp(struct arch_elf_state *state)
280 {
281         /*
282          * This function is only ever called for O32 ELFs so we should
283          * not be worried about N32/N64 binaries.
284          */
285 
286         if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
287                 return;
288 
289         switch (state->overall_fp_mode) {
290         case FP_FRE:
291                 set_thread_fp_mode(1, 0);
292                 break;
293         case FP_FR0:
294                 set_thread_fp_mode(0, 1);
295                 break;
296         case FP_FR1:
297                 set_thread_fp_mode(0, 0);
298                 break;
299         default:
300                 BUG();
301         }
302 }
303 
304 /*
305  * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
306  * in FCSR according to the ELF NaN personality.
307  */
308 void mips_set_personality_nan(struct arch_elf_state *state)
309 {
310         struct cpuinfo_mips *c = &boot_cpu_data;
311         struct task_struct *t = current;
312 
313         /* Do this early so t->thread.fpu.fcr31 won't be clobbered in case
314          * we are preempted before the lose_fpu(0) in start_thread.
315          */
316         lose_fpu(0);
317 
318         t->thread.fpu.fcr31 = c->fpu_csr31;
319         switch (state->nan_2008) {
320         case 0:
321                 if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
322                         t->thread.fpu.fcr31 &= ~FPU_CSR_NAN2008;
323                 if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
324                         t->thread.fpu.fcr31 &= ~FPU_CSR_ABS2008;
325                 break;
326         case 1:
327                 if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
328                         t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
329                 if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
330                         t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
331                 break;
332         default:
333                 BUG();
334         }
335 }
336 
337 #endif /* CONFIG_MIPS_FP_SUPPORT */
338 
339 int mips_elf_read_implies_exec(void *elf_ex, int exstack)
340 {
341         /*
342          * Set READ_IMPLIES_EXEC only on non-NX systems that
343          * do not request a specific state via PT_GNU_STACK.
344          */
345         return (!cpu_has_rixi && exstack == EXSTACK_DEFAULT);
346 }
347 EXPORT_SYMBOL(mips_elf_read_implies_exec);
348 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php