1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2014 Imagination Technologies 4 * Author: Paul Burton <paul.burton@mips.com> 5 */ 6 7 #include <linux/cpuhotplug.h> 8 #include <linux/init.h> 9 #include <linux/percpu.h> 10 #include <linux/slab.h> 11 #include <linux/suspend.h> 12 13 #include <asm/asm-offsets.h> 14 #include <asm/cacheflush.h> 15 #include <asm/cacheops.h> 16 #include <asm/idle.h> 17 #include <asm/mips-cps.h> 18 #include <asm/mipsmtregs.h> 19 #include <asm/pm.h> 20 #include <asm/pm-cps.h> 21 #include <asm/regdef.h> 22 #include <asm/smp-cps.h> 23 #include <asm/uasm.h> 24 25 /* 26 * cps_nc_entry_fn - type of a generated non-coherent state entry function 27 * @online: the count of online coupled VPEs 28 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 29 * 30 * The code entering & exiting non-coherent states is generated at runtime 31 * using uasm, in order to ensure that the compiler cannot insert a stray 32 * memory access at an unfortunate time and to allow the generation of optimal 33 * core-specific code particularly for cache routines. If coupled_coherence 34 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 35 * returns the number of VPEs that were in the wait state at the point this 36 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 37 * the entry function for CPS_PM_NC_WAIT. 38 */ 39 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 40 41 /* 42 * The entry point of the generated non-coherent idle state entry/exit 43 * functions. Actually per-core rather than per-CPU. 44 */ 45 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 46 nc_asm_enter); 47 48 /* Bitmap indicating which states are supported by the system */ 49 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 50 51 /* 52 * Indicates the number of coupled VPEs ready to operate in a non-coherent 53 * state. Actually per-core rather than per-CPU. 54 */ 55 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 56 57 /* Indicates online CPUs coupled with the current CPU */ 58 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 59 60 /* 61 * Used to synchronize entry to deep idle states. Actually per-core rather 62 * than per-CPU. 63 */ 64 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 65 66 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 67 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 68 69 /* A somewhat arbitrary number of labels & relocs for uasm */ 70 static struct uasm_label labels[32]; 71 static struct uasm_reloc relocs[32]; 72 73 bool cps_pm_support_state(enum cps_pm_state state) 74 { 75 return test_bit(state, state_support); 76 } 77 78 static void coupled_barrier(atomic_t *a, unsigned online) 79 { 80 /* 81 * This function is effectively the same as 82 * cpuidle_coupled_parallel_barrier, which can't be used here since 83 * there's no cpuidle device. 84 */ 85 86 if (!coupled_coherence) 87 return; 88 89 smp_mb__before_atomic(); 90 atomic_inc(a); 91 92 while (atomic_read(a) < online) 93 cpu_relax(); 94 95 if (atomic_inc_return(a) == online * 2) { 96 atomic_set(a, 0); 97 return; 98 } 99 100 while (atomic_read(a) > online) 101 cpu_relax(); 102 } 103 104 int cps_pm_enter_state(enum cps_pm_state state) 105 { 106 unsigned cpu = smp_processor_id(); 107 unsigned core = cpu_core(¤t_cpu_data); 108 unsigned online, left; 109 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 110 u32 *core_ready_count, *nc_core_ready_count; 111 void *nc_addr; 112 cps_nc_entry_fn entry; 113 struct core_boot_config *core_cfg; 114 struct vpe_boot_config *vpe_cfg; 115 116 /* Check that there is an entry function for this state */ 117 entry = per_cpu(nc_asm_enter, core)[state]; 118 if (!entry) 119 return -EINVAL; 120 121 /* Calculate which coupled CPUs (VPEs) are online */ 122 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6) 123 if (cpu_online(cpu)) { 124 cpumask_and(coupled_mask, cpu_online_mask, 125 &cpu_sibling_map[cpu]); 126 online = cpumask_weight(coupled_mask); 127 cpumask_clear_cpu(cpu, coupled_mask); 128 } else 129 #endif 130 { 131 cpumask_clear(coupled_mask); 132 online = 1; 133 } 134 135 /* Setup the VPE to run mips_cps_pm_restore when started again */ 136 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 137 /* Power gating relies upon CPS SMP */ 138 if (!mips_cps_smp_in_use()) 139 return -EINVAL; 140 141 core_cfg = &mips_cps_core_bootcfg[core]; 142 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; 143 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 144 vpe_cfg->gp = (unsigned long)current_thread_info(); 145 vpe_cfg->sp = 0; 146 } 147 148 /* Indicate that this CPU might not be coherent */ 149 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 150 smp_mb__after_atomic(); 151 152 /* Create a non-coherent mapping of the core ready_count */ 153 core_ready_count = per_cpu(ready_count, core); 154 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 155 (unsigned long)core_ready_count); 156 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 157 nc_core_ready_count = nc_addr; 158 159 /* Ensure ready_count is zero-initialised before the assembly runs */ 160 WRITE_ONCE(*nc_core_ready_count, 0); 161 coupled_barrier(&per_cpu(pm_barrier, core), online); 162 163 /* Run the generated entry code */ 164 left = entry(online, nc_core_ready_count); 165 166 /* Remove the non-coherent mapping of ready_count */ 167 kunmap_noncoherent(); 168 169 /* Indicate that this CPU is definitely coherent */ 170 cpumask_set_cpu(cpu, &cpu_coherent_mask); 171 172 /* 173 * If this VPE is the first to leave the non-coherent wait state then 174 * it needs to wake up any coupled VPEs still running their wait 175 * instruction so that they return to cpuidle, which can then complete 176 * coordination between the coupled VPEs & provide the governor with 177 * a chance to reflect on the length of time the VPEs were in the 178 * idle state. 179 */ 180 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 181 arch_send_call_function_ipi_mask(coupled_mask); 182 183 return 0; 184 } 185 186 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 187 struct uasm_reloc **pr, 188 const struct cache_desc *cache, 189 unsigned op, int lbl) 190 { 191 unsigned cache_size = cache->ways << cache->waybit; 192 unsigned i; 193 const unsigned unroll_lines = 32; 194 195 /* If the cache isn't present this function has it easy */ 196 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 197 return; 198 199 /* Load base address */ 200 UASM_i_LA(pp, GPR_T0, (long)CKSEG0); 201 202 /* Calculate end address */ 203 if (cache_size < 0x8000) 204 uasm_i_addiu(pp, GPR_T1, GPR_T0, cache_size); 205 else 206 UASM_i_LA(pp, GPR_T1, (long)(CKSEG0 + cache_size)); 207 208 /* Start of cache op loop */ 209 uasm_build_label(pl, *pp, lbl); 210 211 /* Generate the cache ops */ 212 for (i = 0; i < unroll_lines; i++) { 213 if (cpu_has_mips_r6) { 214 uasm_i_cache(pp, op, 0, GPR_T0); 215 uasm_i_addiu(pp, GPR_T0, GPR_T0, cache->linesz); 216 } else { 217 uasm_i_cache(pp, op, i * cache->linesz, GPR_T0); 218 } 219 } 220 221 if (!cpu_has_mips_r6) 222 /* Update the base address */ 223 uasm_i_addiu(pp, GPR_T0, GPR_T0, unroll_lines * cache->linesz); 224 225 /* Loop if we haven't reached the end address yet */ 226 uasm_il_bne(pp, pr, GPR_T0, GPR_T1, lbl); 227 uasm_i_nop(pp); 228 } 229 230 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 231 struct uasm_reloc **pr, 232 const struct cpuinfo_mips *cpu_info, 233 int lbl) 234 { 235 unsigned i, fsb_size = 8; 236 unsigned num_loads = (fsb_size * 3) / 2; 237 unsigned line_stride = 2; 238 unsigned line_size = cpu_info->dcache.linesz; 239 unsigned perf_counter, perf_event; 240 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 241 242 /* 243 * Determine whether this CPU requires an FSB flush, and if so which 244 * performance counter/event reflect stalls due to a full FSB. 245 */ 246 switch (__get_cpu_type(cpu_info->cputype)) { 247 case CPU_INTERAPTIV: 248 perf_counter = 1; 249 perf_event = 51; 250 break; 251 252 case CPU_PROAPTIV: 253 /* Newer proAptiv cores don't require this workaround */ 254 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 255 return 0; 256 257 /* On older ones it's unavailable */ 258 return -1; 259 260 default: 261 /* Assume that the CPU does not need this workaround */ 262 return 0; 263 } 264 265 /* 266 * Ensure that the fill/store buffer (FSB) is not holding the results 267 * of a prefetch, since if it is then the CPC sequencer may become 268 * stuck in the D3 (ClrBus) state whilst entering a low power state. 269 */ 270 271 /* Preserve perf counter setup */ 272 uasm_i_mfc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 273 uasm_i_mfc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 274 275 /* Setup perf counter to count FSB full pipeline stalls */ 276 uasm_i_addiu(pp, GPR_T0, GPR_ZERO, (perf_event << 5) | 0xf); 277 uasm_i_mtc0(pp, GPR_T0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 278 uasm_i_ehb(pp); 279 uasm_i_mtc0(pp, GPR_ZERO, 25, (perf_counter * 2) + 1); /* PerfCntN */ 280 uasm_i_ehb(pp); 281 282 /* Base address for loads */ 283 UASM_i_LA(pp, GPR_T0, (long)CKSEG0); 284 285 /* Start of clear loop */ 286 uasm_build_label(pl, *pp, lbl); 287 288 /* Perform some loads to fill the FSB */ 289 for (i = 0; i < num_loads; i++) 290 uasm_i_lw(pp, GPR_ZERO, i * line_size * line_stride, GPR_T0); 291 292 /* 293 * Invalidate the new D-cache entries so that the cache will need 294 * refilling (via the FSB) if the loop is executed again. 295 */ 296 for (i = 0; i < num_loads; i++) { 297 uasm_i_cache(pp, Hit_Invalidate_D, 298 i * line_size * line_stride, GPR_T0); 299 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 300 i * line_size * line_stride, GPR_T0); 301 } 302 303 /* Barrier ensuring previous cache invalidates are complete */ 304 uasm_i_sync(pp, __SYNC_full); 305 uasm_i_ehb(pp); 306 307 /* Check whether the pipeline stalled due to the FSB being full */ 308 uasm_i_mfc0(pp, GPR_T1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 309 310 /* Loop if it didn't */ 311 uasm_il_beqz(pp, pr, GPR_T1, lbl); 312 uasm_i_nop(pp); 313 314 /* Restore perf counter 1. The count may well now be wrong... */ 315 uasm_i_mtc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 316 uasm_i_ehb(pp); 317 uasm_i_mtc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 318 uasm_i_ehb(pp); 319 320 return 0; 321 } 322 323 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 324 struct uasm_reloc **pr, 325 unsigned r_addr, int lbl) 326 { 327 uasm_i_lui(pp, GPR_T0, uasm_rel_hi(0x80000000)); 328 uasm_build_label(pl, *pp, lbl); 329 uasm_i_ll(pp, GPR_T1, 0, r_addr); 330 uasm_i_or(pp, GPR_T1, GPR_T1, GPR_T0); 331 uasm_i_sc(pp, GPR_T1, 0, r_addr); 332 uasm_il_beqz(pp, pr, GPR_T1, lbl); 333 uasm_i_nop(pp); 334 } 335 336 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 337 { 338 struct uasm_label *l = labels; 339 struct uasm_reloc *r = relocs; 340 u32 *buf, *p; 341 const unsigned r_online = GPR_A0; 342 const unsigned r_nc_count = GPR_A1; 343 const unsigned r_pcohctl = GPR_T8; 344 const unsigned max_instrs = 256; 345 unsigned cpc_cmd; 346 int err; 347 enum { 348 lbl_incready = 1, 349 lbl_poll_cont, 350 lbl_secondary_hang, 351 lbl_disable_coherence, 352 lbl_flush_fsb, 353 lbl_invicache, 354 lbl_flushdcache, 355 lbl_hang, 356 lbl_set_cont, 357 lbl_secondary_cont, 358 lbl_decready, 359 }; 360 361 /* Allocate a buffer to hold the generated code */ 362 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 363 if (!buf) 364 return NULL; 365 366 /* Clear labels & relocs ready for (re)use */ 367 memset(labels, 0, sizeof(labels)); 368 memset(relocs, 0, sizeof(relocs)); 369 370 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 371 /* Power gating relies upon CPS SMP */ 372 if (!mips_cps_smp_in_use()) 373 goto out_err; 374 375 /* 376 * Save CPU state. Note the non-standard calling convention 377 * with the return address placed in v0 to avoid clobbering 378 * the ra register before it is saved. 379 */ 380 UASM_i_LA(&p, GPR_T0, (long)mips_cps_pm_save); 381 uasm_i_jalr(&p, GPR_V0, GPR_T0); 382 uasm_i_nop(&p); 383 } 384 385 /* 386 * Load addresses of required CM & CPC registers. This is done early 387 * because they're needed in both the enable & disable coherence steps 388 * but in the coupled case the enable step will only run on one VPE. 389 */ 390 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 391 392 if (coupled_coherence) { 393 /* Increment ready_count */ 394 uasm_i_sync(&p, __SYNC_mb); 395 uasm_build_label(&l, p, lbl_incready); 396 uasm_i_ll(&p, GPR_T1, 0, r_nc_count); 397 uasm_i_addiu(&p, GPR_T2, GPR_T1, 1); 398 uasm_i_sc(&p, GPR_T2, 0, r_nc_count); 399 uasm_il_beqz(&p, &r, GPR_T2, lbl_incready); 400 uasm_i_addiu(&p, GPR_T1, GPR_T1, 1); 401 402 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 403 uasm_i_sync(&p, __SYNC_mb); 404 405 /* 406 * If this is the last VPE to become ready for non-coherence 407 * then it should branch below. 408 */ 409 uasm_il_beq(&p, &r, GPR_T1, r_online, lbl_disable_coherence); 410 uasm_i_nop(&p); 411 412 if (state < CPS_PM_POWER_GATED) { 413 /* 414 * Otherwise this is not the last VPE to become ready 415 * for non-coherence. It needs to wait until coherence 416 * has been disabled before proceeding, which it will do 417 * by polling for the top bit of ready_count being set. 418 */ 419 uasm_i_addiu(&p, GPR_T1, GPR_ZERO, -1); 420 uasm_build_label(&l, p, lbl_poll_cont); 421 uasm_i_lw(&p, GPR_T0, 0, r_nc_count); 422 uasm_il_bltz(&p, &r, GPR_T0, lbl_secondary_cont); 423 uasm_i_ehb(&p); 424 if (cpu_has_mipsmt) 425 uasm_i_yield(&p, GPR_ZERO, GPR_T1); 426 uasm_il_b(&p, &r, lbl_poll_cont); 427 uasm_i_nop(&p); 428 } else { 429 /* 430 * The core will lose power & this VPE will not continue 431 * so it can simply halt here. 432 */ 433 if (cpu_has_mipsmt) { 434 /* Halt the VPE via C0 tchalt register */ 435 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, TCHALT_H); 436 uasm_i_mtc0(&p, GPR_T0, 2, 4); 437 } else if (cpu_has_vp) { 438 /* Halt the VP via the CPC VP_STOP register */ 439 unsigned int vpe_id; 440 441 vpe_id = cpu_vpe_id(&cpu_data[cpu]); 442 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << vpe_id); 443 UASM_i_LA(&p, GPR_T1, (long)addr_cpc_cl_vp_stop()); 444 uasm_i_sw(&p, GPR_T0, 0, GPR_T1); 445 } else { 446 BUG(); 447 } 448 uasm_build_label(&l, p, lbl_secondary_hang); 449 uasm_il_b(&p, &r, lbl_secondary_hang); 450 uasm_i_nop(&p); 451 } 452 } 453 454 /* 455 * This is the point of no return - this VPE will now proceed to 456 * disable coherence. At this point we *must* be sure that no other 457 * VPE within the core will interfere with the L1 dcache. 458 */ 459 uasm_build_label(&l, p, lbl_disable_coherence); 460 461 /* Invalidate the L1 icache */ 462 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 463 Index_Invalidate_I, lbl_invicache); 464 465 /* Writeback & invalidate the L1 dcache */ 466 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 467 Index_Writeback_Inv_D, lbl_flushdcache); 468 469 /* Barrier ensuring previous cache invalidates are complete */ 470 uasm_i_sync(&p, __SYNC_full); 471 uasm_i_ehb(&p); 472 473 if (mips_cm_revision() < CM_REV_CM3) { 474 /* 475 * Disable all but self interventions. The load from COHCTL is 476 * defined by the interAptiv & proAptiv SUMs as ensuring that the 477 * operation resulting from the preceding store is complete. 478 */ 479 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << cpu_core(&cpu_data[cpu])); 480 uasm_i_sw(&p, GPR_T0, 0, r_pcohctl); 481 uasm_i_lw(&p, GPR_T0, 0, r_pcohctl); 482 483 /* Barrier to ensure write to coherence control is complete */ 484 uasm_i_sync(&p, __SYNC_full); 485 uasm_i_ehb(&p); 486 } 487 488 /* Disable coherence */ 489 uasm_i_sw(&p, GPR_ZERO, 0, r_pcohctl); 490 uasm_i_lw(&p, GPR_T0, 0, r_pcohctl); 491 492 if (state >= CPS_PM_CLOCK_GATED) { 493 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 494 lbl_flush_fsb); 495 if (err) 496 goto out_err; 497 498 /* Determine the CPC command to issue */ 499 switch (state) { 500 case CPS_PM_CLOCK_GATED: 501 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 502 break; 503 case CPS_PM_POWER_GATED: 504 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 505 break; 506 default: 507 BUG(); 508 goto out_err; 509 } 510 511 /* Issue the CPC command */ 512 UASM_i_LA(&p, GPR_T0, (long)addr_cpc_cl_cmd()); 513 uasm_i_addiu(&p, GPR_T1, GPR_ZERO, cpc_cmd); 514 uasm_i_sw(&p, GPR_T1, 0, GPR_T0); 515 516 if (state == CPS_PM_POWER_GATED) { 517 /* If anything goes wrong just hang */ 518 uasm_build_label(&l, p, lbl_hang); 519 uasm_il_b(&p, &r, lbl_hang); 520 uasm_i_nop(&p); 521 522 /* 523 * There's no point generating more code, the core is 524 * powered down & if powered back up will run from the 525 * reset vector not from here. 526 */ 527 goto gen_done; 528 } 529 530 /* Barrier to ensure write to CPC command is complete */ 531 uasm_i_sync(&p, __SYNC_full); 532 uasm_i_ehb(&p); 533 } 534 535 if (state == CPS_PM_NC_WAIT) { 536 /* 537 * At this point it is safe for all VPEs to proceed with 538 * execution. This VPE will set the top bit of ready_count 539 * to indicate to the other VPEs that they may continue. 540 */ 541 if (coupled_coherence) 542 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 543 lbl_set_cont); 544 545 /* 546 * VPEs which did not disable coherence will continue 547 * executing, after coherence has been disabled, from this 548 * point. 549 */ 550 uasm_build_label(&l, p, lbl_secondary_cont); 551 552 /* Now perform our wait */ 553 uasm_i_wait(&p, 0); 554 } 555 556 /* 557 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 558 * will run this. The first will actually re-enable coherence & the 559 * rest will just be performing a rather unusual nop. 560 */ 561 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, mips_cm_revision() < CM_REV_CM3 562 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN 563 : CM3_GCR_Cx_COHERENCE_COHEN); 564 565 uasm_i_sw(&p, GPR_T0, 0, r_pcohctl); 566 uasm_i_lw(&p, GPR_T0, 0, r_pcohctl); 567 568 /* Barrier to ensure write to coherence control is complete */ 569 uasm_i_sync(&p, __SYNC_full); 570 uasm_i_ehb(&p); 571 572 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 573 /* Decrement ready_count */ 574 uasm_build_label(&l, p, lbl_decready); 575 uasm_i_sync(&p, __SYNC_mb); 576 uasm_i_ll(&p, GPR_T1, 0, r_nc_count); 577 uasm_i_addiu(&p, GPR_T2, GPR_T1, -1); 578 uasm_i_sc(&p, GPR_T2, 0, r_nc_count); 579 uasm_il_beqz(&p, &r, GPR_T2, lbl_decready); 580 uasm_i_andi(&p, GPR_V0, GPR_T1, (1 << fls(smp_num_siblings)) - 1); 581 582 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 583 uasm_i_sync(&p, __SYNC_mb); 584 } 585 586 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 587 /* 588 * At this point it is safe for all VPEs to proceed with 589 * execution. This VPE will set the top bit of ready_count 590 * to indicate to the other VPEs that they may continue. 591 */ 592 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 593 594 /* 595 * This core will be reliant upon another core sending a 596 * power-up command to the CPC in order to resume operation. 597 * Thus an arbitrary VPE can't trigger the core leaving the 598 * idle state and the one that disables coherence might as well 599 * be the one to re-enable it. The rest will continue from here 600 * after that has been done. 601 */ 602 uasm_build_label(&l, p, lbl_secondary_cont); 603 604 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 605 uasm_i_sync(&p, __SYNC_mb); 606 } 607 608 /* The core is coherent, time to return to C code */ 609 uasm_i_jr(&p, GPR_RA); 610 uasm_i_nop(&p); 611 612 gen_done: 613 /* Ensure the code didn't exceed the resources allocated for it */ 614 BUG_ON((p - buf) > max_instrs); 615 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 616 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 617 618 /* Patch branch offsets */ 619 uasm_resolve_relocs(relocs, labels); 620 621 /* Flush the icache */ 622 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 623 624 return buf; 625 out_err: 626 kfree(buf); 627 return NULL; 628 } 629 630 static int cps_pm_online_cpu(unsigned int cpu) 631 { 632 enum cps_pm_state state; 633 unsigned core = cpu_core(&cpu_data[cpu]); 634 void *entry_fn, *core_rc; 635 636 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 637 if (per_cpu(nc_asm_enter, core)[state]) 638 continue; 639 if (!test_bit(state, state_support)) 640 continue; 641 642 entry_fn = cps_gen_entry_code(cpu, state); 643 if (!entry_fn) { 644 pr_err("Failed to generate core %u state %u entry\n", 645 core, state); 646 clear_bit(state, state_support); 647 } 648 649 per_cpu(nc_asm_enter, core)[state] = entry_fn; 650 } 651 652 if (!per_cpu(ready_count, core)) { 653 core_rc = kmalloc(sizeof(u32), GFP_KERNEL); 654 if (!core_rc) { 655 pr_err("Failed allocate core %u ready_count\n", core); 656 return -ENOMEM; 657 } 658 per_cpu(ready_count, core) = core_rc; 659 } 660 661 return 0; 662 } 663 664 static int cps_pm_power_notifier(struct notifier_block *this, 665 unsigned long event, void *ptr) 666 { 667 unsigned int stat; 668 669 switch (event) { 670 case PM_SUSPEND_PREPARE: 671 stat = read_cpc_cl_stat_conf(); 672 /* 673 * If we're attempting to suspend the system and power down all 674 * of the cores, the JTAG detect bit indicates that the CPC will 675 * instead put the cores into clock-off state. In this state 676 * a connected debugger can cause the CPU to attempt 677 * interactions with the powered down system. At best this will 678 * fail. At worst, it can hang the NoC, requiring a hard reset. 679 * To avoid this, just block system suspend if a JTAG probe 680 * is detected. 681 */ 682 if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) { 683 pr_warn("JTAG probe is connected - abort suspend\n"); 684 return NOTIFY_BAD; 685 } 686 return NOTIFY_DONE; 687 default: 688 return NOTIFY_DONE; 689 } 690 } 691 692 static int __init cps_pm_init(void) 693 { 694 /* A CM is required for all non-coherent states */ 695 if (!mips_cm_present()) { 696 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 697 return 0; 698 } 699 700 /* 701 * If interrupts were enabled whilst running a wait instruction on a 702 * non-coherent core then the VPE may end up processing interrupts 703 * whilst non-coherent. That would be bad. 704 */ 705 if (cpu_wait == r4k_wait_irqoff) 706 set_bit(CPS_PM_NC_WAIT, state_support); 707 else 708 pr_warn("pm-cps: non-coherent wait unavailable\n"); 709 710 /* Detect whether a CPC is present */ 711 if (mips_cpc_present()) { 712 /* Detect whether clock gating is implemented */ 713 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL) 714 set_bit(CPS_PM_CLOCK_GATED, state_support); 715 else 716 pr_warn("pm-cps: CPC does not support clock gating\n"); 717 718 /* Power gating is available with CPS SMP & any CPC */ 719 if (mips_cps_smp_in_use()) 720 set_bit(CPS_PM_POWER_GATED, state_support); 721 else 722 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 723 } else { 724 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 725 } 726 727 pm_notifier(cps_pm_power_notifier, 0); 728 729 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online", 730 cps_pm_online_cpu, NULL); 731 } 732 arch_initcall(cps_pm_init); 733
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.