~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/kernel/pm-cps.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright (C) 2014 Imagination Technologies
  4  * Author: Paul Burton <paul.burton@mips.com>
  5  */
  6 
  7 #include <linux/cpuhotplug.h>
  8 #include <linux/init.h>
  9 #include <linux/percpu.h>
 10 #include <linux/slab.h>
 11 #include <linux/suspend.h>
 12 
 13 #include <asm/asm-offsets.h>
 14 #include <asm/cacheflush.h>
 15 #include <asm/cacheops.h>
 16 #include <asm/idle.h>
 17 #include <asm/mips-cps.h>
 18 #include <asm/mipsmtregs.h>
 19 #include <asm/pm.h>
 20 #include <asm/pm-cps.h>
 21 #include <asm/regdef.h>
 22 #include <asm/smp-cps.h>
 23 #include <asm/uasm.h>
 24 
 25 /*
 26  * cps_nc_entry_fn - type of a generated non-coherent state entry function
 27  * @online: the count of online coupled VPEs
 28  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
 29  *
 30  * The code entering & exiting non-coherent states is generated at runtime
 31  * using uasm, in order to ensure that the compiler cannot insert a stray
 32  * memory access at an unfortunate time and to allow the generation of optimal
 33  * core-specific code particularly for cache routines. If coupled_coherence
 34  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
 35  * returns the number of VPEs that were in the wait state at the point this
 36  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
 37  * the entry function for CPS_PM_NC_WAIT.
 38  */
 39 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
 40 
 41 /*
 42  * The entry point of the generated non-coherent idle state entry/exit
 43  * functions. Actually per-core rather than per-CPU.
 44  */
 45 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
 46                                   nc_asm_enter);
 47 
 48 /* Bitmap indicating which states are supported by the system */
 49 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
 50 
 51 /*
 52  * Indicates the number of coupled VPEs ready to operate in a non-coherent
 53  * state. Actually per-core rather than per-CPU.
 54  */
 55 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
 56 
 57 /* Indicates online CPUs coupled with the current CPU */
 58 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
 59 
 60 /*
 61  * Used to synchronize entry to deep idle states. Actually per-core rather
 62  * than per-CPU.
 63  */
 64 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
 65 
 66 /* Saved CPU state across the CPS_PM_POWER_GATED state */
 67 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
 68 
 69 /* A somewhat arbitrary number of labels & relocs for uasm */
 70 static struct uasm_label labels[32];
 71 static struct uasm_reloc relocs[32];
 72 
 73 bool cps_pm_support_state(enum cps_pm_state state)
 74 {
 75         return test_bit(state, state_support);
 76 }
 77 
 78 static void coupled_barrier(atomic_t *a, unsigned online)
 79 {
 80         /*
 81          * This function is effectively the same as
 82          * cpuidle_coupled_parallel_barrier, which can't be used here since
 83          * there's no cpuidle device.
 84          */
 85 
 86         if (!coupled_coherence)
 87                 return;
 88 
 89         smp_mb__before_atomic();
 90         atomic_inc(a);
 91 
 92         while (atomic_read(a) < online)
 93                 cpu_relax();
 94 
 95         if (atomic_inc_return(a) == online * 2) {
 96                 atomic_set(a, 0);
 97                 return;
 98         }
 99 
100         while (atomic_read(a) > online)
101                 cpu_relax();
102 }
103 
104 int cps_pm_enter_state(enum cps_pm_state state)
105 {
106         unsigned cpu = smp_processor_id();
107         unsigned core = cpu_core(&current_cpu_data);
108         unsigned online, left;
109         cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
110         u32 *core_ready_count, *nc_core_ready_count;
111         void *nc_addr;
112         cps_nc_entry_fn entry;
113         struct core_boot_config *core_cfg;
114         struct vpe_boot_config *vpe_cfg;
115 
116         /* Check that there is an entry function for this state */
117         entry = per_cpu(nc_asm_enter, core)[state];
118         if (!entry)
119                 return -EINVAL;
120 
121         /* Calculate which coupled CPUs (VPEs) are online */
122 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
123         if (cpu_online(cpu)) {
124                 cpumask_and(coupled_mask, cpu_online_mask,
125                             &cpu_sibling_map[cpu]);
126                 online = cpumask_weight(coupled_mask);
127                 cpumask_clear_cpu(cpu, coupled_mask);
128         } else
129 #endif
130         {
131                 cpumask_clear(coupled_mask);
132                 online = 1;
133         }
134 
135         /* Setup the VPE to run mips_cps_pm_restore when started again */
136         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
137                 /* Power gating relies upon CPS SMP */
138                 if (!mips_cps_smp_in_use())
139                         return -EINVAL;
140 
141                 core_cfg = &mips_cps_core_bootcfg[core];
142                 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
143                 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
144                 vpe_cfg->gp = (unsigned long)current_thread_info();
145                 vpe_cfg->sp = 0;
146         }
147 
148         /* Indicate that this CPU might not be coherent */
149         cpumask_clear_cpu(cpu, &cpu_coherent_mask);
150         smp_mb__after_atomic();
151 
152         /* Create a non-coherent mapping of the core ready_count */
153         core_ready_count = per_cpu(ready_count, core);
154         nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
155                                    (unsigned long)core_ready_count);
156         nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
157         nc_core_ready_count = nc_addr;
158 
159         /* Ensure ready_count is zero-initialised before the assembly runs */
160         WRITE_ONCE(*nc_core_ready_count, 0);
161         coupled_barrier(&per_cpu(pm_barrier, core), online);
162 
163         /* Run the generated entry code */
164         left = entry(online, nc_core_ready_count);
165 
166         /* Remove the non-coherent mapping of ready_count */
167         kunmap_noncoherent();
168 
169         /* Indicate that this CPU is definitely coherent */
170         cpumask_set_cpu(cpu, &cpu_coherent_mask);
171 
172         /*
173          * If this VPE is the first to leave the non-coherent wait state then
174          * it needs to wake up any coupled VPEs still running their wait
175          * instruction so that they return to cpuidle, which can then complete
176          * coordination between the coupled VPEs & provide the governor with
177          * a chance to reflect on the length of time the VPEs were in the
178          * idle state.
179          */
180         if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
181                 arch_send_call_function_ipi_mask(coupled_mask);
182 
183         return 0;
184 }
185 
186 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
187                                   struct uasm_reloc **pr,
188                                   const struct cache_desc *cache,
189                                   unsigned op, int lbl)
190 {
191         unsigned cache_size = cache->ways << cache->waybit;
192         unsigned i;
193         const unsigned unroll_lines = 32;
194 
195         /* If the cache isn't present this function has it easy */
196         if (cache->flags & MIPS_CACHE_NOT_PRESENT)
197                 return;
198 
199         /* Load base address */
200         UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
201 
202         /* Calculate end address */
203         if (cache_size < 0x8000)
204                 uasm_i_addiu(pp, GPR_T1, GPR_T0, cache_size);
205         else
206                 UASM_i_LA(pp, GPR_T1, (long)(CKSEG0 + cache_size));
207 
208         /* Start of cache op loop */
209         uasm_build_label(pl, *pp, lbl);
210 
211         /* Generate the cache ops */
212         for (i = 0; i < unroll_lines; i++) {
213                 if (cpu_has_mips_r6) {
214                         uasm_i_cache(pp, op, 0, GPR_T0);
215                         uasm_i_addiu(pp, GPR_T0, GPR_T0, cache->linesz);
216                 } else {
217                         uasm_i_cache(pp, op, i * cache->linesz, GPR_T0);
218                 }
219         }
220 
221         if (!cpu_has_mips_r6)
222                 /* Update the base address */
223                 uasm_i_addiu(pp, GPR_T0, GPR_T0, unroll_lines * cache->linesz);
224 
225         /* Loop if we haven't reached the end address yet */
226         uasm_il_bne(pp, pr, GPR_T0, GPR_T1, lbl);
227         uasm_i_nop(pp);
228 }
229 
230 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
231                              struct uasm_reloc **pr,
232                              const struct cpuinfo_mips *cpu_info,
233                              int lbl)
234 {
235         unsigned i, fsb_size = 8;
236         unsigned num_loads = (fsb_size * 3) / 2;
237         unsigned line_stride = 2;
238         unsigned line_size = cpu_info->dcache.linesz;
239         unsigned perf_counter, perf_event;
240         unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
241 
242         /*
243          * Determine whether this CPU requires an FSB flush, and if so which
244          * performance counter/event reflect stalls due to a full FSB.
245          */
246         switch (__get_cpu_type(cpu_info->cputype)) {
247         case CPU_INTERAPTIV:
248                 perf_counter = 1;
249                 perf_event = 51;
250                 break;
251 
252         case CPU_PROAPTIV:
253                 /* Newer proAptiv cores don't require this workaround */
254                 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
255                         return 0;
256 
257                 /* On older ones it's unavailable */
258                 return -1;
259 
260         default:
261                 /* Assume that the CPU does not need this workaround */
262                 return 0;
263         }
264 
265         /*
266          * Ensure that the fill/store buffer (FSB) is not holding the results
267          * of a prefetch, since if it is then the CPC sequencer may become
268          * stuck in the D3 (ClrBus) state whilst entering a low power state.
269          */
270 
271         /* Preserve perf counter setup */
272         uasm_i_mfc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
273         uasm_i_mfc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
274 
275         /* Setup perf counter to count FSB full pipeline stalls */
276         uasm_i_addiu(pp, GPR_T0, GPR_ZERO, (perf_event << 5) | 0xf);
277         uasm_i_mtc0(pp, GPR_T0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
278         uasm_i_ehb(pp);
279         uasm_i_mtc0(pp, GPR_ZERO, 25, (perf_counter * 2) + 1); /* PerfCntN */
280         uasm_i_ehb(pp);
281 
282         /* Base address for loads */
283         UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
284 
285         /* Start of clear loop */
286         uasm_build_label(pl, *pp, lbl);
287 
288         /* Perform some loads to fill the FSB */
289         for (i = 0; i < num_loads; i++)
290                 uasm_i_lw(pp, GPR_ZERO, i * line_size * line_stride, GPR_T0);
291 
292         /*
293          * Invalidate the new D-cache entries so that the cache will need
294          * refilling (via the FSB) if the loop is executed again.
295          */
296         for (i = 0; i < num_loads; i++) {
297                 uasm_i_cache(pp, Hit_Invalidate_D,
298                              i * line_size * line_stride, GPR_T0);
299                 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
300                              i * line_size * line_stride, GPR_T0);
301         }
302 
303         /* Barrier ensuring previous cache invalidates are complete */
304         uasm_i_sync(pp, __SYNC_full);
305         uasm_i_ehb(pp);
306 
307         /* Check whether the pipeline stalled due to the FSB being full */
308         uasm_i_mfc0(pp, GPR_T1, 25, (perf_counter * 2) + 1); /* PerfCntN */
309 
310         /* Loop if it didn't */
311         uasm_il_beqz(pp, pr, GPR_T1, lbl);
312         uasm_i_nop(pp);
313 
314         /* Restore perf counter 1. The count may well now be wrong... */
315         uasm_i_mtc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
316         uasm_i_ehb(pp);
317         uasm_i_mtc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
318         uasm_i_ehb(pp);
319 
320         return 0;
321 }
322 
323 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
324                                 struct uasm_reloc **pr,
325                                 unsigned r_addr, int lbl)
326 {
327         uasm_i_lui(pp, GPR_T0, uasm_rel_hi(0x80000000));
328         uasm_build_label(pl, *pp, lbl);
329         uasm_i_ll(pp, GPR_T1, 0, r_addr);
330         uasm_i_or(pp, GPR_T1, GPR_T1, GPR_T0);
331         uasm_i_sc(pp, GPR_T1, 0, r_addr);
332         uasm_il_beqz(pp, pr, GPR_T1, lbl);
333         uasm_i_nop(pp);
334 }
335 
336 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
337 {
338         struct uasm_label *l = labels;
339         struct uasm_reloc *r = relocs;
340         u32 *buf, *p;
341         const unsigned r_online = GPR_A0;
342         const unsigned r_nc_count = GPR_A1;
343         const unsigned r_pcohctl = GPR_T8;
344         const unsigned max_instrs = 256;
345         unsigned cpc_cmd;
346         int err;
347         enum {
348                 lbl_incready = 1,
349                 lbl_poll_cont,
350                 lbl_secondary_hang,
351                 lbl_disable_coherence,
352                 lbl_flush_fsb,
353                 lbl_invicache,
354                 lbl_flushdcache,
355                 lbl_hang,
356                 lbl_set_cont,
357                 lbl_secondary_cont,
358                 lbl_decready,
359         };
360 
361         /* Allocate a buffer to hold the generated code */
362         p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
363         if (!buf)
364                 return NULL;
365 
366         /* Clear labels & relocs ready for (re)use */
367         memset(labels, 0, sizeof(labels));
368         memset(relocs, 0, sizeof(relocs));
369 
370         if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
371                 /* Power gating relies upon CPS SMP */
372                 if (!mips_cps_smp_in_use())
373                         goto out_err;
374 
375                 /*
376                  * Save CPU state. Note the non-standard calling convention
377                  * with the return address placed in v0 to avoid clobbering
378                  * the ra register before it is saved.
379                  */
380                 UASM_i_LA(&p, GPR_T0, (long)mips_cps_pm_save);
381                 uasm_i_jalr(&p, GPR_V0, GPR_T0);
382                 uasm_i_nop(&p);
383         }
384 
385         /*
386          * Load addresses of required CM & CPC registers. This is done early
387          * because they're needed in both the enable & disable coherence steps
388          * but in the coupled case the enable step will only run on one VPE.
389          */
390         UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
391 
392         if (coupled_coherence) {
393                 /* Increment ready_count */
394                 uasm_i_sync(&p, __SYNC_mb);
395                 uasm_build_label(&l, p, lbl_incready);
396                 uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
397                 uasm_i_addiu(&p, GPR_T2, GPR_T1, 1);
398                 uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
399                 uasm_il_beqz(&p, &r, GPR_T2, lbl_incready);
400                 uasm_i_addiu(&p, GPR_T1, GPR_T1, 1);
401 
402                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
403                 uasm_i_sync(&p, __SYNC_mb);
404 
405                 /*
406                  * If this is the last VPE to become ready for non-coherence
407                  * then it should branch below.
408                  */
409                 uasm_il_beq(&p, &r, GPR_T1, r_online, lbl_disable_coherence);
410                 uasm_i_nop(&p);
411 
412                 if (state < CPS_PM_POWER_GATED) {
413                         /*
414                          * Otherwise this is not the last VPE to become ready
415                          * for non-coherence. It needs to wait until coherence
416                          * has been disabled before proceeding, which it will do
417                          * by polling for the top bit of ready_count being set.
418                          */
419                         uasm_i_addiu(&p, GPR_T1, GPR_ZERO, -1);
420                         uasm_build_label(&l, p, lbl_poll_cont);
421                         uasm_i_lw(&p, GPR_T0, 0, r_nc_count);
422                         uasm_il_bltz(&p, &r, GPR_T0, lbl_secondary_cont);
423                         uasm_i_ehb(&p);
424                         if (cpu_has_mipsmt)
425                                 uasm_i_yield(&p, GPR_ZERO, GPR_T1);
426                         uasm_il_b(&p, &r, lbl_poll_cont);
427                         uasm_i_nop(&p);
428                 } else {
429                         /*
430                          * The core will lose power & this VPE will not continue
431                          * so it can simply halt here.
432                          */
433                         if (cpu_has_mipsmt) {
434                                 /* Halt the VPE via C0 tchalt register */
435                                 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, TCHALT_H);
436                                 uasm_i_mtc0(&p, GPR_T0, 2, 4);
437                         } else if (cpu_has_vp) {
438                                 /* Halt the VP via the CPC VP_STOP register */
439                                 unsigned int vpe_id;
440 
441                                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
442                                 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << vpe_id);
443                                 UASM_i_LA(&p, GPR_T1, (long)addr_cpc_cl_vp_stop());
444                                 uasm_i_sw(&p, GPR_T0, 0, GPR_T1);
445                         } else {
446                                 BUG();
447                         }
448                         uasm_build_label(&l, p, lbl_secondary_hang);
449                         uasm_il_b(&p, &r, lbl_secondary_hang);
450                         uasm_i_nop(&p);
451                 }
452         }
453 
454         /*
455          * This is the point of no return - this VPE will now proceed to
456          * disable coherence. At this point we *must* be sure that no other
457          * VPE within the core will interfere with the L1 dcache.
458          */
459         uasm_build_label(&l, p, lbl_disable_coherence);
460 
461         /* Invalidate the L1 icache */
462         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
463                               Index_Invalidate_I, lbl_invicache);
464 
465         /* Writeback & invalidate the L1 dcache */
466         cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
467                               Index_Writeback_Inv_D, lbl_flushdcache);
468 
469         /* Barrier ensuring previous cache invalidates are complete */
470         uasm_i_sync(&p, __SYNC_full);
471         uasm_i_ehb(&p);
472 
473         if (mips_cm_revision() < CM_REV_CM3) {
474                 /*
475                 * Disable all but self interventions. The load from COHCTL is
476                 * defined by the interAptiv & proAptiv SUMs as ensuring that the
477                 *  operation resulting from the preceding store is complete.
478                 */
479                 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << cpu_core(&cpu_data[cpu]));
480                 uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
481                 uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
482 
483                 /* Barrier to ensure write to coherence control is complete */
484                 uasm_i_sync(&p, __SYNC_full);
485                 uasm_i_ehb(&p);
486         }
487 
488         /* Disable coherence */
489         uasm_i_sw(&p, GPR_ZERO, 0, r_pcohctl);
490         uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
491 
492         if (state >= CPS_PM_CLOCK_GATED) {
493                 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
494                                         lbl_flush_fsb);
495                 if (err)
496                         goto out_err;
497 
498                 /* Determine the CPC command to issue */
499                 switch (state) {
500                 case CPS_PM_CLOCK_GATED:
501                         cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
502                         break;
503                 case CPS_PM_POWER_GATED:
504                         cpc_cmd = CPC_Cx_CMD_PWRDOWN;
505                         break;
506                 default:
507                         BUG();
508                         goto out_err;
509                 }
510 
511                 /* Issue the CPC command */
512                 UASM_i_LA(&p, GPR_T0, (long)addr_cpc_cl_cmd());
513                 uasm_i_addiu(&p, GPR_T1, GPR_ZERO, cpc_cmd);
514                 uasm_i_sw(&p, GPR_T1, 0, GPR_T0);
515 
516                 if (state == CPS_PM_POWER_GATED) {
517                         /* If anything goes wrong just hang */
518                         uasm_build_label(&l, p, lbl_hang);
519                         uasm_il_b(&p, &r, lbl_hang);
520                         uasm_i_nop(&p);
521 
522                         /*
523                          * There's no point generating more code, the core is
524                          * powered down & if powered back up will run from the
525                          * reset vector not from here.
526                          */
527                         goto gen_done;
528                 }
529 
530                 /* Barrier to ensure write to CPC command is complete */
531                 uasm_i_sync(&p, __SYNC_full);
532                 uasm_i_ehb(&p);
533         }
534 
535         if (state == CPS_PM_NC_WAIT) {
536                 /*
537                  * At this point it is safe for all VPEs to proceed with
538                  * execution. This VPE will set the top bit of ready_count
539                  * to indicate to the other VPEs that they may continue.
540                  */
541                 if (coupled_coherence)
542                         cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
543                                             lbl_set_cont);
544 
545                 /*
546                  * VPEs which did not disable coherence will continue
547                  * executing, after coherence has been disabled, from this
548                  * point.
549                  */
550                 uasm_build_label(&l, p, lbl_secondary_cont);
551 
552                 /* Now perform our wait */
553                 uasm_i_wait(&p, 0);
554         }
555 
556         /*
557          * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
558          * will run this. The first will actually re-enable coherence & the
559          * rest will just be performing a rather unusual nop.
560          */
561         uasm_i_addiu(&p, GPR_T0, GPR_ZERO, mips_cm_revision() < CM_REV_CM3
562                                 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN
563                                 : CM3_GCR_Cx_COHERENCE_COHEN);
564 
565         uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
566         uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
567 
568         /* Barrier to ensure write to coherence control is complete */
569         uasm_i_sync(&p, __SYNC_full);
570         uasm_i_ehb(&p);
571 
572         if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
573                 /* Decrement ready_count */
574                 uasm_build_label(&l, p, lbl_decready);
575                 uasm_i_sync(&p, __SYNC_mb);
576                 uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
577                 uasm_i_addiu(&p, GPR_T2, GPR_T1, -1);
578                 uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
579                 uasm_il_beqz(&p, &r, GPR_T2, lbl_decready);
580                 uasm_i_andi(&p, GPR_V0, GPR_T1, (1 << fls(smp_num_siblings)) - 1);
581 
582                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
583                 uasm_i_sync(&p, __SYNC_mb);
584         }
585 
586         if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
587                 /*
588                  * At this point it is safe for all VPEs to proceed with
589                  * execution. This VPE will set the top bit of ready_count
590                  * to indicate to the other VPEs that they may continue.
591                  */
592                 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
593 
594                 /*
595                  * This core will be reliant upon another core sending a
596                  * power-up command to the CPC in order to resume operation.
597                  * Thus an arbitrary VPE can't trigger the core leaving the
598                  * idle state and the one that disables coherence might as well
599                  * be the one to re-enable it. The rest will continue from here
600                  * after that has been done.
601                  */
602                 uasm_build_label(&l, p, lbl_secondary_cont);
603 
604                 /* Barrier ensuring all CPUs see the updated r_nc_count value */
605                 uasm_i_sync(&p, __SYNC_mb);
606         }
607 
608         /* The core is coherent, time to return to C code */
609         uasm_i_jr(&p, GPR_RA);
610         uasm_i_nop(&p);
611 
612 gen_done:
613         /* Ensure the code didn't exceed the resources allocated for it */
614         BUG_ON((p - buf) > max_instrs);
615         BUG_ON((l - labels) > ARRAY_SIZE(labels));
616         BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
617 
618         /* Patch branch offsets */
619         uasm_resolve_relocs(relocs, labels);
620 
621         /* Flush the icache */
622         local_flush_icache_range((unsigned long)buf, (unsigned long)p);
623 
624         return buf;
625 out_err:
626         kfree(buf);
627         return NULL;
628 }
629 
630 static int cps_pm_online_cpu(unsigned int cpu)
631 {
632         enum cps_pm_state state;
633         unsigned core = cpu_core(&cpu_data[cpu]);
634         void *entry_fn, *core_rc;
635 
636         for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
637                 if (per_cpu(nc_asm_enter, core)[state])
638                         continue;
639                 if (!test_bit(state, state_support))
640                         continue;
641 
642                 entry_fn = cps_gen_entry_code(cpu, state);
643                 if (!entry_fn) {
644                         pr_err("Failed to generate core %u state %u entry\n",
645                                core, state);
646                         clear_bit(state, state_support);
647                 }
648 
649                 per_cpu(nc_asm_enter, core)[state] = entry_fn;
650         }
651 
652         if (!per_cpu(ready_count, core)) {
653                 core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
654                 if (!core_rc) {
655                         pr_err("Failed allocate core %u ready_count\n", core);
656                         return -ENOMEM;
657                 }
658                 per_cpu(ready_count, core) = core_rc;
659         }
660 
661         return 0;
662 }
663 
664 static int cps_pm_power_notifier(struct notifier_block *this,
665                                  unsigned long event, void *ptr)
666 {
667         unsigned int stat;
668 
669         switch (event) {
670         case PM_SUSPEND_PREPARE:
671                 stat = read_cpc_cl_stat_conf();
672                 /*
673                  * If we're attempting to suspend the system and power down all
674                  * of the cores, the JTAG detect bit indicates that the CPC will
675                  * instead put the cores into clock-off state. In this state
676                  * a connected debugger can cause the CPU to attempt
677                  * interactions with the powered down system. At best this will
678                  * fail. At worst, it can hang the NoC, requiring a hard reset.
679                  * To avoid this, just block system suspend if a JTAG probe
680                  * is detected.
681                  */
682                 if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
683                         pr_warn("JTAG probe is connected - abort suspend\n");
684                         return NOTIFY_BAD;
685                 }
686                 return NOTIFY_DONE;
687         default:
688                 return NOTIFY_DONE;
689         }
690 }
691 
692 static int __init cps_pm_init(void)
693 {
694         /* A CM is required for all non-coherent states */
695         if (!mips_cm_present()) {
696                 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
697                 return 0;
698         }
699 
700         /*
701          * If interrupts were enabled whilst running a wait instruction on a
702          * non-coherent core then the VPE may end up processing interrupts
703          * whilst non-coherent. That would be bad.
704          */
705         if (cpu_wait == r4k_wait_irqoff)
706                 set_bit(CPS_PM_NC_WAIT, state_support);
707         else
708                 pr_warn("pm-cps: non-coherent wait unavailable\n");
709 
710         /* Detect whether a CPC is present */
711         if (mips_cpc_present()) {
712                 /* Detect whether clock gating is implemented */
713                 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
714                         set_bit(CPS_PM_CLOCK_GATED, state_support);
715                 else
716                         pr_warn("pm-cps: CPC does not support clock gating\n");
717 
718                 /* Power gating is available with CPS SMP & any CPC */
719                 if (mips_cps_smp_in_use())
720                         set_bit(CPS_PM_POWER_GATED, state_support);
721                 else
722                         pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
723         } else {
724                 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
725         }
726 
727         pm_notifier(cps_pm_power_notifier, 0);
728 
729         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
730                                  cps_pm_online_cpu, NULL);
731 }
732 arch_initcall(cps_pm_init);
733 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php