~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/kernel/smp-bmips.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This file is subject to the terms and conditions of the GNU General Public
  3  * License.  See the file "COPYING" in the main directory of this archive
  4  * for more details.
  5  *
  6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7  *
  8  * SMP support for BMIPS
  9  */
 10 
 11 #include <linux/init.h>
 12 #include <linux/sched.h>
 13 #include <linux/sched/hotplug.h>
 14 #include <linux/sched/task_stack.h>
 15 #include <linux/mm.h>
 16 #include <linux/delay.h>
 17 #include <linux/smp.h>
 18 #include <linux/interrupt.h>
 19 #include <linux/spinlock.h>
 20 #include <linux/cpu.h>
 21 #include <linux/cpumask.h>
 22 #include <linux/reboot.h>
 23 #include <linux/io.h>
 24 #include <linux/compiler.h>
 25 #include <linux/linkage.h>
 26 #include <linux/bug.h>
 27 #include <linux/kernel.h>
 28 #include <linux/kexec.h>
 29 #include <linux/irq.h>
 30 
 31 #include <asm/time.h>
 32 #include <asm/processor.h>
 33 #include <asm/bootinfo.h>
 34 #include <asm/cacheflush.h>
 35 #include <asm/tlbflush.h>
 36 #include <asm/mipsregs.h>
 37 #include <asm/bmips.h>
 38 #include <asm/traps.h>
 39 #include <asm/barrier.h>
 40 #include <asm/cpu-features.h>
 41 
 42 static int __maybe_unused max_cpus = 1;
 43 
 44 /* these may be configured by the platform code */
 45 int bmips_smp_enabled = 1;
 46 int bmips_cpu_offset;
 47 cpumask_t bmips_booted_mask;
 48 unsigned long bmips_tp1_irqs = IE_IRQ1;
 49 
 50 #define RESET_FROM_KSEG0                0x80080800
 51 #define RESET_FROM_KSEG1                0xa0080800
 52 
 53 static void bmips_set_reset_vec(int cpu, u32 val);
 54 
 55 #ifdef CONFIG_SMP
 56 
 57 #include <asm/smp.h>
 58 
 59 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 60 unsigned long bmips_smp_boot_sp;
 61 unsigned long bmips_smp_boot_gp;
 62 
 63 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 64 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 65 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 66 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 67 
 68 /* SW interrupts 0,1 are used for interprocessor signaling */
 69 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
 70 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
 71 
 72 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
 73 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 74 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 75 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
 76 
 77 static void __init bmips_smp_setup(void)
 78 {
 79         int i, cpu = 1, boot_cpu = 0;
 80         int cpu_hw_intr;
 81 
 82         switch (current_cpu_type()) {
 83         case CPU_BMIPS4350:
 84         case CPU_BMIPS4380:
 85                 /* arbitration priority */
 86                 clear_c0_brcm_cmt_ctrl(0x30);
 87 
 88                 /* NBK and weak order flags */
 89                 set_c0_brcm_config_0(0x30000);
 90 
 91                 /* Find out if we are running on TP0 or TP1 */
 92                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 93 
 94                 /*
 95                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 96                  * thread
 97                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 98                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 99                  */
100                 if (boot_cpu == 0)
101                         cpu_hw_intr = 0x02;
102                 else
103                         cpu_hw_intr = 0x1d;
104 
105                 change_c0_brcm_cmt_intr(0xf8018000,
106                                         (cpu_hw_intr << 27) | (0x03 << 15));
107 
108                 /* single core, 2 threads (2 pipelines) */
109                 max_cpus = 2;
110 
111                 break;
112         case CPU_BMIPS5000:
113                 /* enable raceless SW interrupts */
114                 set_c0_brcm_config(0x03 << 22);
115 
116                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
117                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
118 
119                 /* N cores, 2 threads per core */
120                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
121 
122                 /* clear any pending SW interrupts */
123                 for (i = 0; i < max_cpus; i++) {
124                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
125                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
126                 }
127 
128                 break;
129         default:
130                 max_cpus = 1;
131         }
132 
133         if (!bmips_smp_enabled)
134                 max_cpus = 1;
135 
136         /* this can be overridden by the BSP */
137         if (!board_ebase_setup)
138                 board_ebase_setup = &bmips_ebase_setup;
139 
140         if (max_cpus > 1) {
141                 __cpu_number_map[boot_cpu] = 0;
142                 __cpu_logical_map[0] = boot_cpu;
143 
144                 for (i = 0; i < max_cpus; i++) {
145                         if (i != boot_cpu) {
146                                 __cpu_number_map[i] = cpu;
147                                 __cpu_logical_map[cpu] = i;
148                                 cpu++;
149                         }
150                         set_cpu_possible(i, 1);
151                         set_cpu_present(i, 1);
152                 }
153         } else {
154                 __cpu_number_map[0] = boot_cpu;
155                 __cpu_logical_map[0] = 0;
156                 set_cpu_possible(0, 1);
157                 set_cpu_present(0, 1);
158         }
159 }
160 
161 /*
162  * IPI IRQ setup - runs on CPU0
163  */
164 static void bmips_prepare_cpus(unsigned int max_cpus)
165 {
166         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
167 
168         switch (current_cpu_type()) {
169         case CPU_BMIPS4350:
170         case CPU_BMIPS4380:
171                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
172                 break;
173         case CPU_BMIPS5000:
174                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
175                 break;
176         default:
177                 return;
178         }
179 
180         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
181                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
182                 panic("Can't request IPI0 interrupt");
183         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
184                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
185                 panic("Can't request IPI1 interrupt");
186 }
187 
188 /*
189  * Tell the hardware to boot CPUx - runs on CPU0
190  */
191 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
192 {
193         bmips_smp_boot_sp = __KSTK_TOS(idle);
194         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
195         mb();
196 
197         /*
198          * Initial boot sequence for secondary CPU:
199          *   bmips_reset_nmi_vec @ a000_0000 ->
200          *   bmips_smp_entry ->
201          *   plat_wired_tlb_setup (cached function call; optional) ->
202          *   start_secondary (cached jump)
203          *
204          * Warm restart sequence:
205          *   play_dead WAIT loop ->
206          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
207          *   eret to play_dead ->
208          *   bmips_secondary_reentry ->
209          *   start_secondary
210          */
211 
212         pr_info("SMP: Booting CPU%d...\n", cpu);
213 
214         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
215                 /* kseg1 might not exist if this CPU enabled XKS01 */
216                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
217 
218                 switch (current_cpu_type()) {
219                 case CPU_BMIPS4350:
220                 case CPU_BMIPS4380:
221                         bmips43xx_send_ipi_single(cpu, 0);
222                         break;
223                 case CPU_BMIPS5000:
224                         bmips5000_send_ipi_single(cpu, 0);
225                         break;
226                 }
227         } else {
228                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
229 
230                 switch (current_cpu_type()) {
231                 case CPU_BMIPS4350:
232                 case CPU_BMIPS4380:
233                         /* Reset slave TP1 if booting from TP0 */
234                         if (cpu_logical_map(cpu) == 1)
235                                 set_c0_brcm_cmt_ctrl(0x01);
236                         break;
237                 case CPU_BMIPS5000:
238                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
239                         break;
240                 }
241                 cpumask_set_cpu(cpu, &bmips_booted_mask);
242         }
243 
244         return 0;
245 }
246 
247 /*
248  * Early setup - runs on secondary CPU after cache probe
249  */
250 static void bmips_init_secondary(void)
251 {
252         bmips_cpu_setup();
253 
254         switch (current_cpu_type()) {
255         case CPU_BMIPS4350:
256         case CPU_BMIPS4380:
257                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258                 break;
259         case CPU_BMIPS5000:
260                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
261                 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
262                 break;
263         }
264 }
265 
266 /*
267  * Late setup - runs on secondary CPU before entering the idle loop
268  */
269 static void bmips_smp_finish(void)
270 {
271         pr_info("SMP: CPU%d is running\n", smp_processor_id());
272 
273         /* make sure there won't be a timer interrupt for a little while */
274         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
275 
276         irq_enable_hazard();
277         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
278         irq_enable_hazard();
279 }
280 
281 /*
282  * BMIPS5000 raceless IPIs
283  *
284  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
285  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
286  * IPI1 is used for SMP_CALL_FUNCTION
287  */
288 
289 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
290 {
291         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
292 }
293 
294 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
295 {
296         int action = irq - IPI0_IRQ;
297 
298         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
299 
300         if (action == 0)
301                 scheduler_ipi();
302         else
303                 generic_smp_call_function_interrupt();
304 
305         return IRQ_HANDLED;
306 }
307 
308 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
309         unsigned int action)
310 {
311         unsigned int i;
312 
313         for_each_cpu(i, mask)
314                 bmips5000_send_ipi_single(i, action);
315 }
316 
317 /*
318  * BMIPS43xx racey IPIs
319  *
320  * We use one inbound SW IRQ for each CPU.
321  *
322  * A spinlock must be held in order to keep CPUx from accidentally clearing
323  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
324  * same spinlock is used to protect the action masks.
325  */
326 
327 static DEFINE_SPINLOCK(ipi_lock);
328 static DEFINE_PER_CPU(int, ipi_action_mask);
329 
330 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
331 {
332         unsigned long flags;
333 
334         spin_lock_irqsave(&ipi_lock, flags);
335         set_c0_cause(cpu ? C_SW1 : C_SW0);
336         per_cpu(ipi_action_mask, cpu) |= action;
337         irq_enable_hazard();
338         spin_unlock_irqrestore(&ipi_lock, flags);
339 }
340 
341 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
342 {
343         unsigned long flags;
344         int action, cpu = irq - IPI0_IRQ;
345 
346         spin_lock_irqsave(&ipi_lock, flags);
347         action = __this_cpu_read(ipi_action_mask);
348         per_cpu(ipi_action_mask, cpu) = 0;
349         clear_c0_cause(cpu ? C_SW1 : C_SW0);
350         spin_unlock_irqrestore(&ipi_lock, flags);
351 
352         if (action & SMP_RESCHEDULE_YOURSELF)
353                 scheduler_ipi();
354         if (action & SMP_CALL_FUNCTION)
355                 generic_smp_call_function_interrupt();
356 
357         return IRQ_HANDLED;
358 }
359 
360 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
361         unsigned int action)
362 {
363         unsigned int i;
364 
365         for_each_cpu(i, mask)
366                 bmips43xx_send_ipi_single(i, action);
367 }
368 
369 #ifdef CONFIG_HOTPLUG_CPU
370 
371 static int bmips_cpu_disable(void)
372 {
373         unsigned int cpu = smp_processor_id();
374 
375         pr_info("SMP: CPU%d is offline\n", cpu);
376 
377         set_cpu_online(cpu, false);
378         calculate_cpu_foreign_map();
379         irq_migrate_all_off_this_cpu();
380         clear_c0_status(IE_IRQ5);
381 
382         local_flush_tlb_all();
383         local_flush_icache_range(0, ~0);
384 
385         return 0;
386 }
387 
388 static void bmips_cpu_die(unsigned int cpu)
389 {
390 }
391 
392 void __ref play_dead(void)
393 {
394         idle_task_exit();
395         cpuhp_ap_report_dead();
396 
397         /* flush data cache */
398         _dma_cache_wback_inv(0, ~0);
399 
400         /*
401          * Wakeup is on SW0 or SW1; disable everything else
402          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
403          * IRQ handlers; this clears ST0_IE and returns immediately.
404          */
405         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
406         change_c0_status(
407                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
408                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
409         irq_disable_hazard();
410 
411         /*
412          * wait for SW interrupt from bmips_boot_secondary(), then jump
413          * back to start_secondary()
414          */
415         __asm__ __volatile__(
416         "       wait\n"
417         "       j       bmips_secondary_reentry\n"
418         : : : "memory");
419 
420         BUG();
421 }
422 
423 #endif /* CONFIG_HOTPLUG_CPU */
424 
425 const struct plat_smp_ops bmips43xx_smp_ops = {
426         .smp_setup              = bmips_smp_setup,
427         .prepare_cpus           = bmips_prepare_cpus,
428         .boot_secondary         = bmips_boot_secondary,
429         .smp_finish             = bmips_smp_finish,
430         .init_secondary         = bmips_init_secondary,
431         .send_ipi_single        = bmips43xx_send_ipi_single,
432         .send_ipi_mask          = bmips43xx_send_ipi_mask,
433 #ifdef CONFIG_HOTPLUG_CPU
434         .cpu_disable            = bmips_cpu_disable,
435         .cpu_die                = bmips_cpu_die,
436 #endif
437 #ifdef CONFIG_KEXEC_CORE
438         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
439 #endif
440 };
441 
442 const struct plat_smp_ops bmips5000_smp_ops = {
443         .smp_setup              = bmips_smp_setup,
444         .prepare_cpus           = bmips_prepare_cpus,
445         .boot_secondary         = bmips_boot_secondary,
446         .smp_finish             = bmips_smp_finish,
447         .init_secondary         = bmips_init_secondary,
448         .send_ipi_single        = bmips5000_send_ipi_single,
449         .send_ipi_mask          = bmips5000_send_ipi_mask,
450 #ifdef CONFIG_HOTPLUG_CPU
451         .cpu_disable            = bmips_cpu_disable,
452         .cpu_die                = bmips_cpu_die,
453 #endif
454 #ifdef CONFIG_KEXEC_CORE
455         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
456 #endif
457 };
458 
459 #endif /* CONFIG_SMP */
460 
461 /***********************************************************************
462  * BMIPS vector relocation
463  * This is primarily used for SMP boot, but it is applicable to some
464  * UP BMIPS systems as well.
465  ***********************************************************************/
466 
467 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
468 {
469         memcpy((void *)dst, start, end - start);
470         dma_cache_wback(dst, end - start);
471         local_flush_icache_range(dst, dst + (end - start));
472         instruction_hazard();
473 }
474 
475 static inline void bmips_nmi_handler_setup(void)
476 {
477         bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
478                 bmips_reset_nmi_vec_end);
479         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
480                 bmips_smp_int_vec_end);
481 }
482 
483 struct reset_vec_info {
484         int cpu;
485         u32 val;
486 };
487 
488 static void bmips_set_reset_vec_remote(void *vinfo)
489 {
490         struct reset_vec_info *info = vinfo;
491         int shift = info->cpu & 0x01 ? 16 : 0;
492         u32 mask = ~(0xffff << shift), val = info->val >> 16;
493 
494         preempt_disable();
495         if (smp_processor_id() > 0) {
496                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
497                                          info, 1);
498         } else {
499                 if (info->cpu & 0x02) {
500                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
501                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
502                         bmips_read_zscm_reg(0xa0);
503                 } else {
504                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
505                                               (val << shift));
506                 }
507         }
508         preempt_enable();
509 }
510 
511 static void bmips_set_reset_vec(int cpu, u32 val)
512 {
513         struct reset_vec_info info;
514 
515         if (current_cpu_type() == CPU_BMIPS5000) {
516                 /* this needs to run from CPU0 (which is always online) */
517                 info.cpu = cpu;
518                 info.val = val;
519                 bmips_set_reset_vec_remote(&info);
520         } else {
521                 void __iomem *cbr = bmips_cbr_addr;
522 
523                 if (cpu == 0)
524                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
525                 else {
526                         if (current_cpu_type() != CPU_BMIPS4380)
527                                 return;
528                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
529                 }
530         }
531         __sync();
532         back_to_back_c0_hazard();
533 }
534 
535 void bmips_ebase_setup(void)
536 {
537         unsigned long new_ebase = ebase;
538 
539         BUG_ON(ebase != CKSEG0);
540 
541         switch (current_cpu_type()) {
542         case CPU_BMIPS4350:
543                 /*
544                  * BMIPS4350 cannot relocate the normal vectors, but it
545                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
546                  * the relocated BEV=1, IV=0 general exception vector @
547                  * 0xa000_0380.
548                  *
549                  * set_uncached_handler() is used here because:
550                  *  - CPU1 will run this from uncached space
551                  *  - None of the cacheflush functions are set up yet
552                  */
553                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
554                         &bmips_smp_int_vec, 0x80);
555                 __sync();
556                 return;
557         case CPU_BMIPS3300:
558         case CPU_BMIPS4380:
559                 /*
560                  * 0x8000_0000: reset/NMI (initially in kseg1)
561                  * 0x8000_0400: normal vectors
562                  */
563                 new_ebase = 0x80000400;
564                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
565                 break;
566         case CPU_BMIPS5000:
567                 /*
568                  * 0x8000_0000: reset/NMI (initially in kseg1)
569                  * 0x8000_1000: normal vectors
570                  */
571                 new_ebase = 0x80001000;
572                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
573                 write_c0_ebase(new_ebase);
574                 break;
575         default:
576                 return;
577         }
578 
579         board_nmi_handler_setup = &bmips_nmi_handler_setup;
580         ebase = new_ebase;
581 }
582 
583 asmlinkage void __weak plat_wired_tlb_setup(void)
584 {
585         /*
586          * Called when starting/restarting a secondary CPU.
587          * Kernel stacks and other important data might only be accessible
588          * once the wired entries are present.
589          */
590 }
591 
592 void bmips_cpu_setup(void)
593 {
594         void __iomem __maybe_unused *cbr = bmips_cbr_addr;
595         u32 __maybe_unused rac_addr;
596         u32 __maybe_unused cfg;
597 
598         switch (current_cpu_type()) {
599         case CPU_BMIPS3300:
600                 /* Set BIU to async mode */
601                 set_c0_brcm_bus_pll(BIT(22));
602                 __sync();
603 
604                 /* put the BIU back in sync mode */
605                 clear_c0_brcm_bus_pll(BIT(22));
606 
607                 /* clear BHTD to enable branch history table */
608                 clear_c0_brcm_reset(BIT(16));
609 
610                 /* Flush and enable RAC */
611                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
612                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
613                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
614 
615                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
616                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
617                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
618 
619                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
620                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
621                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
622                 break;
623 
624         case CPU_BMIPS4350:
625                 rac_addr = BMIPS_RAC_CONFIG_1;
626 
627                 if (!(read_c0_brcm_cmt_local() & (1 << 31)))
628                         rac_addr = BMIPS_RAC_CONFIG;
629 
630                 /* Enable data RAC */
631                 cfg = __raw_readl(cbr + rac_addr);
632                 __raw_writel(cfg | 0xf, cbr + rac_addr);
633                 __raw_readl(cbr + rac_addr);
634 
635                 /* Flush stale data out of the readahead cache */
636                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
637                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
638                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
639                 break;
640 
641         case CPU_BMIPS4380:
642                 /* CBG workaround for early BMIPS4380 CPUs */
643                 switch (read_c0_prid()) {
644                 case 0x2a040:
645                 case 0x2a042:
646                 case 0x2a044:
647                 case 0x2a060:
648                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
649                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
650                         __raw_readl(cbr + BMIPS_L2_CONFIG);
651                 }
652 
653                 /* clear BHTD to enable branch history table */
654                 clear_c0_brcm_config_0(BIT(21));
655 
656                 /* XI/ROTR enable */
657                 set_c0_brcm_config_0(BIT(23));
658                 set_c0_brcm_cmt_ctrl(BIT(15));
659                 break;
660 
661         case CPU_BMIPS5000:
662                 /* enable RDHWR, BRDHWR */
663                 set_c0_brcm_config(BIT(17) | BIT(21));
664 
665                 /* Disable JTB */
666                 __asm__ __volatile__(
667                 "       .set    noreorder\n"
668                 "       li      $8, 0x5a455048\n"
669                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
670                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
671                 "       li      $9, 0x00008000\n"
672                 "       or      $8, $8, $9\n"
673                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
674                 "       sync\n"
675                 "       li      $8, 0x0\n"
676                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
677                 "       .set    reorder\n"
678                 : : : "$8", "$9");
679 
680                 /* XI enable */
681                 set_c0_brcm_config(BIT(27));
682 
683                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
684                 __asm__ __volatile__(
685                 "       li      $8, 0x5a455048\n"
686                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
687                 "       nop; nop; nop\n"
688                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
689                 "       lui     $9, 0x0100\n"
690                 "       or      $8, $9\n"
691                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
692                 : : : "$8", "$9");
693                 break;
694         }
695 }
696 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php