1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: MIPS specific KVM APIs 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/errno.h> 14 #include <linux/err.h> 15 #include <linux/kdebug.h> 16 #include <linux/module.h> 17 #include <linux/uaccess.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/fs.h> 21 #include <linux/memblock.h> 22 #include <linux/pgtable.h> 23 24 #include <asm/fpu.h> 25 #include <asm/page.h> 26 #include <asm/cacheflush.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgalloc.h> 29 30 #include <linux/kvm_host.h> 31 32 #include "interrupt.h" 33 34 #define CREATE_TRACE_POINTS 35 #include "trace.h" 36 37 #ifndef VECTORSPACING 38 #define VECTORSPACING 0x100 /* for EI/VI mode */ 39 #endif 40 41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 42 KVM_GENERIC_VM_STATS() 43 }; 44 45 const struct kvm_stats_header kvm_vm_stats_header = { 46 .name_size = KVM_STATS_NAME_SIZE, 47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 48 .id_offset = sizeof(struct kvm_stats_header), 49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 51 sizeof(kvm_vm_stats_desc), 52 }; 53 54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 55 KVM_GENERIC_VCPU_STATS(), 56 STATS_DESC_COUNTER(VCPU, wait_exits), 57 STATS_DESC_COUNTER(VCPU, cache_exits), 58 STATS_DESC_COUNTER(VCPU, signal_exits), 59 STATS_DESC_COUNTER(VCPU, int_exits), 60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits), 61 STATS_DESC_COUNTER(VCPU, tlbmod_exits), 62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits), 63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits), 64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits), 65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits), 66 STATS_DESC_COUNTER(VCPU, syscall_exits), 67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits), 68 STATS_DESC_COUNTER(VCPU, break_inst_exits), 69 STATS_DESC_COUNTER(VCPU, trap_inst_exits), 70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits), 71 STATS_DESC_COUNTER(VCPU, fpe_exits), 72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits), 73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits), 74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits), 75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits), 76 STATS_DESC_COUNTER(VCPU, vz_hc_exits), 77 STATS_DESC_COUNTER(VCPU, vz_grr_exits), 78 STATS_DESC_COUNTER(VCPU, vz_gva_exits), 79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits), 80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits), 81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits), 82 #ifdef CONFIG_CPU_LOONGSON64 83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits), 84 #endif 85 }; 86 87 const struct kvm_stats_header kvm_vcpu_stats_header = { 88 .name_size = KVM_STATS_NAME_SIZE, 89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 90 .id_offset = sizeof(struct kvm_stats_header), 91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 93 sizeof(kvm_vcpu_stats_desc), 94 }; 95 96 bool kvm_trace_guest_mode_change; 97 98 int kvm_guest_mode_change_trace_reg(void) 99 { 100 kvm_trace_guest_mode_change = true; 101 return 0; 102 } 103 104 void kvm_guest_mode_change_trace_unreg(void) 105 { 106 kvm_trace_guest_mode_change = false; 107 } 108 109 /* 110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in 111 * Config7, so we are "runnable" if interrupts are pending 112 */ 113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 114 { 115 return !!(vcpu->arch.pending_exceptions); 116 } 117 118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 119 { 120 return false; 121 } 122 123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 124 { 125 return 1; 126 } 127 128 int kvm_arch_hardware_enable(void) 129 { 130 return kvm_mips_callbacks->hardware_enable(); 131 } 132 133 void kvm_arch_hardware_disable(void) 134 { 135 kvm_mips_callbacks->hardware_disable(); 136 } 137 138 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 139 { 140 switch (type) { 141 case KVM_VM_MIPS_AUTO: 142 break; 143 case KVM_VM_MIPS_VZ: 144 break; 145 default: 146 /* Unsupported KVM type */ 147 return -EINVAL; 148 } 149 150 /* Allocate page table to map GPA -> RPA */ 151 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); 152 if (!kvm->arch.gpa_mm.pgd) 153 return -ENOMEM; 154 155 #ifdef CONFIG_CPU_LOONGSON64 156 kvm_init_loongson_ipi(kvm); 157 #endif 158 159 return 0; 160 } 161 162 static void kvm_mips_free_gpa_pt(struct kvm *kvm) 163 { 164 /* It should always be safe to remove after flushing the whole range */ 165 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); 166 pgd_free(NULL, kvm->arch.gpa_mm.pgd); 167 } 168 169 void kvm_arch_destroy_vm(struct kvm *kvm) 170 { 171 kvm_destroy_vcpus(kvm); 172 kvm_mips_free_gpa_pt(kvm); 173 } 174 175 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, 176 unsigned long arg) 177 { 178 return -ENOIOCTLCMD; 179 } 180 181 void kvm_arch_flush_shadow_all(struct kvm *kvm) 182 { 183 /* Flush whole GPA */ 184 kvm_mips_flush_gpa_pt(kvm, 0, ~0); 185 kvm_flush_remote_tlbs(kvm); 186 } 187 188 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 189 struct kvm_memory_slot *slot) 190 { 191 /* 192 * The slot has been made invalid (ready for moving or deletion), so we 193 * need to ensure that it can no longer be accessed by any guest VCPUs. 194 */ 195 196 spin_lock(&kvm->mmu_lock); 197 /* Flush slot from GPA */ 198 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, 199 slot->base_gfn + slot->npages - 1); 200 kvm_flush_remote_tlbs_memslot(kvm, slot); 201 spin_unlock(&kvm->mmu_lock); 202 } 203 204 int kvm_arch_prepare_memory_region(struct kvm *kvm, 205 const struct kvm_memory_slot *old, 206 struct kvm_memory_slot *new, 207 enum kvm_mr_change change) 208 { 209 return 0; 210 } 211 212 void kvm_arch_commit_memory_region(struct kvm *kvm, 213 struct kvm_memory_slot *old, 214 const struct kvm_memory_slot *new, 215 enum kvm_mr_change change) 216 { 217 int needs_flush; 218 219 /* 220 * If dirty page logging is enabled, write protect all pages in the slot 221 * ready for dirty logging. 222 * 223 * There is no need to do this in any of the following cases: 224 * CREATE: No dirty mappings will already exist. 225 * MOVE/DELETE: The old mappings will already have been cleaned up by 226 * kvm_arch_flush_shadow_memslot() 227 */ 228 if (change == KVM_MR_FLAGS_ONLY && 229 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 230 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { 231 spin_lock(&kvm->mmu_lock); 232 /* Write protect GPA page table entries */ 233 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn, 234 new->base_gfn + new->npages - 1); 235 if (needs_flush) 236 kvm_flush_remote_tlbs_memslot(kvm, new); 237 spin_unlock(&kvm->mmu_lock); 238 } 239 } 240 241 static inline void dump_handler(const char *symbol, void *start, void *end) 242 { 243 u32 *p; 244 245 pr_debug("LEAF(%s)\n", symbol); 246 247 pr_debug("\t.set push\n"); 248 pr_debug("\t.set noreorder\n"); 249 250 for (p = start; p < (u32 *)end; ++p) 251 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); 252 253 pr_debug("\t.set\tpop\n"); 254 255 pr_debug("\tEND(%s)\n", symbol); 256 } 257 258 /* low level hrtimer wake routine */ 259 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) 260 { 261 struct kvm_vcpu *vcpu; 262 263 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); 264 265 kvm_mips_callbacks->queue_timer_int(vcpu); 266 267 vcpu->arch.wait = 0; 268 rcuwait_wake_up(&vcpu->wait); 269 270 return kvm_mips_count_timeout(vcpu); 271 } 272 273 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 274 { 275 return 0; 276 } 277 278 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 279 { 280 int err, size; 281 void *gebase, *p, *handler, *refill_start, *refill_end; 282 int i; 283 284 kvm_debug("kvm @ %p: create cpu %d at %p\n", 285 vcpu->kvm, vcpu->vcpu_id, vcpu); 286 287 err = kvm_mips_callbacks->vcpu_init(vcpu); 288 if (err) 289 return err; 290 291 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, 292 HRTIMER_MODE_REL); 293 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; 294 295 /* 296 * Allocate space for host mode exception handlers that handle 297 * guest mode exits 298 */ 299 if (cpu_has_veic || cpu_has_vint) 300 size = 0x200 + VECTORSPACING * 64; 301 else 302 size = 0x4000; 303 304 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); 305 306 if (!gebase) { 307 err = -ENOMEM; 308 goto out_uninit_vcpu; 309 } 310 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", 311 ALIGN(size, PAGE_SIZE), gebase); 312 313 /* 314 * Check new ebase actually fits in CP0_EBase. The lack of a write gate 315 * limits us to the low 512MB of physical address space. If the memory 316 * we allocate is out of range, just give up now. 317 */ 318 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { 319 kvm_err("CP0_EBase.WG required for guest exception base %pK\n", 320 gebase); 321 err = -ENOMEM; 322 goto out_free_gebase; 323 } 324 325 /* Save new ebase */ 326 vcpu->arch.guest_ebase = gebase; 327 328 /* Build guest exception vectors dynamically in unmapped memory */ 329 handler = gebase + 0x2000; 330 331 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */ 332 refill_start = gebase; 333 if (IS_ENABLED(CONFIG_64BIT)) 334 refill_start += 0x080; 335 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); 336 337 /* General Exception Entry point */ 338 kvm_mips_build_exception(gebase + 0x180, handler); 339 340 /* For vectored interrupts poke the exception code @ all offsets 0-7 */ 341 for (i = 0; i < 8; i++) { 342 kvm_debug("L1 Vectored handler @ %p\n", 343 gebase + 0x200 + (i * VECTORSPACING)); 344 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, 345 handler); 346 } 347 348 /* General exit handler */ 349 p = handler; 350 p = kvm_mips_build_exit(p); 351 352 /* Guest entry routine */ 353 vcpu->arch.vcpu_run = p; 354 p = kvm_mips_build_vcpu_run(p); 355 356 /* Dump the generated code */ 357 pr_debug("#include <asm/asm.h>\n"); 358 pr_debug("#include <asm/regdef.h>\n"); 359 pr_debug("\n"); 360 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); 361 dump_handler("kvm_tlb_refill", refill_start, refill_end); 362 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); 363 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); 364 365 /* Invalidate the icache for these ranges */ 366 flush_icache_range((unsigned long)gebase, 367 (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); 368 369 /* Init */ 370 vcpu->arch.last_sched_cpu = -1; 371 vcpu->arch.last_exec_cpu = -1; 372 373 /* Initial guest state */ 374 err = kvm_mips_callbacks->vcpu_setup(vcpu); 375 if (err) 376 goto out_free_gebase; 377 378 return 0; 379 380 out_free_gebase: 381 kfree(gebase); 382 out_uninit_vcpu: 383 kvm_mips_callbacks->vcpu_uninit(vcpu); 384 return err; 385 } 386 387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 388 { 389 hrtimer_cancel(&vcpu->arch.comparecount_timer); 390 391 kvm_mips_dump_stats(vcpu); 392 393 kvm_mmu_free_memory_caches(vcpu); 394 kfree(vcpu->arch.guest_ebase); 395 396 kvm_mips_callbacks->vcpu_uninit(vcpu); 397 } 398 399 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 400 struct kvm_guest_debug *dbg) 401 { 402 return -ENOIOCTLCMD; 403 } 404 405 /* 406 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while 407 * the vCPU is running. 408 * 409 * This must be noinstr as instrumentation may make use of RCU, and this is not 410 * safe during the EQS. 411 */ 412 static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu) 413 { 414 int ret; 415 416 guest_state_enter_irqoff(); 417 ret = kvm_mips_callbacks->vcpu_run(vcpu); 418 guest_state_exit_irqoff(); 419 420 return ret; 421 } 422 423 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 424 { 425 int r = -EINTR; 426 427 vcpu_load(vcpu); 428 429 kvm_sigset_activate(vcpu); 430 431 if (vcpu->mmio_needed) { 432 if (!vcpu->mmio_is_write) 433 kvm_mips_complete_mmio_load(vcpu); 434 vcpu->mmio_needed = 0; 435 } 436 437 if (!vcpu->wants_to_run) 438 goto out; 439 440 lose_fpu(1); 441 442 local_irq_disable(); 443 guest_timing_enter_irqoff(); 444 trace_kvm_enter(vcpu); 445 446 /* 447 * Make sure the read of VCPU requests in vcpu_run() callback is not 448 * reordered ahead of the write to vcpu->mode, or we could miss a TLB 449 * flush request while the requester sees the VCPU as outside of guest 450 * mode and not needing an IPI. 451 */ 452 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 453 454 r = kvm_mips_vcpu_enter_exit(vcpu); 455 456 /* 457 * We must ensure that any pending interrupts are taken before 458 * we exit guest timing so that timer ticks are accounted as 459 * guest time. Transiently unmask interrupts so that any 460 * pending interrupts are taken. 461 * 462 * TODO: is there a barrier which ensures that pending interrupts are 463 * recognised? Currently this just hopes that the CPU takes any pending 464 * interrupts between the enable and disable. 465 */ 466 local_irq_enable(); 467 local_irq_disable(); 468 469 trace_kvm_out(vcpu); 470 guest_timing_exit_irqoff(); 471 local_irq_enable(); 472 473 out: 474 kvm_sigset_deactivate(vcpu); 475 476 vcpu_put(vcpu); 477 return r; 478 } 479 480 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 481 struct kvm_mips_interrupt *irq) 482 { 483 int intr = (int)irq->irq; 484 struct kvm_vcpu *dvcpu = NULL; 485 486 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] || 487 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] || 488 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) || 489 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2])) 490 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, 491 (int)intr); 492 493 if (irq->cpu == -1) 494 dvcpu = vcpu; 495 else 496 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu); 497 498 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) { 499 kvm_mips_callbacks->queue_io_int(dvcpu, irq); 500 501 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) { 502 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); 503 } else { 504 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, 505 irq->cpu, irq->irq); 506 return -EINVAL; 507 } 508 509 dvcpu->arch.wait = 0; 510 511 rcuwait_wake_up(&dvcpu->wait); 512 513 return 0; 514 } 515 516 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 517 struct kvm_mp_state *mp_state) 518 { 519 return -ENOIOCTLCMD; 520 } 521 522 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 523 struct kvm_mp_state *mp_state) 524 { 525 return -ENOIOCTLCMD; 526 } 527 528 static u64 kvm_mips_get_one_regs[] = { 529 KVM_REG_MIPS_R0, 530 KVM_REG_MIPS_R1, 531 KVM_REG_MIPS_R2, 532 KVM_REG_MIPS_R3, 533 KVM_REG_MIPS_R4, 534 KVM_REG_MIPS_R5, 535 KVM_REG_MIPS_R6, 536 KVM_REG_MIPS_R7, 537 KVM_REG_MIPS_R8, 538 KVM_REG_MIPS_R9, 539 KVM_REG_MIPS_R10, 540 KVM_REG_MIPS_R11, 541 KVM_REG_MIPS_R12, 542 KVM_REG_MIPS_R13, 543 KVM_REG_MIPS_R14, 544 KVM_REG_MIPS_R15, 545 KVM_REG_MIPS_R16, 546 KVM_REG_MIPS_R17, 547 KVM_REG_MIPS_R18, 548 KVM_REG_MIPS_R19, 549 KVM_REG_MIPS_R20, 550 KVM_REG_MIPS_R21, 551 KVM_REG_MIPS_R22, 552 KVM_REG_MIPS_R23, 553 KVM_REG_MIPS_R24, 554 KVM_REG_MIPS_R25, 555 KVM_REG_MIPS_R26, 556 KVM_REG_MIPS_R27, 557 KVM_REG_MIPS_R28, 558 KVM_REG_MIPS_R29, 559 KVM_REG_MIPS_R30, 560 KVM_REG_MIPS_R31, 561 562 #ifndef CONFIG_CPU_MIPSR6 563 KVM_REG_MIPS_HI, 564 KVM_REG_MIPS_LO, 565 #endif 566 KVM_REG_MIPS_PC, 567 }; 568 569 static u64 kvm_mips_get_one_regs_fpu[] = { 570 KVM_REG_MIPS_FCR_IR, 571 KVM_REG_MIPS_FCR_CSR, 572 }; 573 574 static u64 kvm_mips_get_one_regs_msa[] = { 575 KVM_REG_MIPS_MSA_IR, 576 KVM_REG_MIPS_MSA_CSR, 577 }; 578 579 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) 580 { 581 unsigned long ret; 582 583 ret = ARRAY_SIZE(kvm_mips_get_one_regs); 584 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 585 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; 586 /* odd doubles */ 587 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) 588 ret += 16; 589 } 590 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) 591 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; 592 ret += kvm_mips_callbacks->num_regs(vcpu); 593 594 return ret; 595 } 596 597 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) 598 { 599 u64 index; 600 unsigned int i; 601 602 if (copy_to_user(indices, kvm_mips_get_one_regs, 603 sizeof(kvm_mips_get_one_regs))) 604 return -EFAULT; 605 indices += ARRAY_SIZE(kvm_mips_get_one_regs); 606 607 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 608 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, 609 sizeof(kvm_mips_get_one_regs_fpu))) 610 return -EFAULT; 611 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); 612 613 for (i = 0; i < 32; ++i) { 614 index = KVM_REG_MIPS_FPR_32(i); 615 if (copy_to_user(indices, &index, sizeof(index))) 616 return -EFAULT; 617 ++indices; 618 619 /* skip odd doubles if no F64 */ 620 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) 621 continue; 622 623 index = KVM_REG_MIPS_FPR_64(i); 624 if (copy_to_user(indices, &index, sizeof(index))) 625 return -EFAULT; 626 ++indices; 627 } 628 } 629 630 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { 631 if (copy_to_user(indices, kvm_mips_get_one_regs_msa, 632 sizeof(kvm_mips_get_one_regs_msa))) 633 return -EFAULT; 634 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); 635 636 for (i = 0; i < 32; ++i) { 637 index = KVM_REG_MIPS_VEC_128(i); 638 if (copy_to_user(indices, &index, sizeof(index))) 639 return -EFAULT; 640 ++indices; 641 } 642 } 643 644 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); 645 } 646 647 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, 648 const struct kvm_one_reg *reg) 649 { 650 struct mips_coproc *cop0 = &vcpu->arch.cop0; 651 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 652 int ret; 653 s64 v; 654 s64 vs[2]; 655 unsigned int idx; 656 657 switch (reg->id) { 658 /* General purpose registers */ 659 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: 660 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; 661 break; 662 #ifndef CONFIG_CPU_MIPSR6 663 case KVM_REG_MIPS_HI: 664 v = (long)vcpu->arch.hi; 665 break; 666 case KVM_REG_MIPS_LO: 667 v = (long)vcpu->arch.lo; 668 break; 669 #endif 670 case KVM_REG_MIPS_PC: 671 v = (long)vcpu->arch.pc; 672 break; 673 674 /* Floating point registers */ 675 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 676 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 677 return -EINVAL; 678 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 679 /* Odd singles in top of even double when FR=0 */ 680 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 681 v = get_fpr32(&fpu->fpr[idx], 0); 682 else 683 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); 684 break; 685 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 686 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 687 return -EINVAL; 688 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 689 /* Can't access odd doubles in FR=0 mode */ 690 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 691 return -EINVAL; 692 v = get_fpr64(&fpu->fpr[idx], 0); 693 break; 694 case KVM_REG_MIPS_FCR_IR: 695 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 696 return -EINVAL; 697 v = boot_cpu_data.fpu_id; 698 break; 699 case KVM_REG_MIPS_FCR_CSR: 700 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 701 return -EINVAL; 702 v = fpu->fcr31; 703 break; 704 705 /* MIPS SIMD Architecture (MSA) registers */ 706 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 707 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 708 return -EINVAL; 709 /* Can't access MSA registers in FR=0 mode */ 710 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) 711 return -EINVAL; 712 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 713 #ifdef CONFIG_CPU_LITTLE_ENDIAN 714 /* least significant byte first */ 715 vs[0] = get_fpr64(&fpu->fpr[idx], 0); 716 vs[1] = get_fpr64(&fpu->fpr[idx], 1); 717 #else 718 /* most significant byte first */ 719 vs[0] = get_fpr64(&fpu->fpr[idx], 1); 720 vs[1] = get_fpr64(&fpu->fpr[idx], 0); 721 #endif 722 break; 723 case KVM_REG_MIPS_MSA_IR: 724 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 725 return -EINVAL; 726 v = boot_cpu_data.msa_id; 727 break; 728 case KVM_REG_MIPS_MSA_CSR: 729 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 730 return -EINVAL; 731 v = fpu->msacsr; 732 break; 733 734 /* registers to be handled specially */ 735 default: 736 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); 737 if (ret) 738 return ret; 739 break; 740 } 741 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 742 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 743 744 return put_user(v, uaddr64); 745 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 746 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 747 u32 v32 = (u32)v; 748 749 return put_user(v32, uaddr32); 750 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 751 void __user *uaddr = (void __user *)(long)reg->addr; 752 753 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; 754 } else { 755 return -EINVAL; 756 } 757 } 758 759 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, 760 const struct kvm_one_reg *reg) 761 { 762 struct mips_coproc *cop0 = &vcpu->arch.cop0; 763 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 764 s64 v; 765 s64 vs[2]; 766 unsigned int idx; 767 768 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 769 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 770 771 if (get_user(v, uaddr64) != 0) 772 return -EFAULT; 773 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 774 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 775 s32 v32; 776 777 if (get_user(v32, uaddr32) != 0) 778 return -EFAULT; 779 v = (s64)v32; 780 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 781 void __user *uaddr = (void __user *)(long)reg->addr; 782 783 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; 784 } else { 785 return -EINVAL; 786 } 787 788 switch (reg->id) { 789 /* General purpose registers */ 790 case KVM_REG_MIPS_R0: 791 /* Silently ignore requests to set $0 */ 792 break; 793 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: 794 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; 795 break; 796 #ifndef CONFIG_CPU_MIPSR6 797 case KVM_REG_MIPS_HI: 798 vcpu->arch.hi = v; 799 break; 800 case KVM_REG_MIPS_LO: 801 vcpu->arch.lo = v; 802 break; 803 #endif 804 case KVM_REG_MIPS_PC: 805 vcpu->arch.pc = v; 806 break; 807 808 /* Floating point registers */ 809 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 810 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 811 return -EINVAL; 812 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 813 /* Odd singles in top of even double when FR=0 */ 814 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 815 set_fpr32(&fpu->fpr[idx], 0, v); 816 else 817 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); 818 break; 819 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 820 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 821 return -EINVAL; 822 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 823 /* Can't access odd doubles in FR=0 mode */ 824 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 825 return -EINVAL; 826 set_fpr64(&fpu->fpr[idx], 0, v); 827 break; 828 case KVM_REG_MIPS_FCR_IR: 829 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 830 return -EINVAL; 831 /* Read-only */ 832 break; 833 case KVM_REG_MIPS_FCR_CSR: 834 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 835 return -EINVAL; 836 fpu->fcr31 = v; 837 break; 838 839 /* MIPS SIMD Architecture (MSA) registers */ 840 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 841 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 842 return -EINVAL; 843 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 844 #ifdef CONFIG_CPU_LITTLE_ENDIAN 845 /* least significant byte first */ 846 set_fpr64(&fpu->fpr[idx], 0, vs[0]); 847 set_fpr64(&fpu->fpr[idx], 1, vs[1]); 848 #else 849 /* most significant byte first */ 850 set_fpr64(&fpu->fpr[idx], 1, vs[0]); 851 set_fpr64(&fpu->fpr[idx], 0, vs[1]); 852 #endif 853 break; 854 case KVM_REG_MIPS_MSA_IR: 855 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 856 return -EINVAL; 857 /* Read-only */ 858 break; 859 case KVM_REG_MIPS_MSA_CSR: 860 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 861 return -EINVAL; 862 fpu->msacsr = v; 863 break; 864 865 /* registers to be handled specially */ 866 default: 867 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); 868 } 869 return 0; 870 } 871 872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 873 struct kvm_enable_cap *cap) 874 { 875 int r = 0; 876 877 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) 878 return -EINVAL; 879 if (cap->flags) 880 return -EINVAL; 881 if (cap->args[0]) 882 return -EINVAL; 883 884 switch (cap->cap) { 885 case KVM_CAP_MIPS_FPU: 886 vcpu->arch.fpu_enabled = true; 887 break; 888 case KVM_CAP_MIPS_MSA: 889 vcpu->arch.msa_enabled = true; 890 break; 891 default: 892 r = -EINVAL; 893 break; 894 } 895 896 return r; 897 } 898 899 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, 900 unsigned long arg) 901 { 902 struct kvm_vcpu *vcpu = filp->private_data; 903 void __user *argp = (void __user *)arg; 904 905 if (ioctl == KVM_INTERRUPT) { 906 struct kvm_mips_interrupt irq; 907 908 if (copy_from_user(&irq, argp, sizeof(irq))) 909 return -EFAULT; 910 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, 911 irq.irq); 912 913 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 914 } 915 916 return -ENOIOCTLCMD; 917 } 918 919 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, 920 unsigned long arg) 921 { 922 struct kvm_vcpu *vcpu = filp->private_data; 923 void __user *argp = (void __user *)arg; 924 long r; 925 926 vcpu_load(vcpu); 927 928 switch (ioctl) { 929 case KVM_SET_ONE_REG: 930 case KVM_GET_ONE_REG: { 931 struct kvm_one_reg reg; 932 933 r = -EFAULT; 934 if (copy_from_user(®, argp, sizeof(reg))) 935 break; 936 if (ioctl == KVM_SET_ONE_REG) 937 r = kvm_mips_set_reg(vcpu, ®); 938 else 939 r = kvm_mips_get_reg(vcpu, ®); 940 break; 941 } 942 case KVM_GET_REG_LIST: { 943 struct kvm_reg_list __user *user_list = argp; 944 struct kvm_reg_list reg_list; 945 unsigned n; 946 947 r = -EFAULT; 948 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 949 break; 950 n = reg_list.n; 951 reg_list.n = kvm_mips_num_regs(vcpu); 952 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 953 break; 954 r = -E2BIG; 955 if (n < reg_list.n) 956 break; 957 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg); 958 break; 959 } 960 case KVM_ENABLE_CAP: { 961 struct kvm_enable_cap cap; 962 963 r = -EFAULT; 964 if (copy_from_user(&cap, argp, sizeof(cap))) 965 break; 966 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 967 break; 968 } 969 default: 970 r = -ENOIOCTLCMD; 971 } 972 973 vcpu_put(vcpu); 974 return r; 975 } 976 977 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 978 { 979 980 } 981 982 int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 983 { 984 kvm_mips_callbacks->prepare_flush_shadow(kvm); 985 return 1; 986 } 987 988 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 989 { 990 int r; 991 992 switch (ioctl) { 993 default: 994 r = -ENOIOCTLCMD; 995 } 996 997 return r; 998 } 999 1000 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1001 struct kvm_sregs *sregs) 1002 { 1003 return -ENOIOCTLCMD; 1004 } 1005 1006 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1007 struct kvm_sregs *sregs) 1008 { 1009 return -ENOIOCTLCMD; 1010 } 1011 1012 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1013 { 1014 } 1015 1016 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1017 { 1018 return -ENOIOCTLCMD; 1019 } 1020 1021 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1022 { 1023 return -ENOIOCTLCMD; 1024 } 1025 1026 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1027 { 1028 return VM_FAULT_SIGBUS; 1029 } 1030 1031 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 1032 { 1033 int r; 1034 1035 switch (ext) { 1036 case KVM_CAP_ONE_REG: 1037 case KVM_CAP_ENABLE_CAP: 1038 case KVM_CAP_READONLY_MEM: 1039 case KVM_CAP_SYNC_MMU: 1040 case KVM_CAP_IMMEDIATE_EXIT: 1041 r = 1; 1042 break; 1043 case KVM_CAP_NR_VCPUS: 1044 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 1045 break; 1046 case KVM_CAP_MAX_VCPUS: 1047 r = KVM_MAX_VCPUS; 1048 break; 1049 case KVM_CAP_MAX_VCPU_ID: 1050 r = KVM_MAX_VCPU_IDS; 1051 break; 1052 case KVM_CAP_MIPS_FPU: 1053 /* We don't handle systems with inconsistent cpu_has_fpu */ 1054 r = !!raw_cpu_has_fpu; 1055 break; 1056 case KVM_CAP_MIPS_MSA: 1057 /* 1058 * We don't support MSA vector partitioning yet: 1059 * 1) It would require explicit support which can't be tested 1060 * yet due to lack of support in current hardware. 1061 * 2) It extends the state that would need to be saved/restored 1062 * by e.g. QEMU for migration. 1063 * 1064 * When vector partitioning hardware becomes available, support 1065 * could be added by requiring a flag when enabling 1066 * KVM_CAP_MIPS_MSA capability to indicate that userland knows 1067 * to save/restore the appropriate extra state. 1068 */ 1069 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); 1070 break; 1071 default: 1072 r = kvm_mips_callbacks->check_extension(kvm, ext); 1073 break; 1074 } 1075 return r; 1076 } 1077 1078 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1079 { 1080 return kvm_mips_pending_timer(vcpu) || 1081 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI; 1082 } 1083 1084 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) 1085 { 1086 int i; 1087 struct mips_coproc *cop0; 1088 1089 if (!vcpu) 1090 return -1; 1091 1092 kvm_debug("VCPU Register Dump:\n"); 1093 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); 1094 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); 1095 1096 for (i = 0; i < 32; i += 4) { 1097 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, 1098 vcpu->arch.gprs[i], 1099 vcpu->arch.gprs[i + 1], 1100 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); 1101 } 1102 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); 1103 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); 1104 1105 cop0 = &vcpu->arch.cop0; 1106 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n", 1107 kvm_read_c0_guest_status(cop0), 1108 kvm_read_c0_guest_cause(cop0)); 1109 1110 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); 1111 1112 return 0; 1113 } 1114 1115 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1116 { 1117 int i; 1118 1119 vcpu_load(vcpu); 1120 1121 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1122 vcpu->arch.gprs[i] = regs->gpr[i]; 1123 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ 1124 vcpu->arch.hi = regs->hi; 1125 vcpu->arch.lo = regs->lo; 1126 vcpu->arch.pc = regs->pc; 1127 1128 vcpu_put(vcpu); 1129 return 0; 1130 } 1131 1132 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1133 { 1134 int i; 1135 1136 vcpu_load(vcpu); 1137 1138 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1139 regs->gpr[i] = vcpu->arch.gprs[i]; 1140 1141 regs->hi = vcpu->arch.hi; 1142 regs->lo = vcpu->arch.lo; 1143 regs->pc = vcpu->arch.pc; 1144 1145 vcpu_put(vcpu); 1146 return 0; 1147 } 1148 1149 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1150 struct kvm_translation *tr) 1151 { 1152 return 0; 1153 } 1154 1155 static void kvm_mips_set_c0_status(void) 1156 { 1157 u32 status = read_c0_status(); 1158 1159 if (cpu_has_dsp) 1160 status |= (ST0_MX); 1161 1162 write_c0_status(status); 1163 ehb(); 1164 } 1165 1166 /* 1167 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) 1168 */ 1169 static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu) 1170 { 1171 struct kvm_run *run = vcpu->run; 1172 u32 cause = vcpu->arch.host_cp0_cause; 1173 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 1174 u32 __user *opc = (u32 __user *) vcpu->arch.pc; 1175 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 1176 enum emulation_result er = EMULATE_DONE; 1177 u32 inst; 1178 int ret = RESUME_GUEST; 1179 1180 vcpu->mode = OUTSIDE_GUEST_MODE; 1181 1182 /* Set a default exit reason */ 1183 run->exit_reason = KVM_EXIT_UNKNOWN; 1184 run->ready_for_interrupt_injection = 1; 1185 1186 /* 1187 * Set the appropriate status bits based on host CPU features, 1188 * before we hit the scheduler 1189 */ 1190 kvm_mips_set_c0_status(); 1191 1192 local_irq_enable(); 1193 1194 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", 1195 cause, opc, run, vcpu); 1196 trace_kvm_exit(vcpu, exccode); 1197 1198 switch (exccode) { 1199 case EXCCODE_INT: 1200 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); 1201 1202 ++vcpu->stat.int_exits; 1203 1204 if (need_resched()) 1205 cond_resched(); 1206 1207 ret = RESUME_GUEST; 1208 break; 1209 1210 case EXCCODE_CPU: 1211 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); 1212 1213 ++vcpu->stat.cop_unusable_exits; 1214 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); 1215 /* XXXKYMA: Might need to return to user space */ 1216 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) 1217 ret = RESUME_HOST; 1218 break; 1219 1220 case EXCCODE_MOD: 1221 ++vcpu->stat.tlbmod_exits; 1222 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); 1223 break; 1224 1225 case EXCCODE_TLBS: 1226 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n", 1227 cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc, 1228 badvaddr); 1229 1230 ++vcpu->stat.tlbmiss_st_exits; 1231 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); 1232 break; 1233 1234 case EXCCODE_TLBL: 1235 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", 1236 cause, opc, badvaddr); 1237 1238 ++vcpu->stat.tlbmiss_ld_exits; 1239 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); 1240 break; 1241 1242 case EXCCODE_ADES: 1243 ++vcpu->stat.addrerr_st_exits; 1244 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); 1245 break; 1246 1247 case EXCCODE_ADEL: 1248 ++vcpu->stat.addrerr_ld_exits; 1249 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); 1250 break; 1251 1252 case EXCCODE_SYS: 1253 ++vcpu->stat.syscall_exits; 1254 ret = kvm_mips_callbacks->handle_syscall(vcpu); 1255 break; 1256 1257 case EXCCODE_RI: 1258 ++vcpu->stat.resvd_inst_exits; 1259 ret = kvm_mips_callbacks->handle_res_inst(vcpu); 1260 break; 1261 1262 case EXCCODE_BP: 1263 ++vcpu->stat.break_inst_exits; 1264 ret = kvm_mips_callbacks->handle_break(vcpu); 1265 break; 1266 1267 case EXCCODE_TR: 1268 ++vcpu->stat.trap_inst_exits; 1269 ret = kvm_mips_callbacks->handle_trap(vcpu); 1270 break; 1271 1272 case EXCCODE_MSAFPE: 1273 ++vcpu->stat.msa_fpe_exits; 1274 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); 1275 break; 1276 1277 case EXCCODE_FPE: 1278 ++vcpu->stat.fpe_exits; 1279 ret = kvm_mips_callbacks->handle_fpe(vcpu); 1280 break; 1281 1282 case EXCCODE_MSADIS: 1283 ++vcpu->stat.msa_disabled_exits; 1284 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); 1285 break; 1286 1287 case EXCCODE_GE: 1288 /* defer exit accounting to handler */ 1289 ret = kvm_mips_callbacks->handle_guest_exit(vcpu); 1290 break; 1291 1292 default: 1293 if (cause & CAUSEF_BD) 1294 opc += 1; 1295 inst = 0; 1296 kvm_get_badinstr(opc, vcpu, &inst); 1297 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", 1298 exccode, opc, inst, badvaddr, 1299 kvm_read_c0_guest_status(&vcpu->arch.cop0)); 1300 kvm_arch_vcpu_dump_regs(vcpu); 1301 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1302 ret = RESUME_HOST; 1303 break; 1304 1305 } 1306 1307 local_irq_disable(); 1308 1309 if (ret == RESUME_GUEST) 1310 kvm_vz_acquire_htimer(vcpu); 1311 1312 if (er == EMULATE_DONE && !(ret & RESUME_HOST)) 1313 kvm_mips_deliver_interrupts(vcpu, cause); 1314 1315 if (!(ret & RESUME_HOST)) { 1316 /* Only check for signals if not already exiting to userspace */ 1317 if (signal_pending(current)) { 1318 run->exit_reason = KVM_EXIT_INTR; 1319 ret = (-EINTR << 2) | RESUME_HOST; 1320 ++vcpu->stat.signal_exits; 1321 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); 1322 } 1323 } 1324 1325 if (ret == RESUME_GUEST) { 1326 trace_kvm_reenter(vcpu); 1327 1328 /* 1329 * Make sure the read of VCPU requests in vcpu_reenter() 1330 * callback is not reordered ahead of the write to vcpu->mode, 1331 * or we could miss a TLB flush request while the requester sees 1332 * the VCPU as outside of guest mode and not needing an IPI. 1333 */ 1334 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1335 1336 kvm_mips_callbacks->vcpu_reenter(vcpu); 1337 1338 /* 1339 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context 1340 * is live), restore FCR31 / MSACSR. 1341 * 1342 * This should be before returning to the guest exception 1343 * vector, as it may well cause an [MSA] FP exception if there 1344 * are pending exception bits unmasked. (see 1345 * kvm_mips_csr_die_notifier() for how that is handled). 1346 */ 1347 if (kvm_mips_guest_has_fpu(&vcpu->arch) && 1348 read_c0_status() & ST0_CU1) 1349 __kvm_restore_fcsr(&vcpu->arch); 1350 1351 if (kvm_mips_guest_has_msa(&vcpu->arch) && 1352 read_c0_config5() & MIPS_CONF5_MSAEN) 1353 __kvm_restore_msacsr(&vcpu->arch); 1354 } 1355 return ret; 1356 } 1357 1358 int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu) 1359 { 1360 int ret; 1361 1362 guest_state_exit_irqoff(); 1363 ret = __kvm_mips_handle_exit(vcpu); 1364 guest_state_enter_irqoff(); 1365 1366 return ret; 1367 } 1368 1369 /* Enable FPU for guest and restore context */ 1370 void kvm_own_fpu(struct kvm_vcpu *vcpu) 1371 { 1372 struct mips_coproc *cop0 = &vcpu->arch.cop0; 1373 unsigned int sr, cfg5; 1374 1375 preempt_disable(); 1376 1377 sr = kvm_read_c0_guest_status(cop0); 1378 1379 /* 1380 * If MSA state is already live, it is undefined how it interacts with 1381 * FR=0 FPU state, and we don't want to hit reserved instruction 1382 * exceptions trying to save the MSA state later when CU=1 && FR=1, so 1383 * play it safe and save it first. 1384 */ 1385 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && 1386 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1387 kvm_lose_fpu(vcpu); 1388 1389 /* 1390 * Enable FPU for guest 1391 * We set FR and FRE according to guest context 1392 */ 1393 change_c0_status(ST0_CU1 | ST0_FR, sr); 1394 if (cpu_has_fre) { 1395 cfg5 = kvm_read_c0_guest_config5(cop0); 1396 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1397 } 1398 enable_fpu_hazard(); 1399 1400 /* If guest FPU state not active, restore it now */ 1401 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { 1402 __kvm_restore_fpu(&vcpu->arch); 1403 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1404 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); 1405 } else { 1406 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); 1407 } 1408 1409 preempt_enable(); 1410 } 1411 1412 #ifdef CONFIG_CPU_HAS_MSA 1413 /* Enable MSA for guest and restore context */ 1414 void kvm_own_msa(struct kvm_vcpu *vcpu) 1415 { 1416 struct mips_coproc *cop0 = &vcpu->arch.cop0; 1417 unsigned int sr, cfg5; 1418 1419 preempt_disable(); 1420 1421 /* 1422 * Enable FPU if enabled in guest, since we're restoring FPU context 1423 * anyway. We set FR and FRE according to guest context. 1424 */ 1425 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1426 sr = kvm_read_c0_guest_status(cop0); 1427 1428 /* 1429 * If FR=0 FPU state is already live, it is undefined how it 1430 * interacts with MSA state, so play it safe and save it first. 1431 */ 1432 if (!(sr & ST0_FR) && 1433 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | 1434 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) 1435 kvm_lose_fpu(vcpu); 1436 1437 change_c0_status(ST0_CU1 | ST0_FR, sr); 1438 if (sr & ST0_CU1 && cpu_has_fre) { 1439 cfg5 = kvm_read_c0_guest_config5(cop0); 1440 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1441 } 1442 } 1443 1444 /* Enable MSA for guest */ 1445 set_c0_config5(MIPS_CONF5_MSAEN); 1446 enable_fpu_hazard(); 1447 1448 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { 1449 case KVM_MIPS_AUX_FPU: 1450 /* 1451 * Guest FPU state already loaded, only restore upper MSA state 1452 */ 1453 __kvm_restore_msa_upper(&vcpu->arch); 1454 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1455 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); 1456 break; 1457 case 0: 1458 /* Neither FPU or MSA already active, restore full MSA state */ 1459 __kvm_restore_msa(&vcpu->arch); 1460 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1461 if (kvm_mips_guest_has_fpu(&vcpu->arch)) 1462 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1463 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, 1464 KVM_TRACE_AUX_FPU_MSA); 1465 break; 1466 default: 1467 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); 1468 break; 1469 } 1470 1471 preempt_enable(); 1472 } 1473 #endif 1474 1475 /* Drop FPU & MSA without saving it */ 1476 void kvm_drop_fpu(struct kvm_vcpu *vcpu) 1477 { 1478 preempt_disable(); 1479 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1480 disable_msa(); 1481 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); 1482 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; 1483 } 1484 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1485 clear_c0_status(ST0_CU1 | ST0_FR); 1486 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); 1487 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1488 } 1489 preempt_enable(); 1490 } 1491 1492 /* Save and disable FPU & MSA */ 1493 void kvm_lose_fpu(struct kvm_vcpu *vcpu) 1494 { 1495 /* 1496 * With T&E, FPU & MSA get disabled in root context (hardware) when it 1497 * is disabled in guest context (software), but the register state in 1498 * the hardware may still be in use. 1499 * This is why we explicitly re-enable the hardware before saving. 1500 */ 1501 1502 preempt_disable(); 1503 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1504 __kvm_save_msa(&vcpu->arch); 1505 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); 1506 1507 /* Disable MSA & FPU */ 1508 disable_msa(); 1509 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1510 clear_c0_status(ST0_CU1 | ST0_FR); 1511 disable_fpu_hazard(); 1512 } 1513 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); 1514 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1515 __kvm_save_fpu(&vcpu->arch); 1516 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1517 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); 1518 1519 /* Disable FPU */ 1520 clear_c0_status(ST0_CU1 | ST0_FR); 1521 disable_fpu_hazard(); 1522 } 1523 preempt_enable(); 1524 } 1525 1526 /* 1527 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are 1528 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP 1529 * exception if cause bits are set in the value being written. 1530 */ 1531 static int kvm_mips_csr_die_notify(struct notifier_block *self, 1532 unsigned long cmd, void *ptr) 1533 { 1534 struct die_args *args = (struct die_args *)ptr; 1535 struct pt_regs *regs = args->regs; 1536 unsigned long pc; 1537 1538 /* Only interested in FPE and MSAFPE */ 1539 if (cmd != DIE_FP && cmd != DIE_MSAFP) 1540 return NOTIFY_DONE; 1541 1542 /* Return immediately if guest context isn't active */ 1543 if (!(current->flags & PF_VCPU)) 1544 return NOTIFY_DONE; 1545 1546 /* Should never get here from user mode */ 1547 BUG_ON(user_mode(regs)); 1548 1549 pc = instruction_pointer(regs); 1550 switch (cmd) { 1551 case DIE_FP: 1552 /* match 2nd instruction in __kvm_restore_fcsr */ 1553 if (pc != (unsigned long)&__kvm_restore_fcsr + 4) 1554 return NOTIFY_DONE; 1555 break; 1556 case DIE_MSAFP: 1557 /* match 2nd/3rd instruction in __kvm_restore_msacsr */ 1558 if (!cpu_has_msa || 1559 pc < (unsigned long)&__kvm_restore_msacsr + 4 || 1560 pc > (unsigned long)&__kvm_restore_msacsr + 8) 1561 return NOTIFY_DONE; 1562 break; 1563 } 1564 1565 /* Move PC forward a little and continue executing */ 1566 instruction_pointer(regs) += 4; 1567 1568 return NOTIFY_STOP; 1569 } 1570 1571 static struct notifier_block kvm_mips_csr_die_notifier = { 1572 .notifier_call = kvm_mips_csr_die_notify, 1573 }; 1574 1575 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = { 1576 [MIPS_EXC_INT_TIMER] = C_IRQ5, 1577 [MIPS_EXC_INT_IO_1] = C_IRQ0, 1578 [MIPS_EXC_INT_IPI_1] = C_IRQ1, 1579 [MIPS_EXC_INT_IPI_2] = C_IRQ2, 1580 }; 1581 1582 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = { 1583 [MIPS_EXC_INT_TIMER] = C_IRQ5, 1584 [MIPS_EXC_INT_IO_1] = C_IRQ0, 1585 [MIPS_EXC_INT_IO_2] = C_IRQ1, 1586 [MIPS_EXC_INT_IPI_1] = C_IRQ4, 1587 }; 1588 1589 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq; 1590 1591 u32 kvm_irq_to_priority(u32 irq) 1592 { 1593 int i; 1594 1595 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) { 1596 if (kvm_priority_to_irq[i] == (1 << (irq + 8))) 1597 return i; 1598 } 1599 1600 return MIPS_EXC_MAX; 1601 } 1602 1603 static int __init kvm_mips_init(void) 1604 { 1605 int ret; 1606 1607 if (cpu_has_mmid) { 1608 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n"); 1609 return -EOPNOTSUPP; 1610 } 1611 1612 ret = kvm_mips_entry_setup(); 1613 if (ret) 1614 return ret; 1615 1616 ret = kvm_mips_emulation_init(); 1617 if (ret) 1618 return ret; 1619 1620 1621 if (boot_cpu_type() == CPU_LOONGSON64) 1622 kvm_priority_to_irq = kvm_loongson3_priority_to_irq; 1623 1624 register_die_notifier(&kvm_mips_csr_die_notifier); 1625 1626 ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1627 if (ret) { 1628 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1629 return ret; 1630 } 1631 return 0; 1632 } 1633 1634 static void __exit kvm_mips_exit(void) 1635 { 1636 kvm_exit(); 1637 1638 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1639 } 1640 1641 module_init(kvm_mips_init); 1642 module_exit(kvm_mips_exit); 1643 1644 EXPORT_TRACEPOINT_SYMBOL(kvm_exit); 1645
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.