~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/kvm/mips.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This file is subject to the terms and conditions of the GNU General Public
  3  * License.  See the file "COPYING" in the main directory of this archive
  4  * for more details.
  5  *
  6  * KVM/MIPS: MIPS specific KVM APIs
  7  *
  8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
  9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
 10  */
 11 
 12 #include <linux/bitops.h>
 13 #include <linux/errno.h>
 14 #include <linux/err.h>
 15 #include <linux/kdebug.h>
 16 #include <linux/module.h>
 17 #include <linux/uaccess.h>
 18 #include <linux/vmalloc.h>
 19 #include <linux/sched/signal.h>
 20 #include <linux/fs.h>
 21 #include <linux/memblock.h>
 22 #include <linux/pgtable.h>
 23 
 24 #include <asm/fpu.h>
 25 #include <asm/page.h>
 26 #include <asm/cacheflush.h>
 27 #include <asm/mmu_context.h>
 28 #include <asm/pgalloc.h>
 29 
 30 #include <linux/kvm_host.h>
 31 
 32 #include "interrupt.h"
 33 
 34 #define CREATE_TRACE_POINTS
 35 #include "trace.h"
 36 
 37 #ifndef VECTORSPACING
 38 #define VECTORSPACING 0x100     /* for EI/VI mode */
 39 #endif
 40 
 41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
 42         KVM_GENERIC_VM_STATS()
 43 };
 44 
 45 const struct kvm_stats_header kvm_vm_stats_header = {
 46         .name_size = KVM_STATS_NAME_SIZE,
 47         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
 48         .id_offset = sizeof(struct kvm_stats_header),
 49         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 50         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 51                        sizeof(kvm_vm_stats_desc),
 52 };
 53 
 54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
 55         KVM_GENERIC_VCPU_STATS(),
 56         STATS_DESC_COUNTER(VCPU, wait_exits),
 57         STATS_DESC_COUNTER(VCPU, cache_exits),
 58         STATS_DESC_COUNTER(VCPU, signal_exits),
 59         STATS_DESC_COUNTER(VCPU, int_exits),
 60         STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
 61         STATS_DESC_COUNTER(VCPU, tlbmod_exits),
 62         STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
 63         STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
 64         STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
 65         STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
 66         STATS_DESC_COUNTER(VCPU, syscall_exits),
 67         STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
 68         STATS_DESC_COUNTER(VCPU, break_inst_exits),
 69         STATS_DESC_COUNTER(VCPU, trap_inst_exits),
 70         STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
 71         STATS_DESC_COUNTER(VCPU, fpe_exits),
 72         STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
 73         STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
 74         STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
 75         STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
 76         STATS_DESC_COUNTER(VCPU, vz_hc_exits),
 77         STATS_DESC_COUNTER(VCPU, vz_grr_exits),
 78         STATS_DESC_COUNTER(VCPU, vz_gva_exits),
 79         STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
 80         STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
 81         STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
 82 #ifdef CONFIG_CPU_LOONGSON64
 83         STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
 84 #endif
 85 };
 86 
 87 const struct kvm_stats_header kvm_vcpu_stats_header = {
 88         .name_size = KVM_STATS_NAME_SIZE,
 89         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
 90         .id_offset = sizeof(struct kvm_stats_header),
 91         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 92         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 93                        sizeof(kvm_vcpu_stats_desc),
 94 };
 95 
 96 bool kvm_trace_guest_mode_change;
 97 
 98 int kvm_guest_mode_change_trace_reg(void)
 99 {
100         kvm_trace_guest_mode_change = true;
101         return 0;
102 }
103 
104 void kvm_guest_mode_change_trace_unreg(void)
105 {
106         kvm_trace_guest_mode_change = false;
107 }
108 
109 /*
110  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111  * Config7, so we are "runnable" if interrupts are pending
112  */
113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114 {
115         return !!(vcpu->arch.pending_exceptions);
116 }
117 
118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119 {
120         return false;
121 }
122 
123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125         return 1;
126 }
127 
128 int kvm_arch_hardware_enable(void)
129 {
130         return kvm_mips_callbacks->hardware_enable();
131 }
132 
133 void kvm_arch_hardware_disable(void)
134 {
135         kvm_mips_callbacks->hardware_disable();
136 }
137 
138 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
139 {
140         switch (type) {
141         case KVM_VM_MIPS_AUTO:
142                 break;
143         case KVM_VM_MIPS_VZ:
144                 break;
145         default:
146                 /* Unsupported KVM type */
147                 return -EINVAL;
148         }
149 
150         /* Allocate page table to map GPA -> RPA */
151         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
152         if (!kvm->arch.gpa_mm.pgd)
153                 return -ENOMEM;
154 
155 #ifdef CONFIG_CPU_LOONGSON64
156         kvm_init_loongson_ipi(kvm);
157 #endif
158 
159         return 0;
160 }
161 
162 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
163 {
164         /* It should always be safe to remove after flushing the whole range */
165         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
166         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
167 }
168 
169 void kvm_arch_destroy_vm(struct kvm *kvm)
170 {
171         kvm_destroy_vcpus(kvm);
172         kvm_mips_free_gpa_pt(kvm);
173 }
174 
175 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
176                         unsigned long arg)
177 {
178         return -ENOIOCTLCMD;
179 }
180 
181 void kvm_arch_flush_shadow_all(struct kvm *kvm)
182 {
183         /* Flush whole GPA */
184         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
185         kvm_flush_remote_tlbs(kvm);
186 }
187 
188 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
189                                    struct kvm_memory_slot *slot)
190 {
191         /*
192          * The slot has been made invalid (ready for moving or deletion), so we
193          * need to ensure that it can no longer be accessed by any guest VCPUs.
194          */
195 
196         spin_lock(&kvm->mmu_lock);
197         /* Flush slot from GPA */
198         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
199                               slot->base_gfn + slot->npages - 1);
200         kvm_flush_remote_tlbs_memslot(kvm, slot);
201         spin_unlock(&kvm->mmu_lock);
202 }
203 
204 int kvm_arch_prepare_memory_region(struct kvm *kvm,
205                                    const struct kvm_memory_slot *old,
206                                    struct kvm_memory_slot *new,
207                                    enum kvm_mr_change change)
208 {
209         return 0;
210 }
211 
212 void kvm_arch_commit_memory_region(struct kvm *kvm,
213                                    struct kvm_memory_slot *old,
214                                    const struct kvm_memory_slot *new,
215                                    enum kvm_mr_change change)
216 {
217         int needs_flush;
218 
219         /*
220          * If dirty page logging is enabled, write protect all pages in the slot
221          * ready for dirty logging.
222          *
223          * There is no need to do this in any of the following cases:
224          * CREATE:      No dirty mappings will already exist.
225          * MOVE/DELETE: The old mappings will already have been cleaned up by
226          *              kvm_arch_flush_shadow_memslot()
227          */
228         if (change == KVM_MR_FLAGS_ONLY &&
229             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
230              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
231                 spin_lock(&kvm->mmu_lock);
232                 /* Write protect GPA page table entries */
233                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
234                                         new->base_gfn + new->npages - 1);
235                 if (needs_flush)
236                         kvm_flush_remote_tlbs_memslot(kvm, new);
237                 spin_unlock(&kvm->mmu_lock);
238         }
239 }
240 
241 static inline void dump_handler(const char *symbol, void *start, void *end)
242 {
243         u32 *p;
244 
245         pr_debug("LEAF(%s)\n", symbol);
246 
247         pr_debug("\t.set push\n");
248         pr_debug("\t.set noreorder\n");
249 
250         for (p = start; p < (u32 *)end; ++p)
251                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
252 
253         pr_debug("\t.set\tpop\n");
254 
255         pr_debug("\tEND(%s)\n", symbol);
256 }
257 
258 /* low level hrtimer wake routine */
259 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
260 {
261         struct kvm_vcpu *vcpu;
262 
263         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
264 
265         kvm_mips_callbacks->queue_timer_int(vcpu);
266 
267         vcpu->arch.wait = 0;
268         rcuwait_wake_up(&vcpu->wait);
269 
270         return kvm_mips_count_timeout(vcpu);
271 }
272 
273 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
274 {
275         return 0;
276 }
277 
278 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
279 {
280         int err, size;
281         void *gebase, *p, *handler, *refill_start, *refill_end;
282         int i;
283 
284         kvm_debug("kvm @ %p: create cpu %d at %p\n",
285                   vcpu->kvm, vcpu->vcpu_id, vcpu);
286 
287         err = kvm_mips_callbacks->vcpu_init(vcpu);
288         if (err)
289                 return err;
290 
291         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
292                      HRTIMER_MODE_REL);
293         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
294 
295         /*
296          * Allocate space for host mode exception handlers that handle
297          * guest mode exits
298          */
299         if (cpu_has_veic || cpu_has_vint)
300                 size = 0x200 + VECTORSPACING * 64;
301         else
302                 size = 0x4000;
303 
304         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
305 
306         if (!gebase) {
307                 err = -ENOMEM;
308                 goto out_uninit_vcpu;
309         }
310         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
311                   ALIGN(size, PAGE_SIZE), gebase);
312 
313         /*
314          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
315          * limits us to the low 512MB of physical address space. If the memory
316          * we allocate is out of range, just give up now.
317          */
318         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
319                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
320                         gebase);
321                 err = -ENOMEM;
322                 goto out_free_gebase;
323         }
324 
325         /* Save new ebase */
326         vcpu->arch.guest_ebase = gebase;
327 
328         /* Build guest exception vectors dynamically in unmapped memory */
329         handler = gebase + 0x2000;
330 
331         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
332         refill_start = gebase;
333         if (IS_ENABLED(CONFIG_64BIT))
334                 refill_start += 0x080;
335         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
336 
337         /* General Exception Entry point */
338         kvm_mips_build_exception(gebase + 0x180, handler);
339 
340         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
341         for (i = 0; i < 8; i++) {
342                 kvm_debug("L1 Vectored handler @ %p\n",
343                           gebase + 0x200 + (i * VECTORSPACING));
344                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
345                                          handler);
346         }
347 
348         /* General exit handler */
349         p = handler;
350         p = kvm_mips_build_exit(p);
351 
352         /* Guest entry routine */
353         vcpu->arch.vcpu_run = p;
354         p = kvm_mips_build_vcpu_run(p);
355 
356         /* Dump the generated code */
357         pr_debug("#include <asm/asm.h>\n");
358         pr_debug("#include <asm/regdef.h>\n");
359         pr_debug("\n");
360         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
361         dump_handler("kvm_tlb_refill", refill_start, refill_end);
362         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
363         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
364 
365         /* Invalidate the icache for these ranges */
366         flush_icache_range((unsigned long)gebase,
367                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
368 
369         /* Init */
370         vcpu->arch.last_sched_cpu = -1;
371         vcpu->arch.last_exec_cpu = -1;
372 
373         /* Initial guest state */
374         err = kvm_mips_callbacks->vcpu_setup(vcpu);
375         if (err)
376                 goto out_free_gebase;
377 
378         return 0;
379 
380 out_free_gebase:
381         kfree(gebase);
382 out_uninit_vcpu:
383         kvm_mips_callbacks->vcpu_uninit(vcpu);
384         return err;
385 }
386 
387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
388 {
389         hrtimer_cancel(&vcpu->arch.comparecount_timer);
390 
391         kvm_mips_dump_stats(vcpu);
392 
393         kvm_mmu_free_memory_caches(vcpu);
394         kfree(vcpu->arch.guest_ebase);
395 
396         kvm_mips_callbacks->vcpu_uninit(vcpu);
397 }
398 
399 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
400                                         struct kvm_guest_debug *dbg)
401 {
402         return -ENOIOCTLCMD;
403 }
404 
405 /*
406  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
407  * the vCPU is running.
408  *
409  * This must be noinstr as instrumentation may make use of RCU, and this is not
410  * safe during the EQS.
411  */
412 static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
413 {
414         int ret;
415 
416         guest_state_enter_irqoff();
417         ret = kvm_mips_callbacks->vcpu_run(vcpu);
418         guest_state_exit_irqoff();
419 
420         return ret;
421 }
422 
423 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
424 {
425         int r = -EINTR;
426 
427         vcpu_load(vcpu);
428 
429         kvm_sigset_activate(vcpu);
430 
431         if (vcpu->mmio_needed) {
432                 if (!vcpu->mmio_is_write)
433                         kvm_mips_complete_mmio_load(vcpu);
434                 vcpu->mmio_needed = 0;
435         }
436 
437         if (!vcpu->wants_to_run)
438                 goto out;
439 
440         lose_fpu(1);
441 
442         local_irq_disable();
443         guest_timing_enter_irqoff();
444         trace_kvm_enter(vcpu);
445 
446         /*
447          * Make sure the read of VCPU requests in vcpu_run() callback is not
448          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
449          * flush request while the requester sees the VCPU as outside of guest
450          * mode and not needing an IPI.
451          */
452         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
453 
454         r = kvm_mips_vcpu_enter_exit(vcpu);
455 
456         /*
457          * We must ensure that any pending interrupts are taken before
458          * we exit guest timing so that timer ticks are accounted as
459          * guest time. Transiently unmask interrupts so that any
460          * pending interrupts are taken.
461          *
462          * TODO: is there a barrier which ensures that pending interrupts are
463          * recognised? Currently this just hopes that the CPU takes any pending
464          * interrupts between the enable and disable.
465          */
466         local_irq_enable();
467         local_irq_disable();
468 
469         trace_kvm_out(vcpu);
470         guest_timing_exit_irqoff();
471         local_irq_enable();
472 
473 out:
474         kvm_sigset_deactivate(vcpu);
475 
476         vcpu_put(vcpu);
477         return r;
478 }
479 
480 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
481                              struct kvm_mips_interrupt *irq)
482 {
483         int intr = (int)irq->irq;
484         struct kvm_vcpu *dvcpu = NULL;
485 
486         if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
487             intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
488             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
489             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
490                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
491                           (int)intr);
492 
493         if (irq->cpu == -1)
494                 dvcpu = vcpu;
495         else
496                 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
497 
498         if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
499                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
500 
501         } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
502                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
503         } else {
504                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
505                         irq->cpu, irq->irq);
506                 return -EINVAL;
507         }
508 
509         dvcpu->arch.wait = 0;
510 
511         rcuwait_wake_up(&dvcpu->wait);
512 
513         return 0;
514 }
515 
516 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
517                                     struct kvm_mp_state *mp_state)
518 {
519         return -ENOIOCTLCMD;
520 }
521 
522 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
523                                     struct kvm_mp_state *mp_state)
524 {
525         return -ENOIOCTLCMD;
526 }
527 
528 static u64 kvm_mips_get_one_regs[] = {
529         KVM_REG_MIPS_R0,
530         KVM_REG_MIPS_R1,
531         KVM_REG_MIPS_R2,
532         KVM_REG_MIPS_R3,
533         KVM_REG_MIPS_R4,
534         KVM_REG_MIPS_R5,
535         KVM_REG_MIPS_R6,
536         KVM_REG_MIPS_R7,
537         KVM_REG_MIPS_R8,
538         KVM_REG_MIPS_R9,
539         KVM_REG_MIPS_R10,
540         KVM_REG_MIPS_R11,
541         KVM_REG_MIPS_R12,
542         KVM_REG_MIPS_R13,
543         KVM_REG_MIPS_R14,
544         KVM_REG_MIPS_R15,
545         KVM_REG_MIPS_R16,
546         KVM_REG_MIPS_R17,
547         KVM_REG_MIPS_R18,
548         KVM_REG_MIPS_R19,
549         KVM_REG_MIPS_R20,
550         KVM_REG_MIPS_R21,
551         KVM_REG_MIPS_R22,
552         KVM_REG_MIPS_R23,
553         KVM_REG_MIPS_R24,
554         KVM_REG_MIPS_R25,
555         KVM_REG_MIPS_R26,
556         KVM_REG_MIPS_R27,
557         KVM_REG_MIPS_R28,
558         KVM_REG_MIPS_R29,
559         KVM_REG_MIPS_R30,
560         KVM_REG_MIPS_R31,
561 
562 #ifndef CONFIG_CPU_MIPSR6
563         KVM_REG_MIPS_HI,
564         KVM_REG_MIPS_LO,
565 #endif
566         KVM_REG_MIPS_PC,
567 };
568 
569 static u64 kvm_mips_get_one_regs_fpu[] = {
570         KVM_REG_MIPS_FCR_IR,
571         KVM_REG_MIPS_FCR_CSR,
572 };
573 
574 static u64 kvm_mips_get_one_regs_msa[] = {
575         KVM_REG_MIPS_MSA_IR,
576         KVM_REG_MIPS_MSA_CSR,
577 };
578 
579 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
580 {
581         unsigned long ret;
582 
583         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
584         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
585                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
586                 /* odd doubles */
587                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
588                         ret += 16;
589         }
590         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
591                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
592         ret += kvm_mips_callbacks->num_regs(vcpu);
593 
594         return ret;
595 }
596 
597 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
598 {
599         u64 index;
600         unsigned int i;
601 
602         if (copy_to_user(indices, kvm_mips_get_one_regs,
603                          sizeof(kvm_mips_get_one_regs)))
604                 return -EFAULT;
605         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
606 
607         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
608                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
609                                  sizeof(kvm_mips_get_one_regs_fpu)))
610                         return -EFAULT;
611                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
612 
613                 for (i = 0; i < 32; ++i) {
614                         index = KVM_REG_MIPS_FPR_32(i);
615                         if (copy_to_user(indices, &index, sizeof(index)))
616                                 return -EFAULT;
617                         ++indices;
618 
619                         /* skip odd doubles if no F64 */
620                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
621                                 continue;
622 
623                         index = KVM_REG_MIPS_FPR_64(i);
624                         if (copy_to_user(indices, &index, sizeof(index)))
625                                 return -EFAULT;
626                         ++indices;
627                 }
628         }
629 
630         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
631                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
632                                  sizeof(kvm_mips_get_one_regs_msa)))
633                         return -EFAULT;
634                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
635 
636                 for (i = 0; i < 32; ++i) {
637                         index = KVM_REG_MIPS_VEC_128(i);
638                         if (copy_to_user(indices, &index, sizeof(index)))
639                                 return -EFAULT;
640                         ++indices;
641                 }
642         }
643 
644         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
645 }
646 
647 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
648                             const struct kvm_one_reg *reg)
649 {
650         struct mips_coproc *cop0 = &vcpu->arch.cop0;
651         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
652         int ret;
653         s64 v;
654         s64 vs[2];
655         unsigned int idx;
656 
657         switch (reg->id) {
658         /* General purpose registers */
659         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
660                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
661                 break;
662 #ifndef CONFIG_CPU_MIPSR6
663         case KVM_REG_MIPS_HI:
664                 v = (long)vcpu->arch.hi;
665                 break;
666         case KVM_REG_MIPS_LO:
667                 v = (long)vcpu->arch.lo;
668                 break;
669 #endif
670         case KVM_REG_MIPS_PC:
671                 v = (long)vcpu->arch.pc;
672                 break;
673 
674         /* Floating point registers */
675         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
676                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
677                         return -EINVAL;
678                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
679                 /* Odd singles in top of even double when FR=0 */
680                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
681                         v = get_fpr32(&fpu->fpr[idx], 0);
682                 else
683                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
684                 break;
685         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
686                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
687                         return -EINVAL;
688                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
689                 /* Can't access odd doubles in FR=0 mode */
690                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
691                         return -EINVAL;
692                 v = get_fpr64(&fpu->fpr[idx], 0);
693                 break;
694         case KVM_REG_MIPS_FCR_IR:
695                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
696                         return -EINVAL;
697                 v = boot_cpu_data.fpu_id;
698                 break;
699         case KVM_REG_MIPS_FCR_CSR:
700                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
701                         return -EINVAL;
702                 v = fpu->fcr31;
703                 break;
704 
705         /* MIPS SIMD Architecture (MSA) registers */
706         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
707                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
708                         return -EINVAL;
709                 /* Can't access MSA registers in FR=0 mode */
710                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
711                         return -EINVAL;
712                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
713 #ifdef CONFIG_CPU_LITTLE_ENDIAN
714                 /* least significant byte first */
715                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
716                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
717 #else
718                 /* most significant byte first */
719                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
720                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
721 #endif
722                 break;
723         case KVM_REG_MIPS_MSA_IR:
724                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
725                         return -EINVAL;
726                 v = boot_cpu_data.msa_id;
727                 break;
728         case KVM_REG_MIPS_MSA_CSR:
729                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
730                         return -EINVAL;
731                 v = fpu->msacsr;
732                 break;
733 
734         /* registers to be handled specially */
735         default:
736                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
737                 if (ret)
738                         return ret;
739                 break;
740         }
741         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
742                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
743 
744                 return put_user(v, uaddr64);
745         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
746                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
747                 u32 v32 = (u32)v;
748 
749                 return put_user(v32, uaddr32);
750         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
751                 void __user *uaddr = (void __user *)(long)reg->addr;
752 
753                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
754         } else {
755                 return -EINVAL;
756         }
757 }
758 
759 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
760                             const struct kvm_one_reg *reg)
761 {
762         struct mips_coproc *cop0 = &vcpu->arch.cop0;
763         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
764         s64 v;
765         s64 vs[2];
766         unsigned int idx;
767 
768         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
769                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
770 
771                 if (get_user(v, uaddr64) != 0)
772                         return -EFAULT;
773         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
774                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
775                 s32 v32;
776 
777                 if (get_user(v32, uaddr32) != 0)
778                         return -EFAULT;
779                 v = (s64)v32;
780         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
781                 void __user *uaddr = (void __user *)(long)reg->addr;
782 
783                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
784         } else {
785                 return -EINVAL;
786         }
787 
788         switch (reg->id) {
789         /* General purpose registers */
790         case KVM_REG_MIPS_R0:
791                 /* Silently ignore requests to set $0 */
792                 break;
793         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
794                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
795                 break;
796 #ifndef CONFIG_CPU_MIPSR6
797         case KVM_REG_MIPS_HI:
798                 vcpu->arch.hi = v;
799                 break;
800         case KVM_REG_MIPS_LO:
801                 vcpu->arch.lo = v;
802                 break;
803 #endif
804         case KVM_REG_MIPS_PC:
805                 vcpu->arch.pc = v;
806                 break;
807 
808         /* Floating point registers */
809         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
810                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
811                         return -EINVAL;
812                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
813                 /* Odd singles in top of even double when FR=0 */
814                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
815                         set_fpr32(&fpu->fpr[idx], 0, v);
816                 else
817                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
818                 break;
819         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
820                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
821                         return -EINVAL;
822                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
823                 /* Can't access odd doubles in FR=0 mode */
824                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
825                         return -EINVAL;
826                 set_fpr64(&fpu->fpr[idx], 0, v);
827                 break;
828         case KVM_REG_MIPS_FCR_IR:
829                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
830                         return -EINVAL;
831                 /* Read-only */
832                 break;
833         case KVM_REG_MIPS_FCR_CSR:
834                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
835                         return -EINVAL;
836                 fpu->fcr31 = v;
837                 break;
838 
839         /* MIPS SIMD Architecture (MSA) registers */
840         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
841                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
842                         return -EINVAL;
843                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
844 #ifdef CONFIG_CPU_LITTLE_ENDIAN
845                 /* least significant byte first */
846                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
847                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
848 #else
849                 /* most significant byte first */
850                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
851                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
852 #endif
853                 break;
854         case KVM_REG_MIPS_MSA_IR:
855                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
856                         return -EINVAL;
857                 /* Read-only */
858                 break;
859         case KVM_REG_MIPS_MSA_CSR:
860                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
861                         return -EINVAL;
862                 fpu->msacsr = v;
863                 break;
864 
865         /* registers to be handled specially */
866         default:
867                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
868         }
869         return 0;
870 }
871 
872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
873                                      struct kvm_enable_cap *cap)
874 {
875         int r = 0;
876 
877         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
878                 return -EINVAL;
879         if (cap->flags)
880                 return -EINVAL;
881         if (cap->args[0])
882                 return -EINVAL;
883 
884         switch (cap->cap) {
885         case KVM_CAP_MIPS_FPU:
886                 vcpu->arch.fpu_enabled = true;
887                 break;
888         case KVM_CAP_MIPS_MSA:
889                 vcpu->arch.msa_enabled = true;
890                 break;
891         default:
892                 r = -EINVAL;
893                 break;
894         }
895 
896         return r;
897 }
898 
899 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
900                                unsigned long arg)
901 {
902         struct kvm_vcpu *vcpu = filp->private_data;
903         void __user *argp = (void __user *)arg;
904 
905         if (ioctl == KVM_INTERRUPT) {
906                 struct kvm_mips_interrupt irq;
907 
908                 if (copy_from_user(&irq, argp, sizeof(irq)))
909                         return -EFAULT;
910                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
911                           irq.irq);
912 
913                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
914         }
915 
916         return -ENOIOCTLCMD;
917 }
918 
919 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
920                          unsigned long arg)
921 {
922         struct kvm_vcpu *vcpu = filp->private_data;
923         void __user *argp = (void __user *)arg;
924         long r;
925 
926         vcpu_load(vcpu);
927 
928         switch (ioctl) {
929         case KVM_SET_ONE_REG:
930         case KVM_GET_ONE_REG: {
931                 struct kvm_one_reg reg;
932 
933                 r = -EFAULT;
934                 if (copy_from_user(&reg, argp, sizeof(reg)))
935                         break;
936                 if (ioctl == KVM_SET_ONE_REG)
937                         r = kvm_mips_set_reg(vcpu, &reg);
938                 else
939                         r = kvm_mips_get_reg(vcpu, &reg);
940                 break;
941         }
942         case KVM_GET_REG_LIST: {
943                 struct kvm_reg_list __user *user_list = argp;
944                 struct kvm_reg_list reg_list;
945                 unsigned n;
946 
947                 r = -EFAULT;
948                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
949                         break;
950                 n = reg_list.n;
951                 reg_list.n = kvm_mips_num_regs(vcpu);
952                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
953                         break;
954                 r = -E2BIG;
955                 if (n < reg_list.n)
956                         break;
957                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
958                 break;
959         }
960         case KVM_ENABLE_CAP: {
961                 struct kvm_enable_cap cap;
962 
963                 r = -EFAULT;
964                 if (copy_from_user(&cap, argp, sizeof(cap)))
965                         break;
966                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
967                 break;
968         }
969         default:
970                 r = -ENOIOCTLCMD;
971         }
972 
973         vcpu_put(vcpu);
974         return r;
975 }
976 
977 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
978 {
979 
980 }
981 
982 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
983 {
984         kvm_mips_callbacks->prepare_flush_shadow(kvm);
985         return 1;
986 }
987 
988 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
989 {
990         int r;
991 
992         switch (ioctl) {
993         default:
994                 r = -ENOIOCTLCMD;
995         }
996 
997         return r;
998 }
999 
1000 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1001                                   struct kvm_sregs *sregs)
1002 {
1003         return -ENOIOCTLCMD;
1004 }
1005 
1006 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1007                                   struct kvm_sregs *sregs)
1008 {
1009         return -ENOIOCTLCMD;
1010 }
1011 
1012 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1013 {
1014 }
1015 
1016 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1017 {
1018         return -ENOIOCTLCMD;
1019 }
1020 
1021 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1022 {
1023         return -ENOIOCTLCMD;
1024 }
1025 
1026 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1027 {
1028         return VM_FAULT_SIGBUS;
1029 }
1030 
1031 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1032 {
1033         int r;
1034 
1035         switch (ext) {
1036         case KVM_CAP_ONE_REG:
1037         case KVM_CAP_ENABLE_CAP:
1038         case KVM_CAP_READONLY_MEM:
1039         case KVM_CAP_SYNC_MMU:
1040         case KVM_CAP_IMMEDIATE_EXIT:
1041                 r = 1;
1042                 break;
1043         case KVM_CAP_NR_VCPUS:
1044                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1045                 break;
1046         case KVM_CAP_MAX_VCPUS:
1047                 r = KVM_MAX_VCPUS;
1048                 break;
1049         case KVM_CAP_MAX_VCPU_ID:
1050                 r = KVM_MAX_VCPU_IDS;
1051                 break;
1052         case KVM_CAP_MIPS_FPU:
1053                 /* We don't handle systems with inconsistent cpu_has_fpu */
1054                 r = !!raw_cpu_has_fpu;
1055                 break;
1056         case KVM_CAP_MIPS_MSA:
1057                 /*
1058                  * We don't support MSA vector partitioning yet:
1059                  * 1) It would require explicit support which can't be tested
1060                  *    yet due to lack of support in current hardware.
1061                  * 2) It extends the state that would need to be saved/restored
1062                  *    by e.g. QEMU for migration.
1063                  *
1064                  * When vector partitioning hardware becomes available, support
1065                  * could be added by requiring a flag when enabling
1066                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1067                  * to save/restore the appropriate extra state.
1068                  */
1069                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1070                 break;
1071         default:
1072                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1073                 break;
1074         }
1075         return r;
1076 }
1077 
1078 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1079 {
1080         return kvm_mips_pending_timer(vcpu) ||
1081                 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1082 }
1083 
1084 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1085 {
1086         int i;
1087         struct mips_coproc *cop0;
1088 
1089         if (!vcpu)
1090                 return -1;
1091 
1092         kvm_debug("VCPU Register Dump:\n");
1093         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1094         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1095 
1096         for (i = 0; i < 32; i += 4) {
1097                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1098                        vcpu->arch.gprs[i],
1099                        vcpu->arch.gprs[i + 1],
1100                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1101         }
1102         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1103         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1104 
1105         cop0 = &vcpu->arch.cop0;
1106         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1107                   kvm_read_c0_guest_status(cop0),
1108                   kvm_read_c0_guest_cause(cop0));
1109 
1110         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1111 
1112         return 0;
1113 }
1114 
1115 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1116 {
1117         int i;
1118 
1119         vcpu_load(vcpu);
1120 
1121         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1122                 vcpu->arch.gprs[i] = regs->gpr[i];
1123         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1124         vcpu->arch.hi = regs->hi;
1125         vcpu->arch.lo = regs->lo;
1126         vcpu->arch.pc = regs->pc;
1127 
1128         vcpu_put(vcpu);
1129         return 0;
1130 }
1131 
1132 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1133 {
1134         int i;
1135 
1136         vcpu_load(vcpu);
1137 
1138         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1139                 regs->gpr[i] = vcpu->arch.gprs[i];
1140 
1141         regs->hi = vcpu->arch.hi;
1142         regs->lo = vcpu->arch.lo;
1143         regs->pc = vcpu->arch.pc;
1144 
1145         vcpu_put(vcpu);
1146         return 0;
1147 }
1148 
1149 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1150                                   struct kvm_translation *tr)
1151 {
1152         return 0;
1153 }
1154 
1155 static void kvm_mips_set_c0_status(void)
1156 {
1157         u32 status = read_c0_status();
1158 
1159         if (cpu_has_dsp)
1160                 status |= (ST0_MX);
1161 
1162         write_c0_status(status);
1163         ehb();
1164 }
1165 
1166 /*
1167  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1168  */
1169 static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1170 {
1171         struct kvm_run *run = vcpu->run;
1172         u32 cause = vcpu->arch.host_cp0_cause;
1173         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1174         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1175         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1176         enum emulation_result er = EMULATE_DONE;
1177         u32 inst;
1178         int ret = RESUME_GUEST;
1179 
1180         vcpu->mode = OUTSIDE_GUEST_MODE;
1181 
1182         /* Set a default exit reason */
1183         run->exit_reason = KVM_EXIT_UNKNOWN;
1184         run->ready_for_interrupt_injection = 1;
1185 
1186         /*
1187          * Set the appropriate status bits based on host CPU features,
1188          * before we hit the scheduler
1189          */
1190         kvm_mips_set_c0_status();
1191 
1192         local_irq_enable();
1193 
1194         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1195                         cause, opc, run, vcpu);
1196         trace_kvm_exit(vcpu, exccode);
1197 
1198         switch (exccode) {
1199         case EXCCODE_INT:
1200                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1201 
1202                 ++vcpu->stat.int_exits;
1203 
1204                 if (need_resched())
1205                         cond_resched();
1206 
1207                 ret = RESUME_GUEST;
1208                 break;
1209 
1210         case EXCCODE_CPU:
1211                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1212 
1213                 ++vcpu->stat.cop_unusable_exits;
1214                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1215                 /* XXXKYMA: Might need to return to user space */
1216                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1217                         ret = RESUME_HOST;
1218                 break;
1219 
1220         case EXCCODE_MOD:
1221                 ++vcpu->stat.tlbmod_exits;
1222                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1223                 break;
1224 
1225         case EXCCODE_TLBS:
1226                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1227                           cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1228                           badvaddr);
1229 
1230                 ++vcpu->stat.tlbmiss_st_exits;
1231                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1232                 break;
1233 
1234         case EXCCODE_TLBL:
1235                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1236                           cause, opc, badvaddr);
1237 
1238                 ++vcpu->stat.tlbmiss_ld_exits;
1239                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1240                 break;
1241 
1242         case EXCCODE_ADES:
1243                 ++vcpu->stat.addrerr_st_exits;
1244                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1245                 break;
1246 
1247         case EXCCODE_ADEL:
1248                 ++vcpu->stat.addrerr_ld_exits;
1249                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1250                 break;
1251 
1252         case EXCCODE_SYS:
1253                 ++vcpu->stat.syscall_exits;
1254                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1255                 break;
1256 
1257         case EXCCODE_RI:
1258                 ++vcpu->stat.resvd_inst_exits;
1259                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1260                 break;
1261 
1262         case EXCCODE_BP:
1263                 ++vcpu->stat.break_inst_exits;
1264                 ret = kvm_mips_callbacks->handle_break(vcpu);
1265                 break;
1266 
1267         case EXCCODE_TR:
1268                 ++vcpu->stat.trap_inst_exits;
1269                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1270                 break;
1271 
1272         case EXCCODE_MSAFPE:
1273                 ++vcpu->stat.msa_fpe_exits;
1274                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1275                 break;
1276 
1277         case EXCCODE_FPE:
1278                 ++vcpu->stat.fpe_exits;
1279                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1280                 break;
1281 
1282         case EXCCODE_MSADIS:
1283                 ++vcpu->stat.msa_disabled_exits;
1284                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1285                 break;
1286 
1287         case EXCCODE_GE:
1288                 /* defer exit accounting to handler */
1289                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1290                 break;
1291 
1292         default:
1293                 if (cause & CAUSEF_BD)
1294                         opc += 1;
1295                 inst = 0;
1296                 kvm_get_badinstr(opc, vcpu, &inst);
1297                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1298                         exccode, opc, inst, badvaddr,
1299                         kvm_read_c0_guest_status(&vcpu->arch.cop0));
1300                 kvm_arch_vcpu_dump_regs(vcpu);
1301                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1302                 ret = RESUME_HOST;
1303                 break;
1304 
1305         }
1306 
1307         local_irq_disable();
1308 
1309         if (ret == RESUME_GUEST)
1310                 kvm_vz_acquire_htimer(vcpu);
1311 
1312         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1313                 kvm_mips_deliver_interrupts(vcpu, cause);
1314 
1315         if (!(ret & RESUME_HOST)) {
1316                 /* Only check for signals if not already exiting to userspace */
1317                 if (signal_pending(current)) {
1318                         run->exit_reason = KVM_EXIT_INTR;
1319                         ret = (-EINTR << 2) | RESUME_HOST;
1320                         ++vcpu->stat.signal_exits;
1321                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1322                 }
1323         }
1324 
1325         if (ret == RESUME_GUEST) {
1326                 trace_kvm_reenter(vcpu);
1327 
1328                 /*
1329                  * Make sure the read of VCPU requests in vcpu_reenter()
1330                  * callback is not reordered ahead of the write to vcpu->mode,
1331                  * or we could miss a TLB flush request while the requester sees
1332                  * the VCPU as outside of guest mode and not needing an IPI.
1333                  */
1334                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1335 
1336                 kvm_mips_callbacks->vcpu_reenter(vcpu);
1337 
1338                 /*
1339                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1340                  * is live), restore FCR31 / MSACSR.
1341                  *
1342                  * This should be before returning to the guest exception
1343                  * vector, as it may well cause an [MSA] FP exception if there
1344                  * are pending exception bits unmasked. (see
1345                  * kvm_mips_csr_die_notifier() for how that is handled).
1346                  */
1347                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1348                     read_c0_status() & ST0_CU1)
1349                         __kvm_restore_fcsr(&vcpu->arch);
1350 
1351                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1352                     read_c0_config5() & MIPS_CONF5_MSAEN)
1353                         __kvm_restore_msacsr(&vcpu->arch);
1354         }
1355         return ret;
1356 }
1357 
1358 int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1359 {
1360         int ret;
1361 
1362         guest_state_exit_irqoff();
1363         ret = __kvm_mips_handle_exit(vcpu);
1364         guest_state_enter_irqoff();
1365 
1366         return ret;
1367 }
1368 
1369 /* Enable FPU for guest and restore context */
1370 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1371 {
1372         struct mips_coproc *cop0 = &vcpu->arch.cop0;
1373         unsigned int sr, cfg5;
1374 
1375         preempt_disable();
1376 
1377         sr = kvm_read_c0_guest_status(cop0);
1378 
1379         /*
1380          * If MSA state is already live, it is undefined how it interacts with
1381          * FR=0 FPU state, and we don't want to hit reserved instruction
1382          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1383          * play it safe and save it first.
1384          */
1385         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1386             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1387                 kvm_lose_fpu(vcpu);
1388 
1389         /*
1390          * Enable FPU for guest
1391          * We set FR and FRE according to guest context
1392          */
1393         change_c0_status(ST0_CU1 | ST0_FR, sr);
1394         if (cpu_has_fre) {
1395                 cfg5 = kvm_read_c0_guest_config5(cop0);
1396                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1397         }
1398         enable_fpu_hazard();
1399 
1400         /* If guest FPU state not active, restore it now */
1401         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1402                 __kvm_restore_fpu(&vcpu->arch);
1403                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1404                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1405         } else {
1406                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1407         }
1408 
1409         preempt_enable();
1410 }
1411 
1412 #ifdef CONFIG_CPU_HAS_MSA
1413 /* Enable MSA for guest and restore context */
1414 void kvm_own_msa(struct kvm_vcpu *vcpu)
1415 {
1416         struct mips_coproc *cop0 = &vcpu->arch.cop0;
1417         unsigned int sr, cfg5;
1418 
1419         preempt_disable();
1420 
1421         /*
1422          * Enable FPU if enabled in guest, since we're restoring FPU context
1423          * anyway. We set FR and FRE according to guest context.
1424          */
1425         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1426                 sr = kvm_read_c0_guest_status(cop0);
1427 
1428                 /*
1429                  * If FR=0 FPU state is already live, it is undefined how it
1430                  * interacts with MSA state, so play it safe and save it first.
1431                  */
1432                 if (!(sr & ST0_FR) &&
1433                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1434                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1435                         kvm_lose_fpu(vcpu);
1436 
1437                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1438                 if (sr & ST0_CU1 && cpu_has_fre) {
1439                         cfg5 = kvm_read_c0_guest_config5(cop0);
1440                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1441                 }
1442         }
1443 
1444         /* Enable MSA for guest */
1445         set_c0_config5(MIPS_CONF5_MSAEN);
1446         enable_fpu_hazard();
1447 
1448         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1449         case KVM_MIPS_AUX_FPU:
1450                 /*
1451                  * Guest FPU state already loaded, only restore upper MSA state
1452                  */
1453                 __kvm_restore_msa_upper(&vcpu->arch);
1454                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1455                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1456                 break;
1457         case 0:
1458                 /* Neither FPU or MSA already active, restore full MSA state */
1459                 __kvm_restore_msa(&vcpu->arch);
1460                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1461                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1462                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1463                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1464                               KVM_TRACE_AUX_FPU_MSA);
1465                 break;
1466         default:
1467                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1468                 break;
1469         }
1470 
1471         preempt_enable();
1472 }
1473 #endif
1474 
1475 /* Drop FPU & MSA without saving it */
1476 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1477 {
1478         preempt_disable();
1479         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1480                 disable_msa();
1481                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1482                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1483         }
1484         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1485                 clear_c0_status(ST0_CU1 | ST0_FR);
1486                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1487                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1488         }
1489         preempt_enable();
1490 }
1491 
1492 /* Save and disable FPU & MSA */
1493 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1494 {
1495         /*
1496          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1497          * is disabled in guest context (software), but the register state in
1498          * the hardware may still be in use.
1499          * This is why we explicitly re-enable the hardware before saving.
1500          */
1501 
1502         preempt_disable();
1503         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1504                 __kvm_save_msa(&vcpu->arch);
1505                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1506 
1507                 /* Disable MSA & FPU */
1508                 disable_msa();
1509                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1510                         clear_c0_status(ST0_CU1 | ST0_FR);
1511                         disable_fpu_hazard();
1512                 }
1513                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1514         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1515                 __kvm_save_fpu(&vcpu->arch);
1516                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1517                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1518 
1519                 /* Disable FPU */
1520                 clear_c0_status(ST0_CU1 | ST0_FR);
1521                 disable_fpu_hazard();
1522         }
1523         preempt_enable();
1524 }
1525 
1526 /*
1527  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1528  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1529  * exception if cause bits are set in the value being written.
1530  */
1531 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1532                                    unsigned long cmd, void *ptr)
1533 {
1534         struct die_args *args = (struct die_args *)ptr;
1535         struct pt_regs *regs = args->regs;
1536         unsigned long pc;
1537 
1538         /* Only interested in FPE and MSAFPE */
1539         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1540                 return NOTIFY_DONE;
1541 
1542         /* Return immediately if guest context isn't active */
1543         if (!(current->flags & PF_VCPU))
1544                 return NOTIFY_DONE;
1545 
1546         /* Should never get here from user mode */
1547         BUG_ON(user_mode(regs));
1548 
1549         pc = instruction_pointer(regs);
1550         switch (cmd) {
1551         case DIE_FP:
1552                 /* match 2nd instruction in __kvm_restore_fcsr */
1553                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1554                         return NOTIFY_DONE;
1555                 break;
1556         case DIE_MSAFP:
1557                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1558                 if (!cpu_has_msa ||
1559                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1560                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1561                         return NOTIFY_DONE;
1562                 break;
1563         }
1564 
1565         /* Move PC forward a little and continue executing */
1566         instruction_pointer(regs) += 4;
1567 
1568         return NOTIFY_STOP;
1569 }
1570 
1571 static struct notifier_block kvm_mips_csr_die_notifier = {
1572         .notifier_call = kvm_mips_csr_die_notify,
1573 };
1574 
1575 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1576         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1577         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1578         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1579         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1580 };
1581 
1582 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1583         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1584         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1585         [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1586         [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1587 };
1588 
1589 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1590 
1591 u32 kvm_irq_to_priority(u32 irq)
1592 {
1593         int i;
1594 
1595         for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1596                 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1597                         return i;
1598         }
1599 
1600         return MIPS_EXC_MAX;
1601 }
1602 
1603 static int __init kvm_mips_init(void)
1604 {
1605         int ret;
1606 
1607         if (cpu_has_mmid) {
1608                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1609                 return -EOPNOTSUPP;
1610         }
1611 
1612         ret = kvm_mips_entry_setup();
1613         if (ret)
1614                 return ret;
1615 
1616         ret = kvm_mips_emulation_init();
1617         if (ret)
1618                 return ret;
1619 
1620 
1621         if (boot_cpu_type() == CPU_LOONGSON64)
1622                 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1623 
1624         register_die_notifier(&kvm_mips_csr_die_notifier);
1625 
1626         ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1627         if (ret) {
1628                 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1629                 return ret;
1630         }
1631         return 0;
1632 }
1633 
1634 static void __exit kvm_mips_exit(void)
1635 {
1636         kvm_exit();
1637 
1638         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1639 }
1640 
1641 module_init(kvm_mips_init);
1642 module_exit(kvm_mips_exit);
1643 
1644 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1645 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php