1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Just-In-Time compiler for eBPF bytecode on MIPS. 4 * Implementation of JIT functions for 32-bit CPUs. 5 * 6 * Copyright (c) 2021 Anyfi Networks AB. 7 * Author: Johan Almbladh <johan.almbladh@gmail.com> 8 * 9 * Based on code and ideas from 10 * Copyright (c) 2017 Cavium, Inc. 11 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> 12 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> 13 */ 14 15 #include <linux/math64.h> 16 #include <linux/errno.h> 17 #include <linux/filter.h> 18 #include <linux/bpf.h> 19 #include <asm/cpu-features.h> 20 #include <asm/isa-rev.h> 21 #include <asm/uasm.h> 22 23 #include "bpf_jit_comp.h" 24 25 /* MIPS a4-a7 are not available in the o32 ABI */ 26 #undef MIPS_R_A4 27 #undef MIPS_R_A5 28 #undef MIPS_R_A6 29 #undef MIPS_R_A7 30 31 /* Stack is 8-byte aligned in o32 ABI */ 32 #define MIPS_STACK_ALIGNMENT 8 33 34 /* 35 * The top 16 bytes of a stack frame is reserved for the callee in O32 ABI. 36 * This corresponds to stack space for register arguments a0-a3. 37 */ 38 #define JIT_RESERVED_STACK 16 39 40 /* Temporary 64-bit register used by JIT */ 41 #define JIT_REG_TMP MAX_BPF_JIT_REG 42 43 /* 44 * Number of prologue bytes to skip when doing a tail call. 45 * Tail call count (TCC) initialization (8 bytes) always, plus 46 * R0-to-v0 assignment (4 bytes) if big endian. 47 */ 48 #ifdef __BIG_ENDIAN 49 #define JIT_TCALL_SKIP 12 50 #else 51 #define JIT_TCALL_SKIP 8 52 #endif 53 54 /* CPU registers holding the callee return value */ 55 #define JIT_RETURN_REGS \ 56 (BIT(MIPS_R_V0) | \ 57 BIT(MIPS_R_V1)) 58 59 /* CPU registers arguments passed to callee directly */ 60 #define JIT_ARG_REGS \ 61 (BIT(MIPS_R_A0) | \ 62 BIT(MIPS_R_A1) | \ 63 BIT(MIPS_R_A2) | \ 64 BIT(MIPS_R_A3)) 65 66 /* CPU register arguments passed to callee on stack */ 67 #define JIT_STACK_REGS \ 68 (BIT(MIPS_R_T0) | \ 69 BIT(MIPS_R_T1) | \ 70 BIT(MIPS_R_T2) | \ 71 BIT(MIPS_R_T3) | \ 72 BIT(MIPS_R_T4) | \ 73 BIT(MIPS_R_T5)) 74 75 /* Caller-saved CPU registers */ 76 #define JIT_CALLER_REGS \ 77 (JIT_RETURN_REGS | \ 78 JIT_ARG_REGS | \ 79 JIT_STACK_REGS) 80 81 /* Callee-saved CPU registers */ 82 #define JIT_CALLEE_REGS \ 83 (BIT(MIPS_R_S0) | \ 84 BIT(MIPS_R_S1) | \ 85 BIT(MIPS_R_S2) | \ 86 BIT(MIPS_R_S3) | \ 87 BIT(MIPS_R_S4) | \ 88 BIT(MIPS_R_S5) | \ 89 BIT(MIPS_R_S6) | \ 90 BIT(MIPS_R_S7) | \ 91 BIT(MIPS_R_GP) | \ 92 BIT(MIPS_R_FP) | \ 93 BIT(MIPS_R_RA)) 94 95 /* 96 * Mapping of 64-bit eBPF registers to 32-bit native MIPS registers. 97 * 98 * 1) Native register pairs are ordered according to CPU endianness, following 99 * the MIPS convention for passing 64-bit arguments and return values. 100 * 2) The eBPF return value, arguments and callee-saved registers are mapped 101 * to their native MIPS equivalents. 102 * 3) Since the 32 highest bits in the eBPF FP register are always zero, 103 * only one general-purpose register is actually needed for the mapping. 104 * We use the fp register for this purpose, and map the highest bits to 105 * the MIPS register r0 (zero). 106 * 4) We use the MIPS gp and at registers as internal temporary registers 107 * for constant blinding. The gp register is callee-saved. 108 * 5) One 64-bit temporary register is mapped for use when sign-extending 109 * immediate operands. MIPS registers t6-t9 are available to the JIT 110 * for as temporaries when implementing complex 64-bit operations. 111 * 112 * With this scheme all eBPF registers are being mapped to native MIPS 113 * registers without having to use any stack scratch space. The direct 114 * register mapping (2) simplifies the handling of function calls. 115 */ 116 static const u8 bpf2mips32[][2] = { 117 /* Return value from in-kernel function, and exit value from eBPF */ 118 [BPF_REG_0] = {MIPS_R_V1, MIPS_R_V0}, 119 /* Arguments from eBPF program to in-kernel function */ 120 [BPF_REG_1] = {MIPS_R_A1, MIPS_R_A0}, 121 [BPF_REG_2] = {MIPS_R_A3, MIPS_R_A2}, 122 /* Remaining arguments, to be passed on the stack per O32 ABI */ 123 [BPF_REG_3] = {MIPS_R_T1, MIPS_R_T0}, 124 [BPF_REG_4] = {MIPS_R_T3, MIPS_R_T2}, 125 [BPF_REG_5] = {MIPS_R_T5, MIPS_R_T4}, 126 /* Callee-saved registers that in-kernel function will preserve */ 127 [BPF_REG_6] = {MIPS_R_S1, MIPS_R_S0}, 128 [BPF_REG_7] = {MIPS_R_S3, MIPS_R_S2}, 129 [BPF_REG_8] = {MIPS_R_S5, MIPS_R_S4}, 130 [BPF_REG_9] = {MIPS_R_S7, MIPS_R_S6}, 131 /* Read-only frame pointer to access the eBPF stack */ 132 #ifdef __BIG_ENDIAN 133 [BPF_REG_FP] = {MIPS_R_FP, MIPS_R_ZERO}, 134 #else 135 [BPF_REG_FP] = {MIPS_R_ZERO, MIPS_R_FP}, 136 #endif 137 /* Temporary register for blinding constants */ 138 [BPF_REG_AX] = {MIPS_R_GP, MIPS_R_AT}, 139 /* Temporary register for internal JIT use */ 140 [JIT_REG_TMP] = {MIPS_R_T7, MIPS_R_T6}, 141 }; 142 143 /* Get low CPU register for a 64-bit eBPF register mapping */ 144 static inline u8 lo(const u8 reg[]) 145 { 146 #ifdef __BIG_ENDIAN 147 return reg[0]; 148 #else 149 return reg[1]; 150 #endif 151 } 152 153 /* Get high CPU register for a 64-bit eBPF register mapping */ 154 static inline u8 hi(const u8 reg[]) 155 { 156 #ifdef __BIG_ENDIAN 157 return reg[1]; 158 #else 159 return reg[0]; 160 #endif 161 } 162 163 /* 164 * Mark a 64-bit CPU register pair as clobbered, it needs to be 165 * saved/restored by the program if callee-saved. 166 */ 167 static void clobber_reg64(struct jit_context *ctx, const u8 reg[]) 168 { 169 clobber_reg(ctx, reg[0]); 170 clobber_reg(ctx, reg[1]); 171 } 172 173 /* dst = imm (sign-extended) */ 174 static void emit_mov_se_i64(struct jit_context *ctx, const u8 dst[], s32 imm) 175 { 176 emit_mov_i(ctx, lo(dst), imm); 177 if (imm < 0) 178 emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1); 179 else 180 emit(ctx, move, hi(dst), MIPS_R_ZERO); 181 clobber_reg64(ctx, dst); 182 } 183 184 /* Zero extension, if verifier does not do it for us */ 185 static void emit_zext_ver(struct jit_context *ctx, const u8 dst[]) 186 { 187 if (!ctx->program->aux->verifier_zext) { 188 emit(ctx, move, hi(dst), MIPS_R_ZERO); 189 clobber_reg(ctx, hi(dst)); 190 } 191 } 192 193 /* Load delay slot, if ISA mandates it */ 194 static void emit_load_delay(struct jit_context *ctx) 195 { 196 if (!cpu_has_mips_2_3_4_5_r) 197 emit(ctx, nop); 198 } 199 200 /* ALU immediate operation (64-bit) */ 201 static void emit_alu_i64(struct jit_context *ctx, 202 const u8 dst[], s32 imm, u8 op) 203 { 204 u8 src = MIPS_R_T6; 205 206 /* 207 * ADD/SUB with all but the max negative imm can be handled by 208 * inverting the operation and the imm value, saving one insn. 209 */ 210 if (imm > S32_MIN && imm < 0) 211 switch (op) { 212 case BPF_ADD: 213 op = BPF_SUB; 214 imm = -imm; 215 break; 216 case BPF_SUB: 217 op = BPF_ADD; 218 imm = -imm; 219 break; 220 } 221 222 /* Move immediate to temporary register */ 223 emit_mov_i(ctx, src, imm); 224 225 switch (op) { 226 /* dst = dst + imm */ 227 case BPF_ADD: 228 emit(ctx, addu, lo(dst), lo(dst), src); 229 emit(ctx, sltu, MIPS_R_T9, lo(dst), src); 230 emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9); 231 if (imm < 0) 232 emit(ctx, addiu, hi(dst), hi(dst), -1); 233 break; 234 /* dst = dst - imm */ 235 case BPF_SUB: 236 emit(ctx, sltu, MIPS_R_T9, lo(dst), src); 237 emit(ctx, subu, lo(dst), lo(dst), src); 238 emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9); 239 if (imm < 0) 240 emit(ctx, addiu, hi(dst), hi(dst), 1); 241 break; 242 /* dst = dst | imm */ 243 case BPF_OR: 244 emit(ctx, or, lo(dst), lo(dst), src); 245 if (imm < 0) 246 emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1); 247 break; 248 /* dst = dst & imm */ 249 case BPF_AND: 250 emit(ctx, and, lo(dst), lo(dst), src); 251 if (imm >= 0) 252 emit(ctx, move, hi(dst), MIPS_R_ZERO); 253 break; 254 /* dst = dst ^ imm */ 255 case BPF_XOR: 256 emit(ctx, xor, lo(dst), lo(dst), src); 257 if (imm < 0) { 258 emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst)); 259 emit(ctx, addiu, hi(dst), hi(dst), -1); 260 } 261 break; 262 } 263 clobber_reg64(ctx, dst); 264 } 265 266 /* ALU register operation (64-bit) */ 267 static void emit_alu_r64(struct jit_context *ctx, 268 const u8 dst[], const u8 src[], u8 op) 269 { 270 switch (BPF_OP(op)) { 271 /* dst = dst + src */ 272 case BPF_ADD: 273 if (src == dst) { 274 emit(ctx, srl, MIPS_R_T9, lo(dst), 31); 275 emit(ctx, addu, lo(dst), lo(dst), lo(dst)); 276 } else { 277 emit(ctx, addu, lo(dst), lo(dst), lo(src)); 278 emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src)); 279 } 280 emit(ctx, addu, hi(dst), hi(dst), hi(src)); 281 emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9); 282 break; 283 /* dst = dst - src */ 284 case BPF_SUB: 285 emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src)); 286 emit(ctx, subu, lo(dst), lo(dst), lo(src)); 287 emit(ctx, subu, hi(dst), hi(dst), hi(src)); 288 emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9); 289 break; 290 /* dst = dst | src */ 291 case BPF_OR: 292 emit(ctx, or, lo(dst), lo(dst), lo(src)); 293 emit(ctx, or, hi(dst), hi(dst), hi(src)); 294 break; 295 /* dst = dst & src */ 296 case BPF_AND: 297 emit(ctx, and, lo(dst), lo(dst), lo(src)); 298 emit(ctx, and, hi(dst), hi(dst), hi(src)); 299 break; 300 /* dst = dst ^ src */ 301 case BPF_XOR: 302 emit(ctx, xor, lo(dst), lo(dst), lo(src)); 303 emit(ctx, xor, hi(dst), hi(dst), hi(src)); 304 break; 305 } 306 clobber_reg64(ctx, dst); 307 } 308 309 /* ALU invert (64-bit) */ 310 static void emit_neg_i64(struct jit_context *ctx, const u8 dst[]) 311 { 312 emit(ctx, sltu, MIPS_R_T9, MIPS_R_ZERO, lo(dst)); 313 emit(ctx, subu, lo(dst), MIPS_R_ZERO, lo(dst)); 314 emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst)); 315 emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9); 316 317 clobber_reg64(ctx, dst); 318 } 319 320 /* ALU shift immediate (64-bit) */ 321 static void emit_shift_i64(struct jit_context *ctx, 322 const u8 dst[], u32 imm, u8 op) 323 { 324 switch (BPF_OP(op)) { 325 /* dst = dst << imm */ 326 case BPF_LSH: 327 if (imm < 32) { 328 emit(ctx, srl, MIPS_R_T9, lo(dst), 32 - imm); 329 emit(ctx, sll, lo(dst), lo(dst), imm); 330 emit(ctx, sll, hi(dst), hi(dst), imm); 331 emit(ctx, or, hi(dst), hi(dst), MIPS_R_T9); 332 } else { 333 emit(ctx, sll, hi(dst), lo(dst), imm - 32); 334 emit(ctx, move, lo(dst), MIPS_R_ZERO); 335 } 336 break; 337 /* dst = dst >> imm */ 338 case BPF_RSH: 339 if (imm < 32) { 340 emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm); 341 emit(ctx, srl, lo(dst), lo(dst), imm); 342 emit(ctx, srl, hi(dst), hi(dst), imm); 343 emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9); 344 } else { 345 emit(ctx, srl, lo(dst), hi(dst), imm - 32); 346 emit(ctx, move, hi(dst), MIPS_R_ZERO); 347 } 348 break; 349 /* dst = dst >> imm (arithmetic) */ 350 case BPF_ARSH: 351 if (imm < 32) { 352 emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm); 353 emit(ctx, srl, lo(dst), lo(dst), imm); 354 emit(ctx, sra, hi(dst), hi(dst), imm); 355 emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9); 356 } else { 357 emit(ctx, sra, lo(dst), hi(dst), imm - 32); 358 emit(ctx, sra, hi(dst), hi(dst), 31); 359 } 360 break; 361 } 362 clobber_reg64(ctx, dst); 363 } 364 365 /* ALU shift register (64-bit) */ 366 static void emit_shift_r64(struct jit_context *ctx, 367 const u8 dst[], u8 src, u8 op) 368 { 369 u8 t1 = MIPS_R_T8; 370 u8 t2 = MIPS_R_T9; 371 372 emit(ctx, andi, t1, src, 32); /* t1 = src & 32 */ 373 emit(ctx, beqz, t1, 16); /* PC += 16 if t1 == 0 */ 374 emit(ctx, nor, t2, src, MIPS_R_ZERO); /* t2 = ~src (delay slot) */ 375 376 switch (BPF_OP(op)) { 377 /* dst = dst << src */ 378 case BPF_LSH: 379 /* Next: shift >= 32 */ 380 emit(ctx, sllv, hi(dst), lo(dst), src); /* dh = dl << src */ 381 emit(ctx, move, lo(dst), MIPS_R_ZERO); /* dl = 0 */ 382 emit(ctx, b, 20); /* PC += 20 */ 383 /* +16: shift < 32 */ 384 emit(ctx, srl, t1, lo(dst), 1); /* t1 = dl >> 1 */ 385 emit(ctx, srlv, t1, t1, t2); /* t1 = t1 >> t2 */ 386 emit(ctx, sllv, lo(dst), lo(dst), src); /* dl = dl << src */ 387 emit(ctx, sllv, hi(dst), hi(dst), src); /* dh = dh << src */ 388 emit(ctx, or, hi(dst), hi(dst), t1); /* dh = dh | t1 */ 389 break; 390 /* dst = dst >> src */ 391 case BPF_RSH: 392 /* Next: shift >= 32 */ 393 emit(ctx, srlv, lo(dst), hi(dst), src); /* dl = dh >> src */ 394 emit(ctx, move, hi(dst), MIPS_R_ZERO); /* dh = 0 */ 395 emit(ctx, b, 20); /* PC += 20 */ 396 /* +16: shift < 32 */ 397 emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */ 398 emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */ 399 emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >> src */ 400 emit(ctx, srlv, hi(dst), hi(dst), src); /* dh = dh >> src */ 401 emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */ 402 break; 403 /* dst = dst >> src (arithmetic) */ 404 case BPF_ARSH: 405 /* Next: shift >= 32 */ 406 emit(ctx, srav, lo(dst), hi(dst), src); /* dl = dh >>a src */ 407 emit(ctx, sra, hi(dst), hi(dst), 31); /* dh = dh >>a 31 */ 408 emit(ctx, b, 20); /* PC += 20 */ 409 /* +16: shift < 32 */ 410 emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */ 411 emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */ 412 emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >>a src */ 413 emit(ctx, srav, hi(dst), hi(dst), src); /* dh = dh >> src */ 414 emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */ 415 break; 416 } 417 418 /* +20: Done */ 419 clobber_reg64(ctx, dst); 420 } 421 422 /* ALU mul immediate (64x32-bit) */ 423 static void emit_mul_i64(struct jit_context *ctx, const u8 dst[], s32 imm) 424 { 425 u8 src = MIPS_R_T6; 426 u8 tmp = MIPS_R_T9; 427 428 switch (imm) { 429 /* dst = dst * 1 is a no-op */ 430 case 1: 431 break; 432 /* dst = dst * -1 */ 433 case -1: 434 emit_neg_i64(ctx, dst); 435 break; 436 case 0: 437 emit_mov_r(ctx, lo(dst), MIPS_R_ZERO); 438 emit_mov_r(ctx, hi(dst), MIPS_R_ZERO); 439 break; 440 /* Full 64x32 multiply */ 441 default: 442 /* hi(dst) = hi(dst) * src(imm) */ 443 emit_mov_i(ctx, src, imm); 444 if (cpu_has_mips32r1 || cpu_has_mips32r6) { 445 emit(ctx, mul, hi(dst), hi(dst), src); 446 } else { 447 emit(ctx, multu, hi(dst), src); 448 emit(ctx, mflo, hi(dst)); 449 } 450 451 /* hi(dst) = hi(dst) - lo(dst) */ 452 if (imm < 0) 453 emit(ctx, subu, hi(dst), hi(dst), lo(dst)); 454 455 /* tmp = lo(dst) * src(imm) >> 32 */ 456 /* lo(dst) = lo(dst) * src(imm) */ 457 if (cpu_has_mips32r6) { 458 emit(ctx, muhu, tmp, lo(dst), src); 459 emit(ctx, mulu, lo(dst), lo(dst), src); 460 } else { 461 emit(ctx, multu, lo(dst), src); 462 emit(ctx, mflo, lo(dst)); 463 emit(ctx, mfhi, tmp); 464 } 465 466 /* hi(dst) += tmp */ 467 emit(ctx, addu, hi(dst), hi(dst), tmp); 468 clobber_reg64(ctx, dst); 469 break; 470 } 471 } 472 473 /* ALU mul register (64x64-bit) */ 474 static void emit_mul_r64(struct jit_context *ctx, 475 const u8 dst[], const u8 src[]) 476 { 477 u8 acc = MIPS_R_T8; 478 u8 tmp = MIPS_R_T9; 479 480 /* acc = hi(dst) * lo(src) */ 481 if (cpu_has_mips32r1 || cpu_has_mips32r6) { 482 emit(ctx, mul, acc, hi(dst), lo(src)); 483 } else { 484 emit(ctx, multu, hi(dst), lo(src)); 485 emit(ctx, mflo, acc); 486 } 487 488 /* tmp = lo(dst) * hi(src) */ 489 if (cpu_has_mips32r1 || cpu_has_mips32r6) { 490 emit(ctx, mul, tmp, lo(dst), hi(src)); 491 } else { 492 emit(ctx, multu, lo(dst), hi(src)); 493 emit(ctx, mflo, tmp); 494 } 495 496 /* acc += tmp */ 497 emit(ctx, addu, acc, acc, tmp); 498 499 /* tmp = lo(dst) * lo(src) >> 32 */ 500 /* lo(dst) = lo(dst) * lo(src) */ 501 if (cpu_has_mips32r6) { 502 emit(ctx, muhu, tmp, lo(dst), lo(src)); 503 emit(ctx, mulu, lo(dst), lo(dst), lo(src)); 504 } else { 505 emit(ctx, multu, lo(dst), lo(src)); 506 emit(ctx, mflo, lo(dst)); 507 emit(ctx, mfhi, tmp); 508 } 509 510 /* hi(dst) = acc + tmp */ 511 emit(ctx, addu, hi(dst), acc, tmp); 512 clobber_reg64(ctx, dst); 513 } 514 515 /* Helper function for 64-bit modulo */ 516 static u64 jit_mod64(u64 a, u64 b) 517 { 518 u64 rem; 519 520 div64_u64_rem(a, b, &rem); 521 return rem; 522 } 523 524 /* ALU div/mod register (64-bit) */ 525 static void emit_divmod_r64(struct jit_context *ctx, 526 const u8 dst[], const u8 src[], u8 op) 527 { 528 const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Mapped to v0-v1 */ 529 const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */ 530 const u8 *r2 = bpf2mips32[BPF_REG_2]; /* Mapped to a2-a3 */ 531 int exclude, k; 532 u32 addr = 0; 533 534 /* Push caller-saved registers on stack */ 535 push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 536 0, JIT_RESERVED_STACK); 537 538 /* Put 64-bit arguments 1 and 2 in registers a0-a3 */ 539 for (k = 0; k < 2; k++) { 540 emit(ctx, move, MIPS_R_T9, src[k]); 541 emit(ctx, move, r1[k], dst[k]); 542 emit(ctx, move, r2[k], MIPS_R_T9); 543 } 544 545 /* Emit function call */ 546 switch (BPF_OP(op)) { 547 /* dst = dst / src */ 548 case BPF_DIV: 549 addr = (u32)&div64_u64; 550 break; 551 /* dst = dst % src */ 552 case BPF_MOD: 553 addr = (u32)&jit_mod64; 554 break; 555 } 556 emit_mov_i(ctx, MIPS_R_T9, addr); 557 emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); 558 emit(ctx, nop); /* Delay slot */ 559 560 /* Store the 64-bit result in dst */ 561 emit(ctx, move, dst[0], r0[0]); 562 emit(ctx, move, dst[1], r0[1]); 563 564 /* Restore caller-saved registers, excluding the computed result */ 565 exclude = BIT(lo(dst)) | BIT(hi(dst)); 566 pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 567 exclude, JIT_RESERVED_STACK); 568 emit_load_delay(ctx); 569 570 clobber_reg64(ctx, dst); 571 clobber_reg(ctx, MIPS_R_V0); 572 clobber_reg(ctx, MIPS_R_V1); 573 clobber_reg(ctx, MIPS_R_RA); 574 } 575 576 /* Swap bytes in a register word */ 577 static void emit_swap8_r(struct jit_context *ctx, u8 dst, u8 src, u8 mask) 578 { 579 u8 tmp = MIPS_R_T9; 580 581 emit(ctx, and, tmp, src, mask); /* tmp = src & 0x00ff00ff */ 582 emit(ctx, sll, tmp, tmp, 8); /* tmp = tmp << 8 */ 583 emit(ctx, srl, dst, src, 8); /* dst = src >> 8 */ 584 emit(ctx, and, dst, dst, mask); /* dst = dst & 0x00ff00ff */ 585 emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */ 586 } 587 588 /* Swap half words in a register word */ 589 static void emit_swap16_r(struct jit_context *ctx, u8 dst, u8 src) 590 { 591 u8 tmp = MIPS_R_T9; 592 593 emit(ctx, sll, tmp, src, 16); /* tmp = src << 16 */ 594 emit(ctx, srl, dst, src, 16); /* dst = src >> 16 */ 595 emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */ 596 } 597 598 /* Swap bytes and truncate a register double word, word or half word */ 599 static void emit_bswap_r64(struct jit_context *ctx, const u8 dst[], u32 width) 600 { 601 u8 tmp = MIPS_R_T8; 602 603 switch (width) { 604 /* Swap bytes in a double word */ 605 case 64: 606 if (cpu_has_mips32r2 || cpu_has_mips32r6) { 607 emit(ctx, rotr, tmp, hi(dst), 16); 608 emit(ctx, rotr, hi(dst), lo(dst), 16); 609 emit(ctx, wsbh, lo(dst), tmp); 610 emit(ctx, wsbh, hi(dst), hi(dst)); 611 } else { 612 emit_swap16_r(ctx, tmp, lo(dst)); 613 emit_swap16_r(ctx, lo(dst), hi(dst)); 614 emit(ctx, move, hi(dst), tmp); 615 616 emit(ctx, lui, tmp, 0xff); /* tmp = 0x00ff0000 */ 617 emit(ctx, ori, tmp, tmp, 0xff); /* tmp = 0x00ff00ff */ 618 emit_swap8_r(ctx, lo(dst), lo(dst), tmp); 619 emit_swap8_r(ctx, hi(dst), hi(dst), tmp); 620 } 621 break; 622 /* Swap bytes in a word */ 623 /* Swap bytes in a half word */ 624 case 32: 625 case 16: 626 emit_bswap_r(ctx, lo(dst), width); 627 emit(ctx, move, hi(dst), MIPS_R_ZERO); 628 break; 629 } 630 clobber_reg64(ctx, dst); 631 } 632 633 /* Truncate a register double word, word or half word */ 634 static void emit_trunc_r64(struct jit_context *ctx, const u8 dst[], u32 width) 635 { 636 switch (width) { 637 case 64: 638 break; 639 /* Zero-extend a word */ 640 case 32: 641 emit(ctx, move, hi(dst), MIPS_R_ZERO); 642 clobber_reg(ctx, hi(dst)); 643 break; 644 /* Zero-extend a half word */ 645 case 16: 646 emit(ctx, move, hi(dst), MIPS_R_ZERO); 647 emit(ctx, andi, lo(dst), lo(dst), 0xffff); 648 clobber_reg64(ctx, dst); 649 break; 650 } 651 } 652 653 /* Load operation: dst = *(size*)(src + off) */ 654 static void emit_ldx(struct jit_context *ctx, 655 const u8 dst[], u8 src, s16 off, u8 size) 656 { 657 switch (size) { 658 /* Load a byte */ 659 case BPF_B: 660 emit(ctx, lbu, lo(dst), off, src); 661 emit(ctx, move, hi(dst), MIPS_R_ZERO); 662 break; 663 /* Load a half word */ 664 case BPF_H: 665 emit(ctx, lhu, lo(dst), off, src); 666 emit(ctx, move, hi(dst), MIPS_R_ZERO); 667 break; 668 /* Load a word */ 669 case BPF_W: 670 emit(ctx, lw, lo(dst), off, src); 671 emit(ctx, move, hi(dst), MIPS_R_ZERO); 672 break; 673 /* Load a double word */ 674 case BPF_DW: 675 if (dst[1] == src) { 676 emit(ctx, lw, dst[0], off + 4, src); 677 emit(ctx, lw, dst[1], off, src); 678 } else { 679 emit(ctx, lw, dst[1], off, src); 680 emit(ctx, lw, dst[0], off + 4, src); 681 } 682 emit_load_delay(ctx); 683 break; 684 } 685 clobber_reg64(ctx, dst); 686 } 687 688 /* Store operation: *(size *)(dst + off) = src */ 689 static void emit_stx(struct jit_context *ctx, 690 const u8 dst, const u8 src[], s16 off, u8 size) 691 { 692 switch (size) { 693 /* Store a byte */ 694 case BPF_B: 695 emit(ctx, sb, lo(src), off, dst); 696 break; 697 /* Store a half word */ 698 case BPF_H: 699 emit(ctx, sh, lo(src), off, dst); 700 break; 701 /* Store a word */ 702 case BPF_W: 703 emit(ctx, sw, lo(src), off, dst); 704 break; 705 /* Store a double word */ 706 case BPF_DW: 707 emit(ctx, sw, src[1], off, dst); 708 emit(ctx, sw, src[0], off + 4, dst); 709 break; 710 } 711 } 712 713 /* Atomic read-modify-write (32-bit, non-ll/sc fallback) */ 714 static void emit_atomic_r32(struct jit_context *ctx, 715 u8 dst, u8 src, s16 off, u8 code) 716 { 717 u32 exclude = 0; 718 u32 addr = 0; 719 720 /* Push caller-saved registers on stack */ 721 push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 722 0, JIT_RESERVED_STACK); 723 /* 724 * Argument 1: dst+off if xchg, otherwise src, passed in register a0 725 * Argument 2: src if xchg, otherwise dst+off, passed in register a1 726 */ 727 emit(ctx, move, MIPS_R_T9, dst); 728 if (code == BPF_XCHG) { 729 emit(ctx, move, MIPS_R_A1, src); 730 emit(ctx, addiu, MIPS_R_A0, MIPS_R_T9, off); 731 } else { 732 emit(ctx, move, MIPS_R_A0, src); 733 emit(ctx, addiu, MIPS_R_A1, MIPS_R_T9, off); 734 } 735 736 /* Emit function call */ 737 switch (code) { 738 case BPF_ADD: 739 addr = (u32)&atomic_add; 740 break; 741 case BPF_ADD | BPF_FETCH: 742 addr = (u32)&atomic_fetch_add; 743 break; 744 case BPF_SUB: 745 addr = (u32)&atomic_sub; 746 break; 747 case BPF_SUB | BPF_FETCH: 748 addr = (u32)&atomic_fetch_sub; 749 break; 750 case BPF_OR: 751 addr = (u32)&atomic_or; 752 break; 753 case BPF_OR | BPF_FETCH: 754 addr = (u32)&atomic_fetch_or; 755 break; 756 case BPF_AND: 757 addr = (u32)&atomic_and; 758 break; 759 case BPF_AND | BPF_FETCH: 760 addr = (u32)&atomic_fetch_and; 761 break; 762 case BPF_XOR: 763 addr = (u32)&atomic_xor; 764 break; 765 case BPF_XOR | BPF_FETCH: 766 addr = (u32)&atomic_fetch_xor; 767 break; 768 case BPF_XCHG: 769 addr = (u32)&atomic_xchg; 770 break; 771 } 772 emit_mov_i(ctx, MIPS_R_T9, addr); 773 emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); 774 emit(ctx, nop); /* Delay slot */ 775 776 /* Update src register with old value, if specified */ 777 if (code & BPF_FETCH) { 778 emit(ctx, move, src, MIPS_R_V0); 779 exclude = BIT(src); 780 clobber_reg(ctx, src); 781 } 782 783 /* Restore caller-saved registers, except any fetched value */ 784 pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 785 exclude, JIT_RESERVED_STACK); 786 emit_load_delay(ctx); 787 clobber_reg(ctx, MIPS_R_RA); 788 } 789 790 /* Helper function for 64-bit atomic exchange */ 791 static s64 jit_xchg64(s64 a, atomic64_t *v) 792 { 793 return atomic64_xchg(v, a); 794 } 795 796 /* Atomic read-modify-write (64-bit) */ 797 static void emit_atomic_r64(struct jit_context *ctx, 798 u8 dst, const u8 src[], s16 off, u8 code) 799 { 800 const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Mapped to v0-v1 */ 801 const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */ 802 u32 exclude = 0; 803 u32 addr = 0; 804 805 /* Push caller-saved registers on stack */ 806 push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 807 0, JIT_RESERVED_STACK); 808 /* 809 * Argument 1: 64-bit src, passed in registers a0-a1 810 * Argument 2: 32-bit dst+off, passed in register a2 811 */ 812 emit(ctx, move, MIPS_R_T9, dst); 813 emit(ctx, move, r1[0], src[0]); 814 emit(ctx, move, r1[1], src[1]); 815 emit(ctx, addiu, MIPS_R_A2, MIPS_R_T9, off); 816 817 /* Emit function call */ 818 switch (code) { 819 case BPF_ADD: 820 addr = (u32)&atomic64_add; 821 break; 822 case BPF_ADD | BPF_FETCH: 823 addr = (u32)&atomic64_fetch_add; 824 break; 825 case BPF_SUB: 826 addr = (u32)&atomic64_sub; 827 break; 828 case BPF_SUB | BPF_FETCH: 829 addr = (u32)&atomic64_fetch_sub; 830 break; 831 case BPF_OR: 832 addr = (u32)&atomic64_or; 833 break; 834 case BPF_OR | BPF_FETCH: 835 addr = (u32)&atomic64_fetch_or; 836 break; 837 case BPF_AND: 838 addr = (u32)&atomic64_and; 839 break; 840 case BPF_AND | BPF_FETCH: 841 addr = (u32)&atomic64_fetch_and; 842 break; 843 case BPF_XOR: 844 addr = (u32)&atomic64_xor; 845 break; 846 case BPF_XOR | BPF_FETCH: 847 addr = (u32)&atomic64_fetch_xor; 848 break; 849 case BPF_XCHG: 850 addr = (u32)&jit_xchg64; 851 break; 852 } 853 emit_mov_i(ctx, MIPS_R_T9, addr); 854 emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); 855 emit(ctx, nop); /* Delay slot */ 856 857 /* Update src register with old value, if specified */ 858 if (code & BPF_FETCH) { 859 emit(ctx, move, lo(src), lo(r0)); 860 emit(ctx, move, hi(src), hi(r0)); 861 exclude = BIT(src[0]) | BIT(src[1]); 862 clobber_reg64(ctx, src); 863 } 864 865 /* Restore caller-saved registers, except any fetched value */ 866 pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 867 exclude, JIT_RESERVED_STACK); 868 emit_load_delay(ctx); 869 clobber_reg(ctx, MIPS_R_RA); 870 } 871 872 /* Atomic compare-and-exchange (32-bit, non-ll/sc fallback) */ 873 static void emit_cmpxchg_r32(struct jit_context *ctx, u8 dst, u8 src, s16 off) 874 { 875 const u8 *r0 = bpf2mips32[BPF_REG_0]; 876 877 /* Push caller-saved registers on stack */ 878 push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 879 JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); 880 /* 881 * Argument 1: 32-bit dst+off, passed in register a0 882 * Argument 2: 32-bit r0, passed in register a1 883 * Argument 3: 32-bit src, passed in register a2 884 */ 885 emit(ctx, addiu, MIPS_R_T9, dst, off); 886 emit(ctx, move, MIPS_R_T8, src); 887 emit(ctx, move, MIPS_R_A1, lo(r0)); 888 emit(ctx, move, MIPS_R_A0, MIPS_R_T9); 889 emit(ctx, move, MIPS_R_A2, MIPS_R_T8); 890 891 /* Emit function call */ 892 emit_mov_i(ctx, MIPS_R_T9, (u32)&atomic_cmpxchg); 893 emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); 894 emit(ctx, nop); /* Delay slot */ 895 896 #ifdef __BIG_ENDIAN 897 emit(ctx, move, lo(r0), MIPS_R_V0); 898 #endif 899 /* Restore caller-saved registers, except the return value */ 900 pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 901 JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); 902 emit_load_delay(ctx); 903 clobber_reg(ctx, MIPS_R_V0); 904 clobber_reg(ctx, MIPS_R_V1); 905 clobber_reg(ctx, MIPS_R_RA); 906 } 907 908 /* Atomic compare-and-exchange (64-bit) */ 909 static void emit_cmpxchg_r64(struct jit_context *ctx, 910 u8 dst, const u8 src[], s16 off) 911 { 912 const u8 *r0 = bpf2mips32[BPF_REG_0]; 913 const u8 *r2 = bpf2mips32[BPF_REG_2]; 914 915 /* Push caller-saved registers on stack */ 916 push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 917 JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); 918 /* 919 * Argument 1: 32-bit dst+off, passed in register a0 (a1 unused) 920 * Argument 2: 64-bit r0, passed in registers a2-a3 921 * Argument 3: 64-bit src, passed on stack 922 */ 923 push_regs(ctx, BIT(src[0]) | BIT(src[1]), 0, JIT_RESERVED_STACK); 924 emit(ctx, addiu, MIPS_R_T9, dst, off); 925 emit(ctx, move, r2[0], r0[0]); 926 emit(ctx, move, r2[1], r0[1]); 927 emit(ctx, move, MIPS_R_A0, MIPS_R_T9); 928 929 /* Emit function call */ 930 emit_mov_i(ctx, MIPS_R_T9, (u32)&atomic64_cmpxchg); 931 emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); 932 emit(ctx, nop); /* Delay slot */ 933 934 /* Restore caller-saved registers, except the return value */ 935 pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 936 JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); 937 emit_load_delay(ctx); 938 clobber_reg(ctx, MIPS_R_V0); 939 clobber_reg(ctx, MIPS_R_V1); 940 clobber_reg(ctx, MIPS_R_RA); 941 } 942 943 /* 944 * Conditional movz or an emulated equivalent. 945 * Note that the rs register may be modified. 946 */ 947 static void emit_movz_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt) 948 { 949 if (cpu_has_mips_2) { 950 emit(ctx, movz, rd, rs, rt); /* rd = rt ? rd : rs */ 951 } else if (cpu_has_mips32r6) { 952 if (rs != MIPS_R_ZERO) 953 emit(ctx, seleqz, rs, rs, rt); /* rs = 0 if rt == 0 */ 954 emit(ctx, selnez, rd, rd, rt); /* rd = 0 if rt != 0 */ 955 if (rs != MIPS_R_ZERO) 956 emit(ctx, or, rd, rd, rs); /* rd = rd | rs */ 957 } else { 958 emit(ctx, bnez, rt, 8); /* PC += 8 if rd != 0 */ 959 emit(ctx, nop); /* +0: delay slot */ 960 emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */ 961 } 962 clobber_reg(ctx, rd); 963 clobber_reg(ctx, rs); 964 } 965 966 /* 967 * Conditional movn or an emulated equivalent. 968 * Note that the rs register may be modified. 969 */ 970 static void emit_movn_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt) 971 { 972 if (cpu_has_mips_2) { 973 emit(ctx, movn, rd, rs, rt); /* rd = rt ? rs : rd */ 974 } else if (cpu_has_mips32r6) { 975 if (rs != MIPS_R_ZERO) 976 emit(ctx, selnez, rs, rs, rt); /* rs = 0 if rt == 0 */ 977 emit(ctx, seleqz, rd, rd, rt); /* rd = 0 if rt != 0 */ 978 if (rs != MIPS_R_ZERO) 979 emit(ctx, or, rd, rd, rs); /* rd = rd | rs */ 980 } else { 981 emit(ctx, beqz, rt, 8); /* PC += 8 if rd == 0 */ 982 emit(ctx, nop); /* +0: delay slot */ 983 emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */ 984 } 985 clobber_reg(ctx, rd); 986 clobber_reg(ctx, rs); 987 } 988 989 /* Emulation of 64-bit sltiu rd, rs, imm, where imm may be S32_MAX + 1 */ 990 static void emit_sltiu_r64(struct jit_context *ctx, u8 rd, 991 const u8 rs[], s64 imm) 992 { 993 u8 tmp = MIPS_R_T9; 994 995 if (imm < 0) { 996 emit_mov_i(ctx, rd, imm); /* rd = imm */ 997 emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */ 998 emit(ctx, sltiu, tmp, hi(rs), -1); /* tmp = rsh < ~0U */ 999 emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */ 1000 } else { /* imm >= 0 */ 1001 if (imm > 0x7fff) { 1002 emit_mov_i(ctx, rd, (s32)imm); /* rd = imm */ 1003 emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */ 1004 } else { 1005 emit(ctx, sltiu, rd, lo(rs), imm); /* rd = rsl < imm */ 1006 } 1007 emit_movn_r(ctx, rd, MIPS_R_ZERO, hi(rs)); /* rd = 0 if rsh */ 1008 } 1009 } 1010 1011 /* Emulation of 64-bit sltu rd, rs, rt */ 1012 static void emit_sltu_r64(struct jit_context *ctx, u8 rd, 1013 const u8 rs[], const u8 rt[]) 1014 { 1015 u8 tmp = MIPS_R_T9; 1016 1017 emit(ctx, sltu, rd, lo(rs), lo(rt)); /* rd = rsl < rtl */ 1018 emit(ctx, subu, tmp, hi(rs), hi(rt)); /* tmp = rsh - rth */ 1019 emit_movn_r(ctx, rd, MIPS_R_ZERO, tmp); /* rd = 0 if tmp != 0 */ 1020 emit(ctx, sltu, tmp, hi(rs), hi(rt)); /* tmp = rsh < rth */ 1021 emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */ 1022 } 1023 1024 /* Emulation of 64-bit slti rd, rs, imm, where imm may be S32_MAX + 1 */ 1025 static void emit_slti_r64(struct jit_context *ctx, u8 rd, 1026 const u8 rs[], s64 imm) 1027 { 1028 u8 t1 = MIPS_R_T8; 1029 u8 t2 = MIPS_R_T9; 1030 u8 cmp; 1031 1032 /* 1033 * if ((rs < 0) ^ (imm < 0)) t1 = imm >u rsl 1034 * else t1 = rsl <u imm 1035 */ 1036 emit_mov_i(ctx, rd, (s32)imm); 1037 emit(ctx, sltu, t1, lo(rs), rd); /* t1 = rsl <u imm */ 1038 emit(ctx, sltu, t2, rd, lo(rs)); /* t2 = imm <u rsl */ 1039 emit(ctx, srl, rd, hi(rs), 31); /* rd = rsh >> 31 */ 1040 if (imm < 0) 1041 emit_movz_r(ctx, t1, t2, rd); /* t1 = rd ? t1 : t2 */ 1042 else 1043 emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */ 1044 /* 1045 * if ((imm < 0 && rsh != 0xffffffff) || 1046 * (imm >= 0 && rsh != 0)) 1047 * t1 = 0 1048 */ 1049 if (imm < 0) { 1050 emit(ctx, addiu, rd, hi(rs), 1); /* rd = rsh + 1 */ 1051 cmp = rd; 1052 } else { /* imm >= 0 */ 1053 cmp = hi(rs); 1054 } 1055 emit_movn_r(ctx, t1, MIPS_R_ZERO, cmp); /* t1 = 0 if cmp != 0 */ 1056 1057 /* 1058 * if (imm < 0) rd = rsh < -1 1059 * else rd = rsh != 0 1060 * rd = rd | t1 1061 */ 1062 emit(ctx, slti, rd, hi(rs), imm < 0 ? -1 : 0); /* rd = rsh < hi(imm) */ 1063 emit(ctx, or, rd, rd, t1); /* rd = rd | t1 */ 1064 } 1065 1066 /* Emulation of 64-bit(slt rd, rs, rt) */ 1067 static void emit_slt_r64(struct jit_context *ctx, u8 rd, 1068 const u8 rs[], const u8 rt[]) 1069 { 1070 u8 t1 = MIPS_R_T7; 1071 u8 t2 = MIPS_R_T8; 1072 u8 t3 = MIPS_R_T9; 1073 1074 /* 1075 * if ((rs < 0) ^ (rt < 0)) t1 = rtl <u rsl 1076 * else t1 = rsl <u rtl 1077 * if (rsh == rth) t1 = 0 1078 */ 1079 emit(ctx, sltu, t1, lo(rs), lo(rt)); /* t1 = rsl <u rtl */ 1080 emit(ctx, sltu, t2, lo(rt), lo(rs)); /* t2 = rtl <u rsl */ 1081 emit(ctx, xor, t3, hi(rs), hi(rt)); /* t3 = rlh ^ rth */ 1082 emit(ctx, srl, rd, t3, 31); /* rd = t3 >> 31 */ 1083 emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */ 1084 emit_movn_r(ctx, t1, MIPS_R_ZERO, t3); /* t1 = 0 if t3 != 0 */ 1085 1086 /* rd = (rsh < rth) | t1 */ 1087 emit(ctx, slt, rd, hi(rs), hi(rt)); /* rd = rsh <s rth */ 1088 emit(ctx, or, rd, rd, t1); /* rd = rd | t1 */ 1089 } 1090 1091 /* Jump immediate (64-bit) */ 1092 static void emit_jmp_i64(struct jit_context *ctx, 1093 const u8 dst[], s32 imm, s32 off, u8 op) 1094 { 1095 u8 tmp = MIPS_R_T6; 1096 1097 switch (op) { 1098 /* No-op, used internally for branch optimization */ 1099 case JIT_JNOP: 1100 break; 1101 /* PC += off if dst == imm */ 1102 /* PC += off if dst != imm */ 1103 case BPF_JEQ: 1104 case BPF_JNE: 1105 if (imm >= -0x7fff && imm <= 0x8000) { 1106 emit(ctx, addiu, tmp, lo(dst), -imm); 1107 } else if ((u32)imm <= 0xffff) { 1108 emit(ctx, xori, tmp, lo(dst), imm); 1109 } else { /* Register fallback */ 1110 emit_mov_i(ctx, tmp, imm); 1111 emit(ctx, xor, tmp, lo(dst), tmp); 1112 } 1113 if (imm < 0) { /* Compare sign extension */ 1114 emit(ctx, addu, MIPS_R_T9, hi(dst), 1); 1115 emit(ctx, or, tmp, tmp, MIPS_R_T9); 1116 } else { /* Compare zero extension */ 1117 emit(ctx, or, tmp, tmp, hi(dst)); 1118 } 1119 if (op == BPF_JEQ) 1120 emit(ctx, beqz, tmp, off); 1121 else /* BPF_JNE */ 1122 emit(ctx, bnez, tmp, off); 1123 break; 1124 /* PC += off if dst & imm */ 1125 /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */ 1126 case BPF_JSET: 1127 case JIT_JNSET: 1128 if ((u32)imm <= 0xffff) { 1129 emit(ctx, andi, tmp, lo(dst), imm); 1130 } else { /* Register fallback */ 1131 emit_mov_i(ctx, tmp, imm); 1132 emit(ctx, and, tmp, lo(dst), tmp); 1133 } 1134 if (imm < 0) /* Sign-extension pulls in high word */ 1135 emit(ctx, or, tmp, tmp, hi(dst)); 1136 if (op == BPF_JSET) 1137 emit(ctx, bnez, tmp, off); 1138 else /* JIT_JNSET */ 1139 emit(ctx, beqz, tmp, off); 1140 break; 1141 /* PC += off if dst > imm */ 1142 case BPF_JGT: 1143 emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1); 1144 emit(ctx, beqz, tmp, off); 1145 break; 1146 /* PC += off if dst >= imm */ 1147 case BPF_JGE: 1148 emit_sltiu_r64(ctx, tmp, dst, imm); 1149 emit(ctx, beqz, tmp, off); 1150 break; 1151 /* PC += off if dst < imm */ 1152 case BPF_JLT: 1153 emit_sltiu_r64(ctx, tmp, dst, imm); 1154 emit(ctx, bnez, tmp, off); 1155 break; 1156 /* PC += off if dst <= imm */ 1157 case BPF_JLE: 1158 emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1); 1159 emit(ctx, bnez, tmp, off); 1160 break; 1161 /* PC += off if dst > imm (signed) */ 1162 case BPF_JSGT: 1163 emit_slti_r64(ctx, tmp, dst, (s64)imm + 1); 1164 emit(ctx, beqz, tmp, off); 1165 break; 1166 /* PC += off if dst >= imm (signed) */ 1167 case BPF_JSGE: 1168 emit_slti_r64(ctx, tmp, dst, imm); 1169 emit(ctx, beqz, tmp, off); 1170 break; 1171 /* PC += off if dst < imm (signed) */ 1172 case BPF_JSLT: 1173 emit_slti_r64(ctx, tmp, dst, imm); 1174 emit(ctx, bnez, tmp, off); 1175 break; 1176 /* PC += off if dst <= imm (signed) */ 1177 case BPF_JSLE: 1178 emit_slti_r64(ctx, tmp, dst, (s64)imm + 1); 1179 emit(ctx, bnez, tmp, off); 1180 break; 1181 } 1182 } 1183 1184 /* Jump register (64-bit) */ 1185 static void emit_jmp_r64(struct jit_context *ctx, 1186 const u8 dst[], const u8 src[], s32 off, u8 op) 1187 { 1188 u8 t1 = MIPS_R_T6; 1189 u8 t2 = MIPS_R_T7; 1190 1191 switch (op) { 1192 /* No-op, used internally for branch optimization */ 1193 case JIT_JNOP: 1194 break; 1195 /* PC += off if dst == src */ 1196 /* PC += off if dst != src */ 1197 case BPF_JEQ: 1198 case BPF_JNE: 1199 emit(ctx, subu, t1, lo(dst), lo(src)); 1200 emit(ctx, subu, t2, hi(dst), hi(src)); 1201 emit(ctx, or, t1, t1, t2); 1202 if (op == BPF_JEQ) 1203 emit(ctx, beqz, t1, off); 1204 else /* BPF_JNE */ 1205 emit(ctx, bnez, t1, off); 1206 break; 1207 /* PC += off if dst & src */ 1208 /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */ 1209 case BPF_JSET: 1210 case JIT_JNSET: 1211 emit(ctx, and, t1, lo(dst), lo(src)); 1212 emit(ctx, and, t2, hi(dst), hi(src)); 1213 emit(ctx, or, t1, t1, t2); 1214 if (op == BPF_JSET) 1215 emit(ctx, bnez, t1, off); 1216 else /* JIT_JNSET */ 1217 emit(ctx, beqz, t1, off); 1218 break; 1219 /* PC += off if dst > src */ 1220 case BPF_JGT: 1221 emit_sltu_r64(ctx, t1, src, dst); 1222 emit(ctx, bnez, t1, off); 1223 break; 1224 /* PC += off if dst >= src */ 1225 case BPF_JGE: 1226 emit_sltu_r64(ctx, t1, dst, src); 1227 emit(ctx, beqz, t1, off); 1228 break; 1229 /* PC += off if dst < src */ 1230 case BPF_JLT: 1231 emit_sltu_r64(ctx, t1, dst, src); 1232 emit(ctx, bnez, t1, off); 1233 break; 1234 /* PC += off if dst <= src */ 1235 case BPF_JLE: 1236 emit_sltu_r64(ctx, t1, src, dst); 1237 emit(ctx, beqz, t1, off); 1238 break; 1239 /* PC += off if dst > src (signed) */ 1240 case BPF_JSGT: 1241 emit_slt_r64(ctx, t1, src, dst); 1242 emit(ctx, bnez, t1, off); 1243 break; 1244 /* PC += off if dst >= src (signed) */ 1245 case BPF_JSGE: 1246 emit_slt_r64(ctx, t1, dst, src); 1247 emit(ctx, beqz, t1, off); 1248 break; 1249 /* PC += off if dst < src (signed) */ 1250 case BPF_JSLT: 1251 emit_slt_r64(ctx, t1, dst, src); 1252 emit(ctx, bnez, t1, off); 1253 break; 1254 /* PC += off if dst <= src (signed) */ 1255 case BPF_JSLE: 1256 emit_slt_r64(ctx, t1, src, dst); 1257 emit(ctx, beqz, t1, off); 1258 break; 1259 } 1260 } 1261 1262 /* Function call */ 1263 static int emit_call(struct jit_context *ctx, const struct bpf_insn *insn) 1264 { 1265 bool fixed; 1266 u64 addr; 1267 1268 /* Decode the call address */ 1269 if (bpf_jit_get_func_addr(ctx->program, insn, false, 1270 &addr, &fixed) < 0) 1271 return -1; 1272 if (!fixed) 1273 return -1; 1274 1275 /* Push stack arguments */ 1276 push_regs(ctx, JIT_STACK_REGS, 0, JIT_RESERVED_STACK); 1277 1278 /* Emit function call */ 1279 emit_mov_i(ctx, MIPS_R_T9, addr); 1280 emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); 1281 emit(ctx, nop); /* Delay slot */ 1282 1283 clobber_reg(ctx, MIPS_R_RA); 1284 clobber_reg(ctx, MIPS_R_V0); 1285 clobber_reg(ctx, MIPS_R_V1); 1286 return 0; 1287 } 1288 1289 /* Function tail call */ 1290 static int emit_tail_call(struct jit_context *ctx) 1291 { 1292 u8 ary = lo(bpf2mips32[BPF_REG_2]); 1293 u8 ind = lo(bpf2mips32[BPF_REG_3]); 1294 u8 t1 = MIPS_R_T8; 1295 u8 t2 = MIPS_R_T9; 1296 int off; 1297 1298 /* 1299 * Tail call: 1300 * eBPF R1 - function argument (context ptr), passed in a0-a1 1301 * eBPF R2 - ptr to object with array of function entry points 1302 * eBPF R3 - array index of function to be called 1303 * stack[sz] - remaining tail call count, initialized in prologue 1304 */ 1305 1306 /* if (ind >= ary->map.max_entries) goto out */ 1307 off = offsetof(struct bpf_array, map.max_entries); 1308 if (off > 0x7fff) 1309 return -1; 1310 emit(ctx, lw, t1, off, ary); /* t1 = ary->map.max_entries*/ 1311 emit_load_delay(ctx); /* Load delay slot */ 1312 emit(ctx, sltu, t1, ind, t1); /* t1 = ind < t1 */ 1313 emit(ctx, beqz, t1, get_offset(ctx, 1)); /* PC += off(1) if t1 == 0 */ 1314 /* (next insn delay slot) */ 1315 /* if (TCC-- <= 0) goto out */ 1316 emit(ctx, lw, t2, ctx->stack_size, MIPS_R_SP); /* t2 = *(SP + size) */ 1317 emit_load_delay(ctx); /* Load delay slot */ 1318 emit(ctx, blez, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 <= 0 */ 1319 emit(ctx, addiu, t2, t2, -1); /* t2-- (delay slot) */ 1320 emit(ctx, sw, t2, ctx->stack_size, MIPS_R_SP); /* *(SP + size) = t2 */ 1321 1322 /* prog = ary->ptrs[ind] */ 1323 off = offsetof(struct bpf_array, ptrs); 1324 if (off > 0x7fff) 1325 return -1; 1326 emit(ctx, sll, t1, ind, 2); /* t1 = ind << 2 */ 1327 emit(ctx, addu, t1, t1, ary); /* t1 += ary */ 1328 emit(ctx, lw, t2, off, t1); /* t2 = *(t1 + off) */ 1329 emit_load_delay(ctx); /* Load delay slot */ 1330 1331 /* if (prog == 0) goto out */ 1332 emit(ctx, beqz, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 == 0 */ 1333 emit(ctx, nop); /* Delay slot */ 1334 1335 /* func = prog->bpf_func + 8 (prologue skip offset) */ 1336 off = offsetof(struct bpf_prog, bpf_func); 1337 if (off > 0x7fff) 1338 return -1; 1339 emit(ctx, lw, t1, off, t2); /* t1 = *(t2 + off) */ 1340 emit_load_delay(ctx); /* Load delay slot */ 1341 emit(ctx, addiu, t1, t1, JIT_TCALL_SKIP); /* t1 += skip (8 or 12) */ 1342 1343 /* goto func */ 1344 build_epilogue(ctx, t1); 1345 return 0; 1346 } 1347 1348 /* 1349 * Stack frame layout for a JITed program (stack grows down). 1350 * 1351 * Higher address : Caller's stack frame : 1352 * :----------------------------: 1353 * : 64-bit eBPF args r3-r5 : 1354 * :----------------------------: 1355 * : Reserved / tail call count : 1356 * +============================+ <--- MIPS sp before call 1357 * | Callee-saved registers, | 1358 * | including RA and FP | 1359 * +----------------------------+ <--- eBPF FP (MIPS zero,fp) 1360 * | Local eBPF variables | 1361 * | allocated by program | 1362 * +----------------------------+ 1363 * | Reserved for caller-saved | 1364 * | registers | 1365 * +----------------------------+ 1366 * | Reserved for 64-bit eBPF | 1367 * | args r3-r5 & args passed | 1368 * | on stack in kernel calls | 1369 * Lower address +============================+ <--- MIPS sp 1370 */ 1371 1372 /* Build program prologue to set up the stack and registers */ 1373 void build_prologue(struct jit_context *ctx) 1374 { 1375 const u8 *r1 = bpf2mips32[BPF_REG_1]; 1376 const u8 *fp = bpf2mips32[BPF_REG_FP]; 1377 int stack, saved, locals, reserved; 1378 1379 /* 1380 * In the unlikely event that the TCC limit is raised to more 1381 * than 16 bits, it is clamped to the maximum value allowed for 1382 * the generated code (0xffff). It is better fail to compile 1383 * instead of degrading gracefully. 1384 */ 1385 BUILD_BUG_ON(MAX_TAIL_CALL_CNT > 0xffff); 1386 1387 /* 1388 * The first two instructions initialize TCC in the reserved (for us) 1389 * 16-byte area in the parent's stack frame. On a tail call, the 1390 * calling function jumps into the prologue after these instructions. 1391 */ 1392 emit(ctx, ori, MIPS_R_T9, MIPS_R_ZERO, MAX_TAIL_CALL_CNT); 1393 emit(ctx, sw, MIPS_R_T9, 0, MIPS_R_SP); 1394 1395 /* 1396 * Register eBPF R1 contains the 32-bit context pointer argument. 1397 * A 32-bit argument is always passed in MIPS register a0, regardless 1398 * of CPU endianness. Initialize R1 accordingly and zero-extend. 1399 */ 1400 #ifdef __BIG_ENDIAN 1401 emit(ctx, move, lo(r1), MIPS_R_A0); 1402 #endif 1403 1404 /* === Entry-point for tail calls === */ 1405 1406 /* Zero-extend the 32-bit argument */ 1407 emit(ctx, move, hi(r1), MIPS_R_ZERO); 1408 1409 /* If the eBPF frame pointer was accessed it must be saved */ 1410 if (ctx->accessed & BIT(BPF_REG_FP)) 1411 clobber_reg64(ctx, fp); 1412 1413 /* Compute the stack space needed for callee-saved registers */ 1414 saved = hweight32(ctx->clobbered & JIT_CALLEE_REGS) * sizeof(u32); 1415 saved = ALIGN(saved, MIPS_STACK_ALIGNMENT); 1416 1417 /* Stack space used by eBPF program local data */ 1418 locals = ALIGN(ctx->program->aux->stack_depth, MIPS_STACK_ALIGNMENT); 1419 1420 /* 1421 * If we are emitting function calls, reserve extra stack space for 1422 * caller-saved registers and function arguments passed on the stack. 1423 * The required space is computed automatically during resource 1424 * usage discovery (pass 1). 1425 */ 1426 reserved = ctx->stack_used; 1427 1428 /* Allocate the stack frame */ 1429 stack = ALIGN(saved + locals + reserved, MIPS_STACK_ALIGNMENT); 1430 emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, -stack); 1431 1432 /* Store callee-saved registers on stack */ 1433 push_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, stack - saved); 1434 1435 /* Initialize the eBPF frame pointer if accessed */ 1436 if (ctx->accessed & BIT(BPF_REG_FP)) 1437 emit(ctx, addiu, lo(fp), MIPS_R_SP, stack - saved); 1438 1439 ctx->saved_size = saved; 1440 ctx->stack_size = stack; 1441 } 1442 1443 /* Build the program epilogue to restore the stack and registers */ 1444 void build_epilogue(struct jit_context *ctx, int dest_reg) 1445 { 1446 /* Restore callee-saved registers from stack */ 1447 pop_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, 1448 ctx->stack_size - ctx->saved_size); 1449 /* 1450 * A 32-bit return value is always passed in MIPS register v0, 1451 * but on big-endian targets the low part of R0 is mapped to v1. 1452 */ 1453 #ifdef __BIG_ENDIAN 1454 emit(ctx, move, MIPS_R_V0, MIPS_R_V1); 1455 #endif 1456 1457 /* Jump to the return address and adjust the stack pointer */ 1458 emit(ctx, jr, dest_reg); 1459 emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, ctx->stack_size); 1460 } 1461 1462 /* Build one eBPF instruction */ 1463 int build_insn(const struct bpf_insn *insn, struct jit_context *ctx) 1464 { 1465 const u8 *dst = bpf2mips32[insn->dst_reg]; 1466 const u8 *src = bpf2mips32[insn->src_reg]; 1467 const u8 *res = bpf2mips32[BPF_REG_0]; 1468 const u8 *tmp = bpf2mips32[JIT_REG_TMP]; 1469 u8 code = insn->code; 1470 s16 off = insn->off; 1471 s32 imm = insn->imm; 1472 s32 val, rel; 1473 u8 alu, jmp; 1474 1475 switch (code) { 1476 /* ALU operations */ 1477 /* dst = imm */ 1478 case BPF_ALU | BPF_MOV | BPF_K: 1479 emit_mov_i(ctx, lo(dst), imm); 1480 emit_zext_ver(ctx, dst); 1481 break; 1482 /* dst = src */ 1483 case BPF_ALU | BPF_MOV | BPF_X: 1484 if (imm == 1) { 1485 /* Special mov32 for zext */ 1486 emit_mov_i(ctx, hi(dst), 0); 1487 } else { 1488 emit_mov_r(ctx, lo(dst), lo(src)); 1489 emit_zext_ver(ctx, dst); 1490 } 1491 break; 1492 /* dst = -dst */ 1493 case BPF_ALU | BPF_NEG: 1494 emit_alu_i(ctx, lo(dst), 0, BPF_NEG); 1495 emit_zext_ver(ctx, dst); 1496 break; 1497 /* dst = dst & imm */ 1498 /* dst = dst | imm */ 1499 /* dst = dst ^ imm */ 1500 /* dst = dst << imm */ 1501 /* dst = dst >> imm */ 1502 /* dst = dst >> imm (arithmetic) */ 1503 /* dst = dst + imm */ 1504 /* dst = dst - imm */ 1505 /* dst = dst * imm */ 1506 /* dst = dst / imm */ 1507 /* dst = dst % imm */ 1508 case BPF_ALU | BPF_OR | BPF_K: 1509 case BPF_ALU | BPF_AND | BPF_K: 1510 case BPF_ALU | BPF_XOR | BPF_K: 1511 case BPF_ALU | BPF_LSH | BPF_K: 1512 case BPF_ALU | BPF_RSH | BPF_K: 1513 case BPF_ALU | BPF_ARSH | BPF_K: 1514 case BPF_ALU | BPF_ADD | BPF_K: 1515 case BPF_ALU | BPF_SUB | BPF_K: 1516 case BPF_ALU | BPF_MUL | BPF_K: 1517 case BPF_ALU | BPF_DIV | BPF_K: 1518 case BPF_ALU | BPF_MOD | BPF_K: 1519 if (!valid_alu_i(BPF_OP(code), imm)) { 1520 emit_mov_i(ctx, MIPS_R_T6, imm); 1521 emit_alu_r(ctx, lo(dst), MIPS_R_T6, BPF_OP(code)); 1522 } else if (rewrite_alu_i(BPF_OP(code), imm, &alu, &val)) { 1523 emit_alu_i(ctx, lo(dst), val, alu); 1524 } 1525 emit_zext_ver(ctx, dst); 1526 break; 1527 /* dst = dst & src */ 1528 /* dst = dst | src */ 1529 /* dst = dst ^ src */ 1530 /* dst = dst << src */ 1531 /* dst = dst >> src */ 1532 /* dst = dst >> src (arithmetic) */ 1533 /* dst = dst + src */ 1534 /* dst = dst - src */ 1535 /* dst = dst * src */ 1536 /* dst = dst / src */ 1537 /* dst = dst % src */ 1538 case BPF_ALU | BPF_AND | BPF_X: 1539 case BPF_ALU | BPF_OR | BPF_X: 1540 case BPF_ALU | BPF_XOR | BPF_X: 1541 case BPF_ALU | BPF_LSH | BPF_X: 1542 case BPF_ALU | BPF_RSH | BPF_X: 1543 case BPF_ALU | BPF_ARSH | BPF_X: 1544 case BPF_ALU | BPF_ADD | BPF_X: 1545 case BPF_ALU | BPF_SUB | BPF_X: 1546 case BPF_ALU | BPF_MUL | BPF_X: 1547 case BPF_ALU | BPF_DIV | BPF_X: 1548 case BPF_ALU | BPF_MOD | BPF_X: 1549 emit_alu_r(ctx, lo(dst), lo(src), BPF_OP(code)); 1550 emit_zext_ver(ctx, dst); 1551 break; 1552 /* dst = imm (64-bit) */ 1553 case BPF_ALU64 | BPF_MOV | BPF_K: 1554 emit_mov_se_i64(ctx, dst, imm); 1555 break; 1556 /* dst = src (64-bit) */ 1557 case BPF_ALU64 | BPF_MOV | BPF_X: 1558 emit_mov_r(ctx, lo(dst), lo(src)); 1559 emit_mov_r(ctx, hi(dst), hi(src)); 1560 break; 1561 /* dst = -dst (64-bit) */ 1562 case BPF_ALU64 | BPF_NEG: 1563 emit_neg_i64(ctx, dst); 1564 break; 1565 /* dst = dst & imm (64-bit) */ 1566 case BPF_ALU64 | BPF_AND | BPF_K: 1567 emit_alu_i64(ctx, dst, imm, BPF_OP(code)); 1568 break; 1569 /* dst = dst | imm (64-bit) */ 1570 /* dst = dst ^ imm (64-bit) */ 1571 /* dst = dst + imm (64-bit) */ 1572 /* dst = dst - imm (64-bit) */ 1573 case BPF_ALU64 | BPF_OR | BPF_K: 1574 case BPF_ALU64 | BPF_XOR | BPF_K: 1575 case BPF_ALU64 | BPF_ADD | BPF_K: 1576 case BPF_ALU64 | BPF_SUB | BPF_K: 1577 if (imm) 1578 emit_alu_i64(ctx, dst, imm, BPF_OP(code)); 1579 break; 1580 /* dst = dst << imm (64-bit) */ 1581 /* dst = dst >> imm (64-bit) */ 1582 /* dst = dst >> imm (64-bit, arithmetic) */ 1583 case BPF_ALU64 | BPF_LSH | BPF_K: 1584 case BPF_ALU64 | BPF_RSH | BPF_K: 1585 case BPF_ALU64 | BPF_ARSH | BPF_K: 1586 if (imm) 1587 emit_shift_i64(ctx, dst, imm, BPF_OP(code)); 1588 break; 1589 /* dst = dst * imm (64-bit) */ 1590 case BPF_ALU64 | BPF_MUL | BPF_K: 1591 emit_mul_i64(ctx, dst, imm); 1592 break; 1593 /* dst = dst / imm (64-bit) */ 1594 /* dst = dst % imm (64-bit) */ 1595 case BPF_ALU64 | BPF_DIV | BPF_K: 1596 case BPF_ALU64 | BPF_MOD | BPF_K: 1597 /* 1598 * Sign-extend the immediate value into a temporary register, 1599 * and then do the operation on this register. 1600 */ 1601 emit_mov_se_i64(ctx, tmp, imm); 1602 emit_divmod_r64(ctx, dst, tmp, BPF_OP(code)); 1603 break; 1604 /* dst = dst & src (64-bit) */ 1605 /* dst = dst | src (64-bit) */ 1606 /* dst = dst ^ src (64-bit) */ 1607 /* dst = dst + src (64-bit) */ 1608 /* dst = dst - src (64-bit) */ 1609 case BPF_ALU64 | BPF_AND | BPF_X: 1610 case BPF_ALU64 | BPF_OR | BPF_X: 1611 case BPF_ALU64 | BPF_XOR | BPF_X: 1612 case BPF_ALU64 | BPF_ADD | BPF_X: 1613 case BPF_ALU64 | BPF_SUB | BPF_X: 1614 emit_alu_r64(ctx, dst, src, BPF_OP(code)); 1615 break; 1616 /* dst = dst << src (64-bit) */ 1617 /* dst = dst >> src (64-bit) */ 1618 /* dst = dst >> src (64-bit, arithmetic) */ 1619 case BPF_ALU64 | BPF_LSH | BPF_X: 1620 case BPF_ALU64 | BPF_RSH | BPF_X: 1621 case BPF_ALU64 | BPF_ARSH | BPF_X: 1622 emit_shift_r64(ctx, dst, lo(src), BPF_OP(code)); 1623 break; 1624 /* dst = dst * src (64-bit) */ 1625 case BPF_ALU64 | BPF_MUL | BPF_X: 1626 emit_mul_r64(ctx, dst, src); 1627 break; 1628 /* dst = dst / src (64-bit) */ 1629 /* dst = dst % src (64-bit) */ 1630 case BPF_ALU64 | BPF_DIV | BPF_X: 1631 case BPF_ALU64 | BPF_MOD | BPF_X: 1632 emit_divmod_r64(ctx, dst, src, BPF_OP(code)); 1633 break; 1634 /* dst = htole(dst) */ 1635 /* dst = htobe(dst) */ 1636 case BPF_ALU | BPF_END | BPF_FROM_LE: 1637 case BPF_ALU | BPF_END | BPF_FROM_BE: 1638 if (BPF_SRC(code) == 1639 #ifdef __BIG_ENDIAN 1640 BPF_FROM_LE 1641 #else 1642 BPF_FROM_BE 1643 #endif 1644 ) 1645 emit_bswap_r64(ctx, dst, imm); 1646 else 1647 emit_trunc_r64(ctx, dst, imm); 1648 break; 1649 /* dst = imm64 */ 1650 case BPF_LD | BPF_IMM | BPF_DW: 1651 emit_mov_i(ctx, lo(dst), imm); 1652 emit_mov_i(ctx, hi(dst), insn[1].imm); 1653 return 1; 1654 /* LDX: dst = *(size *)(src + off) */ 1655 case BPF_LDX | BPF_MEM | BPF_W: 1656 case BPF_LDX | BPF_MEM | BPF_H: 1657 case BPF_LDX | BPF_MEM | BPF_B: 1658 case BPF_LDX | BPF_MEM | BPF_DW: 1659 emit_ldx(ctx, dst, lo(src), off, BPF_SIZE(code)); 1660 break; 1661 /* ST: *(size *)(dst + off) = imm */ 1662 case BPF_ST | BPF_MEM | BPF_W: 1663 case BPF_ST | BPF_MEM | BPF_H: 1664 case BPF_ST | BPF_MEM | BPF_B: 1665 case BPF_ST | BPF_MEM | BPF_DW: 1666 switch (BPF_SIZE(code)) { 1667 case BPF_DW: 1668 /* Sign-extend immediate value into temporary reg */ 1669 emit_mov_se_i64(ctx, tmp, imm); 1670 break; 1671 case BPF_W: 1672 case BPF_H: 1673 case BPF_B: 1674 emit_mov_i(ctx, lo(tmp), imm); 1675 break; 1676 } 1677 emit_stx(ctx, lo(dst), tmp, off, BPF_SIZE(code)); 1678 break; 1679 /* STX: *(size *)(dst + off) = src */ 1680 case BPF_STX | BPF_MEM | BPF_W: 1681 case BPF_STX | BPF_MEM | BPF_H: 1682 case BPF_STX | BPF_MEM | BPF_B: 1683 case BPF_STX | BPF_MEM | BPF_DW: 1684 emit_stx(ctx, lo(dst), src, off, BPF_SIZE(code)); 1685 break; 1686 /* Speculation barrier */ 1687 case BPF_ST | BPF_NOSPEC: 1688 break; 1689 /* Atomics */ 1690 case BPF_STX | BPF_ATOMIC | BPF_W: 1691 switch (imm) { 1692 case BPF_ADD: 1693 case BPF_ADD | BPF_FETCH: 1694 case BPF_AND: 1695 case BPF_AND | BPF_FETCH: 1696 case BPF_OR: 1697 case BPF_OR | BPF_FETCH: 1698 case BPF_XOR: 1699 case BPF_XOR | BPF_FETCH: 1700 case BPF_XCHG: 1701 if (cpu_has_llsc) 1702 emit_atomic_r(ctx, lo(dst), lo(src), off, imm); 1703 else /* Non-ll/sc fallback */ 1704 emit_atomic_r32(ctx, lo(dst), lo(src), 1705 off, imm); 1706 if (imm & BPF_FETCH) 1707 emit_zext_ver(ctx, src); 1708 break; 1709 case BPF_CMPXCHG: 1710 if (cpu_has_llsc) 1711 emit_cmpxchg_r(ctx, lo(dst), lo(src), 1712 lo(res), off); 1713 else /* Non-ll/sc fallback */ 1714 emit_cmpxchg_r32(ctx, lo(dst), lo(src), off); 1715 /* Result zero-extension inserted by verifier */ 1716 break; 1717 default: 1718 goto notyet; 1719 } 1720 break; 1721 /* Atomics (64-bit) */ 1722 case BPF_STX | BPF_ATOMIC | BPF_DW: 1723 switch (imm) { 1724 case BPF_ADD: 1725 case BPF_ADD | BPF_FETCH: 1726 case BPF_AND: 1727 case BPF_AND | BPF_FETCH: 1728 case BPF_OR: 1729 case BPF_OR | BPF_FETCH: 1730 case BPF_XOR: 1731 case BPF_XOR | BPF_FETCH: 1732 case BPF_XCHG: 1733 emit_atomic_r64(ctx, lo(dst), src, off, imm); 1734 break; 1735 case BPF_CMPXCHG: 1736 emit_cmpxchg_r64(ctx, lo(dst), src, off); 1737 break; 1738 default: 1739 goto notyet; 1740 } 1741 break; 1742 /* PC += off if dst == src */ 1743 /* PC += off if dst != src */ 1744 /* PC += off if dst & src */ 1745 /* PC += off if dst > src */ 1746 /* PC += off if dst >= src */ 1747 /* PC += off if dst < src */ 1748 /* PC += off if dst <= src */ 1749 /* PC += off if dst > src (signed) */ 1750 /* PC += off if dst >= src (signed) */ 1751 /* PC += off if dst < src (signed) */ 1752 /* PC += off if dst <= src (signed) */ 1753 case BPF_JMP32 | BPF_JEQ | BPF_X: 1754 case BPF_JMP32 | BPF_JNE | BPF_X: 1755 case BPF_JMP32 | BPF_JSET | BPF_X: 1756 case BPF_JMP32 | BPF_JGT | BPF_X: 1757 case BPF_JMP32 | BPF_JGE | BPF_X: 1758 case BPF_JMP32 | BPF_JLT | BPF_X: 1759 case BPF_JMP32 | BPF_JLE | BPF_X: 1760 case BPF_JMP32 | BPF_JSGT | BPF_X: 1761 case BPF_JMP32 | BPF_JSGE | BPF_X: 1762 case BPF_JMP32 | BPF_JSLT | BPF_X: 1763 case BPF_JMP32 | BPF_JSLE | BPF_X: 1764 if (off == 0) 1765 break; 1766 setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel); 1767 emit_jmp_r(ctx, lo(dst), lo(src), rel, jmp); 1768 if (finish_jmp(ctx, jmp, off) < 0) 1769 goto toofar; 1770 break; 1771 /* PC += off if dst == imm */ 1772 /* PC += off if dst != imm */ 1773 /* PC += off if dst & imm */ 1774 /* PC += off if dst > imm */ 1775 /* PC += off if dst >= imm */ 1776 /* PC += off if dst < imm */ 1777 /* PC += off if dst <= imm */ 1778 /* PC += off if dst > imm (signed) */ 1779 /* PC += off if dst >= imm (signed) */ 1780 /* PC += off if dst < imm (signed) */ 1781 /* PC += off if dst <= imm (signed) */ 1782 case BPF_JMP32 | BPF_JEQ | BPF_K: 1783 case BPF_JMP32 | BPF_JNE | BPF_K: 1784 case BPF_JMP32 | BPF_JSET | BPF_K: 1785 case BPF_JMP32 | BPF_JGT | BPF_K: 1786 case BPF_JMP32 | BPF_JGE | BPF_K: 1787 case BPF_JMP32 | BPF_JLT | BPF_K: 1788 case BPF_JMP32 | BPF_JLE | BPF_K: 1789 case BPF_JMP32 | BPF_JSGT | BPF_K: 1790 case BPF_JMP32 | BPF_JSGE | BPF_K: 1791 case BPF_JMP32 | BPF_JSLT | BPF_K: 1792 case BPF_JMP32 | BPF_JSLE | BPF_K: 1793 if (off == 0) 1794 break; 1795 setup_jmp_i(ctx, imm, 32, BPF_OP(code), off, &jmp, &rel); 1796 if (valid_jmp_i(jmp, imm)) { 1797 emit_jmp_i(ctx, lo(dst), imm, rel, jmp); 1798 } else { 1799 /* Move large immediate to register */ 1800 emit_mov_i(ctx, MIPS_R_T6, imm); 1801 emit_jmp_r(ctx, lo(dst), MIPS_R_T6, rel, jmp); 1802 } 1803 if (finish_jmp(ctx, jmp, off) < 0) 1804 goto toofar; 1805 break; 1806 /* PC += off if dst == src */ 1807 /* PC += off if dst != src */ 1808 /* PC += off if dst & src */ 1809 /* PC += off if dst > src */ 1810 /* PC += off if dst >= src */ 1811 /* PC += off if dst < src */ 1812 /* PC += off if dst <= src */ 1813 /* PC += off if dst > src (signed) */ 1814 /* PC += off if dst >= src (signed) */ 1815 /* PC += off if dst < src (signed) */ 1816 /* PC += off if dst <= src (signed) */ 1817 case BPF_JMP | BPF_JEQ | BPF_X: 1818 case BPF_JMP | BPF_JNE | BPF_X: 1819 case BPF_JMP | BPF_JSET | BPF_X: 1820 case BPF_JMP | BPF_JGT | BPF_X: 1821 case BPF_JMP | BPF_JGE | BPF_X: 1822 case BPF_JMP | BPF_JLT | BPF_X: 1823 case BPF_JMP | BPF_JLE | BPF_X: 1824 case BPF_JMP | BPF_JSGT | BPF_X: 1825 case BPF_JMP | BPF_JSGE | BPF_X: 1826 case BPF_JMP | BPF_JSLT | BPF_X: 1827 case BPF_JMP | BPF_JSLE | BPF_X: 1828 if (off == 0) 1829 break; 1830 setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel); 1831 emit_jmp_r64(ctx, dst, src, rel, jmp); 1832 if (finish_jmp(ctx, jmp, off) < 0) 1833 goto toofar; 1834 break; 1835 /* PC += off if dst == imm */ 1836 /* PC += off if dst != imm */ 1837 /* PC += off if dst & imm */ 1838 /* PC += off if dst > imm */ 1839 /* PC += off if dst >= imm */ 1840 /* PC += off if dst < imm */ 1841 /* PC += off if dst <= imm */ 1842 /* PC += off if dst > imm (signed) */ 1843 /* PC += off if dst >= imm (signed) */ 1844 /* PC += off if dst < imm (signed) */ 1845 /* PC += off if dst <= imm (signed) */ 1846 case BPF_JMP | BPF_JEQ | BPF_K: 1847 case BPF_JMP | BPF_JNE | BPF_K: 1848 case BPF_JMP | BPF_JSET | BPF_K: 1849 case BPF_JMP | BPF_JGT | BPF_K: 1850 case BPF_JMP | BPF_JGE | BPF_K: 1851 case BPF_JMP | BPF_JLT | BPF_K: 1852 case BPF_JMP | BPF_JLE | BPF_K: 1853 case BPF_JMP | BPF_JSGT | BPF_K: 1854 case BPF_JMP | BPF_JSGE | BPF_K: 1855 case BPF_JMP | BPF_JSLT | BPF_K: 1856 case BPF_JMP | BPF_JSLE | BPF_K: 1857 if (off == 0) 1858 break; 1859 setup_jmp_i(ctx, imm, 64, BPF_OP(code), off, &jmp, &rel); 1860 emit_jmp_i64(ctx, dst, imm, rel, jmp); 1861 if (finish_jmp(ctx, jmp, off) < 0) 1862 goto toofar; 1863 break; 1864 /* PC += off */ 1865 case BPF_JMP | BPF_JA: 1866 if (off == 0) 1867 break; 1868 if (emit_ja(ctx, off) < 0) 1869 goto toofar; 1870 break; 1871 /* Tail call */ 1872 case BPF_JMP | BPF_TAIL_CALL: 1873 if (emit_tail_call(ctx) < 0) 1874 goto invalid; 1875 break; 1876 /* Function call */ 1877 case BPF_JMP | BPF_CALL: 1878 if (emit_call(ctx, insn) < 0) 1879 goto invalid; 1880 break; 1881 /* Function return */ 1882 case BPF_JMP | BPF_EXIT: 1883 /* 1884 * Optimization: when last instruction is EXIT 1885 * simply continue to epilogue. 1886 */ 1887 if (ctx->bpf_index == ctx->program->len - 1) 1888 break; 1889 if (emit_exit(ctx) < 0) 1890 goto toofar; 1891 break; 1892 1893 default: 1894 invalid: 1895 pr_err_once("unknown opcode %02x\n", code); 1896 return -EINVAL; 1897 notyet: 1898 pr_info_once("*** NOT YET: opcode %02x ***\n", code); 1899 return -EFAULT; 1900 toofar: 1901 pr_info_once("*** TOO FAR: jump at %u opcode %02x ***\n", 1902 ctx->bpf_index, code); 1903 return -E2BIG; 1904 } 1905 return 0; 1906 } 1907
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.