~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/sni/time.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include <linux/types.h>
  3 #include <linux/i8253.h>
  4 #include <linux/interrupt.h>
  5 #include <linux/irq.h>
  6 #include <linux/smp.h>
  7 #include <linux/time.h>
  8 #include <linux/clockchips.h>
  9 
 10 #include <asm/sni.h>
 11 #include <asm/time.h>
 12 
 13 #define SNI_CLOCK_TICK_RATE     3686400
 14 #define SNI_COUNTER2_DIV        64
 15 #define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
 16 
 17 static int a20r_set_periodic(struct clock_event_device *evt)
 18 {
 19         *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
 20         wmb();
 21         *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
 22         wmb();
 23         *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
 24         wmb();
 25 
 26         *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
 27         wmb();
 28         *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
 29         wmb();
 30         *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
 31         wmb();
 32         return 0;
 33 }
 34 
 35 static struct clock_event_device a20r_clockevent_device = {
 36         .name                   = "a20r-timer",
 37         .features               = CLOCK_EVT_FEAT_PERIODIC,
 38 
 39         /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
 40 
 41         .rating                 = 300,
 42         .irq                    = SNI_A20R_IRQ_TIMER,
 43         .set_state_periodic     = a20r_set_periodic,
 44 };
 45 
 46 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
 47 {
 48         struct clock_event_device *cd = dev_id;
 49 
 50         *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
 51         wmb();
 52 
 53         cd->event_handler(cd);
 54 
 55         return IRQ_HANDLED;
 56 }
 57 
 58 /*
 59  * a20r platform uses 2 counters to divide the input frequency.
 60  * Counter 2 output is connected to Counter 0 & 1 input.
 61  */
 62 static void __init sni_a20r_timer_setup(void)
 63 {
 64         struct clock_event_device *cd = &a20r_clockevent_device;
 65         unsigned int cpu = smp_processor_id();
 66 
 67         cd->cpumask             = cpumask_of(cpu);
 68         clockevents_register_device(cd);
 69         if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
 70                         IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
 71                 pr_err("Failed to register a20r-timer interrupt\n");
 72 }
 73 
 74 #define SNI_8254_TICK_RATE        1193182UL
 75 
 76 #define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
 77 
 78 static __init unsigned long dosample(void)
 79 {
 80         u32 ct0, ct1;
 81         volatile u8 msb;
 82 
 83         /* Start the counter. */
 84         outb_p(0x34, 0x43);
 85         outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
 86         outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
 87 
 88         /* Get initial counter invariant */
 89         ct0 = read_c0_count();
 90 
 91         /* Latch and spin until top byte of counter0 is zero */
 92         do {
 93                 outb(0x00, 0x43);
 94                 (void) inb(0x40);
 95                 msb = inb(0x40);
 96                 ct1 = read_c0_count();
 97         } while (msb);
 98 
 99         /* Stop the counter. */
100         outb(0x38, 0x43);
101         /*
102          * Return the difference, this is how far the r4k counter increments
103          * for every 1/HZ seconds. We round off the nearest 1 MHz of master
104          * clock (= 1000000 / HZ / 2).
105          */
106         /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
107         return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
108 }
109 
110 /*
111  * Here we need to calibrate the cycle counter to at least be close.
112  */
113 void __init plat_time_init(void)
114 {
115         unsigned long r4k_ticks[3];
116         unsigned long r4k_tick;
117 
118         /*
119          * Figure out the r4k offset, the algorithm is very simple and works in
120          * _all_ cases as long as the 8254 counter register itself works ok (as
121          * an interrupt driving timer it does not because of bug, this is why
122          * we are using the onchip r4k counter/compare register to serve this
123          * purpose, but for r4k_offset calculation it will work ok for us).
124          * There are other very complicated ways of performing this calculation
125          * but this one works just fine so I am not going to futz around. ;-)
126          */
127         printk(KERN_INFO "Calibrating system timer... ");
128         dosample();     /* Prime cache. */
129         dosample();     /* Prime cache. */
130         /* Zero is NOT an option. */
131         do {
132                 r4k_ticks[0] = dosample();
133         } while (!r4k_ticks[0]);
134         do {
135                 r4k_ticks[1] = dosample();
136         } while (!r4k_ticks[1]);
137 
138         if (r4k_ticks[0] != r4k_ticks[1]) {
139                 printk("warning: timer counts differ, retrying... ");
140                 r4k_ticks[2] = dosample();
141                 if (r4k_ticks[2] == r4k_ticks[0]
142                     || r4k_ticks[2] == r4k_ticks[1])
143                         r4k_tick = r4k_ticks[2];
144                 else {
145                         printk("disagreement, using average... ");
146                         r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
147                                    + r4k_ticks[2]) / 3;
148                 }
149         } else
150                 r4k_tick = r4k_ticks[0];
151 
152         printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
153                 (int) (r4k_tick / (500000 / HZ)),
154                 (int) (r4k_tick % (500000 / HZ)));
155 
156         mips_hpt_frequency = r4k_tick * HZ;
157 
158         switch (sni_brd_type) {
159         case SNI_BRD_10:
160         case SNI_BRD_10NEW:
161         case SNI_BRD_TOWER_OASIC:
162         case SNI_BRD_MINITOWER:
163                 sni_a20r_timer_setup();
164                 break;
165         }
166         setup_pit_timer();
167 }
168 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php