~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/parisc/kernel/module.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*    Kernel dynamically loadable module help for PARISC.
  3  *
  4  *    The best reference for this stuff is probably the Processor-
  5  *    Specific ELF Supplement for PA-RISC:
  6  *        https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf
  7  *
  8  *    Linux/PA-RISC Project
  9  *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
 10  *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 11  *
 12  *    Notes:
 13  *    - PLT stub handling
 14  *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 15  *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 16  *      fail to reach their PLT stub if we only create one big stub array for
 17  *      all sections at the beginning of the core or init section.
 18  *      Instead we now insert individual PLT stub entries directly in front of
 19  *      of the code sections where the stubs are actually called.
 20  *      This reduces the distance between the PCREL location and the stub entry
 21  *      so that the relocations can be fulfilled.
 22  *      While calculating the final layout of the kernel module in memory, the
 23  *      kernel module loader calls arch_mod_section_prepend() to request the
 24  *      to be reserved amount of memory in front of each individual section.
 25  *
 26  *    - SEGREL32 handling
 27  *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 28  *      should do a value offset, like this:
 29  *                      if (in_init(me, (void *)val))
 30  *                              val -= (uint32_t)me->mem[MOD_INIT_TEXT].base;
 31  *                      else
 32  *                              val -= (uint32_t)me->mem[MOD_TEXT].base;
 33  *      However, SEGREL32 is used only for PARISC unwind entries, and we want
 34  *      those entries to have an absolute address, and not just an offset.
 35  *
 36  *      The unwind table mechanism has the ability to specify an offset for
 37  *      the unwind table; however, because we split off the init functions into
 38  *      a different piece of memory, it is not possible to do this using a
 39  *      single offset. Instead, we use the above hack for now.
 40  */
 41 
 42 #include <linux/moduleloader.h>
 43 #include <linux/elf.h>
 44 #include <linux/fs.h>
 45 #include <linux/ftrace.h>
 46 #include <linux/string.h>
 47 #include <linux/kernel.h>
 48 #include <linux/bug.h>
 49 #include <linux/mm.h>
 50 #include <linux/slab.h>
 51 
 52 #include <asm/unwind.h>
 53 #include <asm/sections.h>
 54 
 55 #define RELOC_REACHABLE(val, bits) \
 56         (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||   \
 57              ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 58         0 : 1)
 59 
 60 #define CHECK_RELOC(val, bits) \
 61         if (!RELOC_REACHABLE(val, bits)) { \
 62                 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 63                 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 64                 return -ENOEXEC;                        \
 65         }
 66 
 67 /* Maximum number of GOT entries. We use a long displacement ldd from
 68  * the bottom of the table, which has a maximum signed displacement of
 69  * 0x3fff; however, since we're only going forward, this becomes
 70  * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 71  * at most 1023 entries.
 72  * To overcome this 14bit displacement with some kernel modules, we'll
 73  * use instead the unusal 16bit displacement method (see reassemble_16a)
 74  * which gives us a maximum positive displacement of 0x7fff, and as such
 75  * allows us to allocate up to 4095 GOT entries. */
 76 #define MAX_GOTS        4095
 77 
 78 #ifndef CONFIG_64BIT
 79 struct got_entry {
 80         Elf32_Addr addr;
 81 };
 82 
 83 struct stub_entry {
 84         Elf32_Word insns[2]; /* each stub entry has two insns */
 85 };
 86 #else
 87 struct got_entry {
 88         Elf64_Addr addr;
 89 };
 90 
 91 struct stub_entry {
 92         Elf64_Word insns[4]; /* each stub entry has four insns */
 93 };
 94 #endif
 95 
 96 /* Field selection types defined by hppa */
 97 #define rnd(x)                  (((x)+0x1000)&~0x1fff)
 98 /* fsel: full 32 bits */
 99 #define fsel(v,a)               ((v)+(a))
100 /* lsel: select left 21 bits */
101 #define lsel(v,a)               (((v)+(a))>>11)
102 /* rsel: select right 11 bits */
103 #define rsel(v,a)               (((v)+(a))&0x7ff)
104 /* lrsel with rounding of addend to nearest 8k */
105 #define lrsel(v,a)              (((v)+rnd(a))>>11)
106 /* rrsel with rounding of addend to nearest 8k */
107 #define rrsel(v,a)              ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
108 
109 #define mask(x,sz)              ((x) & ~((1<<(sz))-1))
110 
111 
112 /* The reassemble_* functions prepare an immediate value for
113    insertion into an opcode. pa-risc uses all sorts of weird bitfields
114    in the instruction to hold the value.  */
115 static inline int sign_unext(int x, int len)
116 {
117         int len_ones;
118 
119         len_ones = (1 << len) - 1;
120         return x & len_ones;
121 }
122 
123 static inline int low_sign_unext(int x, int len)
124 {
125         int sign, temp;
126 
127         sign = (x >> (len-1)) & 1;
128         temp = sign_unext(x, len-1);
129         return (temp << 1) | sign;
130 }
131 
132 static inline int reassemble_14(int as14)
133 {
134         return (((as14 & 0x1fff) << 1) |
135                 ((as14 & 0x2000) >> 13));
136 }
137 
138 static inline int reassemble_16a(int as16)
139 {
140         int s, t;
141 
142         /* Unusual 16-bit encoding, for wide mode only.  */
143         t = (as16 << 1) & 0xffff;
144         s = (as16 & 0x8000);
145         return (t ^ s ^ (s >> 1)) | (s >> 15);
146 }
147 
148 
149 static inline int reassemble_17(int as17)
150 {
151         return (((as17 & 0x10000) >> 16) |
152                 ((as17 & 0x0f800) << 5) |
153                 ((as17 & 0x00400) >> 8) |
154                 ((as17 & 0x003ff) << 3));
155 }
156 
157 static inline int reassemble_21(int as21)
158 {
159         return (((as21 & 0x100000) >> 20) |
160                 ((as21 & 0x0ffe00) >> 8) |
161                 ((as21 & 0x000180) << 7) |
162                 ((as21 & 0x00007c) << 14) |
163                 ((as21 & 0x000003) << 12));
164 }
165 
166 static inline int reassemble_22(int as22)
167 {
168         return (((as22 & 0x200000) >> 21) |
169                 ((as22 & 0x1f0000) << 5) |
170                 ((as22 & 0x00f800) << 5) |
171                 ((as22 & 0x000400) >> 8) |
172                 ((as22 & 0x0003ff) << 3));
173 }
174 
175 #ifndef CONFIG_64BIT
176 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
177 {
178         return 0;
179 }
180 
181 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
182 {
183         return 0;
184 }
185 
186 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
187 {
188         unsigned long cnt = 0;
189 
190         for (; n > 0; n--, rela++)
191         {
192                 switch (ELF32_R_TYPE(rela->r_info)) {
193                         case R_PARISC_PCREL17F:
194                         case R_PARISC_PCREL22F:
195                                 cnt++;
196                 }
197         }
198 
199         return cnt;
200 }
201 #else
202 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
203 {
204         unsigned long cnt = 0;
205 
206         for (; n > 0; n--, rela++)
207         {
208                 switch (ELF64_R_TYPE(rela->r_info)) {
209                         case R_PARISC_LTOFF21L:
210                         case R_PARISC_LTOFF14R:
211                         case R_PARISC_PCREL22F:
212                                 cnt++;
213                 }
214         }
215 
216         return cnt;
217 }
218 
219 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
220 {
221         unsigned long cnt = 0;
222 
223         for (; n > 0; n--, rela++)
224         {
225                 switch (ELF64_R_TYPE(rela->r_info)) {
226                         case R_PARISC_FPTR64:
227                                 cnt++;
228                 }
229         }
230 
231         return cnt;
232 }
233 
234 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
235 {
236         unsigned long cnt = 0;
237 
238         for (; n > 0; n--, rela++)
239         {
240                 switch (ELF64_R_TYPE(rela->r_info)) {
241                         case R_PARISC_PCREL22F:
242                                 cnt++;
243                 }
244         }
245 
246         return cnt;
247 }
248 #endif
249 
250 void module_arch_freeing_init(struct module *mod)
251 {
252         kfree(mod->arch.section);
253         mod->arch.section = NULL;
254 }
255 
256 /* Additional bytes needed in front of individual sections */
257 unsigned int arch_mod_section_prepend(struct module *mod,
258                                       unsigned int section)
259 {
260         /* size needed for all stubs of this section (including
261          * one additional for correct alignment of the stubs) */
262         return (mod->arch.section[section].stub_entries + 1)
263                 * sizeof(struct stub_entry);
264 }
265 
266 #define CONST
267 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
268                               CONST Elf_Shdr *sechdrs,
269                               CONST char *secstrings,
270                               struct module *me)
271 {
272         unsigned long gots = 0, fdescs = 0, len;
273         unsigned int i;
274         struct module_memory *mod_mem;
275 
276         len = hdr->e_shnum * sizeof(me->arch.section[0]);
277         me->arch.section = kzalloc(len, GFP_KERNEL);
278         if (!me->arch.section)
279                 return -ENOMEM;
280 
281         for (i = 1; i < hdr->e_shnum; i++) {
282                 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
283                 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
284                 unsigned int count, s;
285 
286                 if (strncmp(secstrings + sechdrs[i].sh_name,
287                             ".PARISC.unwind", 14) == 0)
288                         me->arch.unwind_section = i;
289 
290                 if (sechdrs[i].sh_type != SHT_RELA)
291                         continue;
292 
293                 /* some of these are not relevant for 32-bit/64-bit
294                  * we leave them here to make the code common. the
295                  * compiler will do its thing and optimize out the
296                  * stuff we don't need
297                  */
298                 gots += count_gots(rels, nrels);
299                 fdescs += count_fdescs(rels, nrels);
300 
301                 /* XXX: By sorting the relocs and finding duplicate entries
302                  *  we could reduce the number of necessary stubs and save
303                  *  some memory. */
304                 count = count_stubs(rels, nrels);
305                 if (!count)
306                         continue;
307 
308                 /* so we need relocation stubs. reserve necessary memory. */
309                 /* sh_info gives the section for which we need to add stubs. */
310                 s = sechdrs[i].sh_info;
311 
312                 /* each code section should only have one relocation section */
313                 WARN_ON(me->arch.section[s].stub_entries);
314 
315                 /* store number of stubs we need for this section */
316                 me->arch.section[s].stub_entries += count;
317         }
318 
319         mod_mem = &me->mem[MOD_TEXT];
320         /* align things a bit */
321         mod_mem->size = ALIGN(mod_mem->size, 16);
322         me->arch.got_offset = mod_mem->size;
323         mod_mem->size += gots * sizeof(struct got_entry);
324 
325         mod_mem->size = ALIGN(mod_mem->size, 16);
326         me->arch.fdesc_offset = mod_mem->size;
327         mod_mem->size += fdescs * sizeof(Elf_Fdesc);
328 
329         me->arch.got_max = gots;
330         me->arch.fdesc_max = fdescs;
331 
332         return 0;
333 }
334 
335 #ifdef CONFIG_64BIT
336 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
337 {
338         unsigned int i;
339         struct got_entry *got;
340 
341         value += addend;
342 
343         BUG_ON(value == 0);
344 
345         got = me->mem[MOD_TEXT].base + me->arch.got_offset;
346         for (i = 0; got[i].addr; i++)
347                 if (got[i].addr == value)
348                         goto out;
349 
350         BUG_ON(++me->arch.got_count > me->arch.got_max);
351 
352         got[i].addr = value;
353  out:
354         pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry),
355                value);
356         return i * sizeof(struct got_entry);
357 }
358 #endif /* CONFIG_64BIT */
359 
360 #ifdef CONFIG_64BIT
361 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
362 {
363         Elf_Fdesc *fdesc = me->mem[MOD_TEXT].base + me->arch.fdesc_offset;
364 
365         if (!value) {
366                 printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
367                 return 0;
368         }
369 
370         /* Look for existing fdesc entry. */
371         while (fdesc->addr) {
372                 if (fdesc->addr == value)
373                         return (Elf_Addr)fdesc;
374                 fdesc++;
375         }
376 
377         BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
378 
379         /* Create new one */
380         fdesc->addr = value;
381         fdesc->gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset;
382         return (Elf_Addr)fdesc;
383 }
384 #endif /* CONFIG_64BIT */
385 
386 enum elf_stub_type {
387         ELF_STUB_GOT,
388         ELF_STUB_MILLI,
389         ELF_STUB_DIRECT,
390 };
391 
392 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
393         enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
394 {
395         struct stub_entry *stub;
396         int __maybe_unused d;
397 
398         /* initialize stub_offset to point in front of the section */
399         if (!me->arch.section[targetsec].stub_offset) {
400                 loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
401                                 sizeof(struct stub_entry);
402                 /* get correct alignment for the stubs */
403                 loc0 = ALIGN(loc0, sizeof(struct stub_entry));
404                 me->arch.section[targetsec].stub_offset = loc0;
405         }
406 
407         /* get address of stub entry */
408         stub = (void *) me->arch.section[targetsec].stub_offset;
409         me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
410 
411         /* do not write outside available stub area */
412         BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
413 
414 
415 #ifndef CONFIG_64BIT
416 /* for 32-bit the stub looks like this:
417  *      ldil L'XXX,%r1
418  *      be,n R'XXX(%sr4,%r1)
419  */
420         //value = *(unsigned long *)((value + addend) & ~3); /* why? */
421 
422         stub->insns[0] = 0x20200000;    /* ldil L'XXX,%r1       */
423         stub->insns[1] = 0xe0202002;    /* be,n R'XXX(%sr4,%r1) */
424 
425         stub->insns[0] |= reassemble_21(lrsel(value, addend));
426         stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
427 
428 #else
429 /* for 64-bit we have three kinds of stubs:
430  * for normal function calls:
431  *      ldd 0(%dp),%dp
432  *      ldd 10(%dp), %r1
433  *      bve (%r1)
434  *      ldd 18(%dp), %dp
435  *
436  * for millicode:
437  *      ldil 0, %r1
438  *      ldo 0(%r1), %r1
439  *      ldd 10(%r1), %r1
440  *      bve,n (%r1)
441  *
442  * for direct branches (jumps between different section of the
443  * same module):
444  *      ldil 0, %r1
445  *      ldo 0(%r1), %r1
446  *      bve,n (%r1)
447  */
448         switch (stub_type) {
449         case ELF_STUB_GOT:
450                 d = get_got(me, value, addend);
451                 if (d <= 15) {
452                         /* Format 5 */
453                         stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp  */
454                         stub->insns[0] |= low_sign_unext(d, 5) << 16;
455                 } else {
456                         /* Format 3 */
457                         stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp  */
458                         stub->insns[0] |= reassemble_16a(d);
459                 }
460                 stub->insns[1] = 0x53610020;    /* ldd 10(%dp),%r1      */
461                 stub->insns[2] = 0xe820d000;    /* bve (%r1)            */
462                 stub->insns[3] = 0x537b0030;    /* ldd 18(%dp),%dp      */
463                 break;
464         case ELF_STUB_MILLI:
465                 stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
466                 stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
467                 stub->insns[2] = 0x50210020;    /* ldd 10(%r1),%r1      */
468                 stub->insns[3] = 0xe820d002;    /* bve,n (%r1)          */
469 
470                 stub->insns[0] |= reassemble_21(lrsel(value, addend));
471                 stub->insns[1] |= reassemble_14(rrsel(value, addend));
472                 break;
473         case ELF_STUB_DIRECT:
474                 stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
475                 stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
476                 stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
477 
478                 stub->insns[0] |= reassemble_21(lrsel(value, addend));
479                 stub->insns[1] |= reassemble_14(rrsel(value, addend));
480                 break;
481         }
482 
483 #endif
484 
485         return (Elf_Addr)stub;
486 }
487 
488 #ifndef CONFIG_64BIT
489 int apply_relocate_add(Elf_Shdr *sechdrs,
490                        const char *strtab,
491                        unsigned int symindex,
492                        unsigned int relsec,
493                        struct module *me)
494 {
495         int i;
496         Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
497         Elf32_Sym *sym;
498         Elf32_Word *loc;
499         Elf32_Addr val;
500         Elf32_Sword addend;
501         Elf32_Addr dot;
502         Elf_Addr loc0;
503         unsigned int targetsec = sechdrs[relsec].sh_info;
504         //unsigned long dp = (unsigned long)$global$;
505         register unsigned long dp asm ("r27");
506 
507         pr_debug("Applying relocate section %u to %u\n", relsec,
508                targetsec);
509         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
510                 /* This is where to make the change */
511                 loc = (void *)sechdrs[targetsec].sh_addr
512                       + rel[i].r_offset;
513                 /* This is the start of the target section */
514                 loc0 = sechdrs[targetsec].sh_addr;
515                 /* This is the symbol it is referring to */
516                 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
517                         + ELF32_R_SYM(rel[i].r_info);
518                 if (!sym->st_value) {
519                         printk(KERN_WARNING "%s: Unknown symbol %s\n",
520                                me->name, strtab + sym->st_name);
521                         return -ENOENT;
522                 }
523                 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
524                 dot =  (Elf32_Addr)loc & ~0x03;
525 
526                 val = sym->st_value;
527                 addend = rel[i].r_addend;
528 
529 #if 0
530 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
531                 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
532                         strtab + sym->st_name,
533                         (uint32_t)loc, val, addend,
534                         r(R_PARISC_PLABEL32)
535                         r(R_PARISC_DIR32)
536                         r(R_PARISC_DIR21L)
537                         r(R_PARISC_DIR14R)
538                         r(R_PARISC_SEGREL32)
539                         r(R_PARISC_DPREL21L)
540                         r(R_PARISC_DPREL14R)
541                         r(R_PARISC_PCREL17F)
542                         r(R_PARISC_PCREL22F)
543                         "UNKNOWN");
544 #undef r
545 #endif
546 
547                 switch (ELF32_R_TYPE(rel[i].r_info)) {
548                 case R_PARISC_PLABEL32:
549                         /* 32-bit function address */
550                         /* no function descriptors... */
551                         *loc = fsel(val, addend);
552                         break;
553                 case R_PARISC_DIR32:
554                         /* direct 32-bit ref */
555                         *loc = fsel(val, addend);
556                         break;
557                 case R_PARISC_DIR21L:
558                         /* left 21 bits of effective address */
559                         val = lrsel(val, addend);
560                         *loc = mask(*loc, 21) | reassemble_21(val);
561                         break;
562                 case R_PARISC_DIR14R:
563                         /* right 14 bits of effective address */
564                         val = rrsel(val, addend);
565                         *loc = mask(*loc, 14) | reassemble_14(val);
566                         break;
567                 case R_PARISC_SEGREL32:
568                         /* 32-bit segment relative address */
569                         /* See note about special handling of SEGREL32 at
570                          * the beginning of this file.
571                          */
572                         *loc = fsel(val, addend);
573                         break;
574                 case R_PARISC_SECREL32:
575                         /* 32-bit section relative address. */
576                         *loc = fsel(val, addend);
577                         break;
578                 case R_PARISC_DPREL21L:
579                         /* left 21 bit of relative address */
580                         val = lrsel(val - dp, addend);
581                         *loc = mask(*loc, 21) | reassemble_21(val);
582                         break;
583                 case R_PARISC_DPREL14R:
584                         /* right 14 bit of relative address */
585                         val = rrsel(val - dp, addend);
586                         *loc = mask(*loc, 14) | reassemble_14(val);
587                         break;
588                 case R_PARISC_PCREL17F:
589                         /* 17-bit PC relative address */
590                         /* calculate direct call offset */
591                         val += addend;
592                         val = (val - dot - 8)/4;
593                         if (!RELOC_REACHABLE(val, 17)) {
594                                 /* direct distance too far, create
595                                  * stub entry instead */
596                                 val = get_stub(me, sym->st_value, addend,
597                                         ELF_STUB_DIRECT, loc0, targetsec);
598                                 val = (val - dot - 8)/4;
599                                 CHECK_RELOC(val, 17);
600                         }
601                         *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
602                         break;
603                 case R_PARISC_PCREL22F:
604                         /* 22-bit PC relative address; only defined for pa20 */
605                         /* calculate direct call offset */
606                         val += addend;
607                         val = (val - dot - 8)/4;
608                         if (!RELOC_REACHABLE(val, 22)) {
609                                 /* direct distance too far, create
610                                  * stub entry instead */
611                                 val = get_stub(me, sym->st_value, addend,
612                                         ELF_STUB_DIRECT, loc0, targetsec);
613                                 val = (val - dot - 8)/4;
614                                 CHECK_RELOC(val, 22);
615                         }
616                         *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
617                         break;
618                 case R_PARISC_PCREL32:
619                         /* 32-bit PC relative address */
620                         *loc = val - dot - 8 + addend;
621                         break;
622 
623                 default:
624                         printk(KERN_ERR "module %s: Unknown relocation: %u\n",
625                                me->name, ELF32_R_TYPE(rel[i].r_info));
626                         return -ENOEXEC;
627                 }
628         }
629 
630         return 0;
631 }
632 
633 #else
634 int apply_relocate_add(Elf_Shdr *sechdrs,
635                        const char *strtab,
636                        unsigned int symindex,
637                        unsigned int relsec,
638                        struct module *me)
639 {
640         int i;
641         Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
642         Elf64_Sym *sym;
643         Elf64_Word *loc;
644         Elf64_Xword *loc64;
645         Elf64_Addr val;
646         Elf64_Sxword addend;
647         Elf64_Addr dot;
648         Elf_Addr loc0;
649         unsigned int targetsec = sechdrs[relsec].sh_info;
650 
651         pr_debug("Applying relocate section %u to %u\n", relsec,
652                targetsec);
653         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
654                 /* This is where to make the change */
655                 loc = (void *)sechdrs[targetsec].sh_addr
656                       + rel[i].r_offset;
657                 /* This is the start of the target section */
658                 loc0 = sechdrs[targetsec].sh_addr;
659                 /* This is the symbol it is referring to */
660                 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
661                         + ELF64_R_SYM(rel[i].r_info);
662                 if (!sym->st_value) {
663                         printk(KERN_WARNING "%s: Unknown symbol %s\n",
664                                me->name, strtab + sym->st_name);
665                         return -ENOENT;
666                 }
667                 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
668                 dot = (Elf64_Addr)loc & ~0x03;
669                 loc64 = (Elf64_Xword *)loc;
670 
671                 val = sym->st_value;
672                 addend = rel[i].r_addend;
673 
674 #if 0
675 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
676                 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
677                         strtab + sym->st_name,
678                         loc, val, addend,
679                         r(R_PARISC_LTOFF14R)
680                         r(R_PARISC_LTOFF21L)
681                         r(R_PARISC_PCREL22F)
682                         r(R_PARISC_DIR64)
683                         r(R_PARISC_SEGREL32)
684                         r(R_PARISC_FPTR64)
685                         "UNKNOWN");
686 #undef r
687 #endif
688 
689                 switch (ELF64_R_TYPE(rel[i].r_info)) {
690                 case R_PARISC_LTOFF21L:
691                         /* LT-relative; left 21 bits */
692                         val = get_got(me, val, addend);
693                         pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
694                                strtab + sym->st_name,
695                                loc, val);
696                         val = lrsel(val, 0);
697                         *loc = mask(*loc, 21) | reassemble_21(val);
698                         break;
699                 case R_PARISC_LTOFF14R:
700                         /* L(ltoff(val+addend)) */
701                         /* LT-relative; right 14 bits */
702                         val = get_got(me, val, addend);
703                         val = rrsel(val, 0);
704                         pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
705                                strtab + sym->st_name,
706                                loc, val);
707                         *loc = mask(*loc, 14) | reassemble_14(val);
708                         break;
709                 case R_PARISC_PCREL22F:
710                         /* PC-relative; 22 bits */
711                         pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
712                                strtab + sym->st_name,
713                                loc, val);
714                         val += addend;
715                         /* can we reach it locally? */
716                         if (within_module(val, me)) {
717                                 /* this is the case where the symbol is local
718                                  * to the module, but in a different section,
719                                  * so stub the jump in case it's more than 22
720                                  * bits away */
721                                 val = (val - dot - 8)/4;
722                                 if (!RELOC_REACHABLE(val, 22)) {
723                                         /* direct distance too far, create
724                                          * stub entry instead */
725                                         val = get_stub(me, sym->st_value,
726                                                 addend, ELF_STUB_DIRECT,
727                                                 loc0, targetsec);
728                                 } else {
729                                         /* Ok, we can reach it directly. */
730                                         val = sym->st_value;
731                                         val += addend;
732                                 }
733                         } else {
734                                 val = sym->st_value;
735                                 if (strncmp(strtab + sym->st_name, "$$", 2)
736                                     == 0)
737                                         val = get_stub(me, val, addend, ELF_STUB_MILLI,
738                                                        loc0, targetsec);
739                                 else
740                                         val = get_stub(me, val, addend, ELF_STUB_GOT,
741                                                        loc0, targetsec);
742                         }
743                         pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
744                                strtab + sym->st_name, loc, sym->st_value,
745                                addend, val);
746                         val = (val - dot - 8)/4;
747                         CHECK_RELOC(val, 22);
748                         *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
749                         break;
750                 case R_PARISC_PCREL32:
751                         /* 32-bit PC relative address */
752                         *loc = val - dot - 8 + addend;
753                         break;
754                 case R_PARISC_PCREL64:
755                         /* 64-bit PC relative address */
756                         *loc64 = val - dot - 8 + addend;
757                         break;
758                 case R_PARISC_DIR64:
759                         /* 64-bit effective address */
760                         *loc64 = val + addend;
761                         break;
762                 case R_PARISC_SEGREL32:
763                         /* 32-bit segment relative address */
764                         /* See note about special handling of SEGREL32 at
765                          * the beginning of this file.
766                          */
767                         *loc = fsel(val, addend);
768                         break;
769                 case R_PARISC_SECREL32:
770                         /* 32-bit section relative address. */
771                         *loc = fsel(val, addend);
772                         break;
773                 case R_PARISC_FPTR64:
774                         /* 64-bit function address */
775                         if (within_module(val + addend, me)) {
776                                 *loc64 = get_fdesc(me, val+addend);
777                                 pr_debug("FDESC for %s at %llx points to %llx\n",
778                                        strtab + sym->st_name, *loc64,
779                                        ((Elf_Fdesc *)*loc64)->addr);
780                         } else {
781                                 /* if the symbol is not local to this
782                                  * module then val+addend is a pointer
783                                  * to the function descriptor */
784                                 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
785                                        strtab + sym->st_name,
786                                        loc, val);
787                                 *loc64 = val + addend;
788                         }
789                         break;
790 
791                 default:
792                         printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
793                                me->name, ELF64_R_TYPE(rel[i].r_info));
794                         return -ENOEXEC;
795                 }
796         }
797         return 0;
798 }
799 #endif
800 
801 static void
802 register_unwind_table(struct module *me,
803                       const Elf_Shdr *sechdrs)
804 {
805         unsigned char *table, *end;
806         unsigned long gp;
807 
808         if (!me->arch.unwind_section)
809                 return;
810 
811         table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
812         end = table + sechdrs[me->arch.unwind_section].sh_size;
813         gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset;
814 
815         pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
816                me->arch.unwind_section, table, end, gp);
817         me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
818 }
819 
820 static void
821 deregister_unwind_table(struct module *me)
822 {
823         if (me->arch.unwind)
824                 unwind_table_remove(me->arch.unwind);
825 }
826 
827 int module_finalize(const Elf_Ehdr *hdr,
828                     const Elf_Shdr *sechdrs,
829                     struct module *me)
830 {
831         int i;
832         unsigned long nsyms;
833         const char *strtab = NULL;
834         const Elf_Shdr *s;
835         char *secstrings;
836         int symindex __maybe_unused = -1;
837         Elf_Sym *newptr, *oldptr;
838         Elf_Shdr *symhdr = NULL;
839 #ifdef DEBUG
840         Elf_Fdesc *entry;
841         u32 *addr;
842 
843         entry = (Elf_Fdesc *)me->init;
844         printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
845                entry->gp, entry->addr);
846         addr = (u32 *)entry->addr;
847         printk("INSNS: %x %x %x %x\n",
848                addr[0], addr[1], addr[2], addr[3]);
849         printk("got entries used %ld, gots max %ld\n"
850                "fdescs used %ld, fdescs max %ld\n",
851                me->arch.got_count, me->arch.got_max,
852                me->arch.fdesc_count, me->arch.fdesc_max);
853 #endif
854 
855         register_unwind_table(me, sechdrs);
856 
857         /* haven't filled in me->symtab yet, so have to find it
858          * ourselves */
859         for (i = 1; i < hdr->e_shnum; i++) {
860                 if(sechdrs[i].sh_type == SHT_SYMTAB
861                    && (sechdrs[i].sh_flags & SHF_ALLOC)) {
862                         int strindex = sechdrs[i].sh_link;
863                         symindex = i;
864                         /* FIXME: AWFUL HACK
865                          * The cast is to drop the const from
866                          * the sechdrs pointer */
867                         symhdr = (Elf_Shdr *)&sechdrs[i];
868                         strtab = (char *)sechdrs[strindex].sh_addr;
869                         break;
870                 }
871         }
872 
873         pr_debug("module %s: strtab %p, symhdr %p\n",
874                me->name, strtab, symhdr);
875 
876         if(me->arch.got_count > MAX_GOTS) {
877                 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
878                                 me->name, me->arch.got_count, MAX_GOTS);
879                 return -EINVAL;
880         }
881 
882         kfree(me->arch.section);
883         me->arch.section = NULL;
884 
885         /* no symbol table */
886         if(symhdr == NULL)
887                 return 0;
888 
889         oldptr = (void *)symhdr->sh_addr;
890         newptr = oldptr + 1;    /* we start counting at 1 */
891         nsyms = symhdr->sh_size / sizeof(Elf_Sym);
892         pr_debug("OLD num_symtab %lu\n", nsyms);
893 
894         for (i = 1; i < nsyms; i++) {
895                 oldptr++;       /* note, count starts at 1 so preincrement */
896                 if(strncmp(strtab + oldptr->st_name,
897                               ".L", 2) == 0)
898                         continue;
899 
900                 if(newptr != oldptr)
901                         *newptr++ = *oldptr;
902                 else
903                         newptr++;
904 
905         }
906         nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
907         pr_debug("NEW num_symtab %lu\n", nsyms);
908         symhdr->sh_size = nsyms * sizeof(Elf_Sym);
909 
910         /* find .altinstructions section */
911         secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
912         for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
913                 void *aseg = (void *) s->sh_addr;
914                 char *secname = secstrings + s->sh_name;
915 
916                 if (!strcmp(".altinstructions", secname))
917                         /* patch .altinstructions */
918                         apply_alternatives(aseg, aseg + s->sh_size, me->name);
919 
920 #ifdef CONFIG_DYNAMIC_FTRACE
921                 /* For 32 bit kernels we're compiling modules with
922                  * -ffunction-sections so we must relocate the addresses in the
923                  *  ftrace callsite section.
924                  */
925                 if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
926                         int err;
927                         if (s->sh_type == SHT_REL)
928                                 err = apply_relocate((Elf_Shdr *)sechdrs,
929                                                         strtab, symindex,
930                                                         s - sechdrs, me);
931                         else if (s->sh_type == SHT_RELA)
932                                 err = apply_relocate_add((Elf_Shdr *)sechdrs,
933                                                         strtab, symindex,
934                                                         s - sechdrs, me);
935                         if (err)
936                                 return err;
937                 }
938 #endif
939         }
940         return 0;
941 }
942 
943 void module_arch_cleanup(struct module *mod)
944 {
945         deregister_unwind_table(mod);
946 }
947 
948 #ifdef CONFIG_64BIT
949 void *dereference_module_function_descriptor(struct module *mod, void *ptr)
950 {
951         unsigned long start_opd = (Elf64_Addr)mod->mem[MOD_TEXT].base +
952                                    mod->arch.fdesc_offset;
953         unsigned long end_opd = start_opd +
954                                 mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
955 
956         if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
957                 return ptr;
958 
959         return dereference_function_descriptor(ptr);
960 }
961 #endif
962 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php