~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/parisc/kernel/time.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/arch/parisc/kernel/time.c
  4  *
  5  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
  6  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  7  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  8  *
  9  * 1994-07-02  Alan Modra
 10  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 11  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
 12  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 13  */
 14 #include <linux/errno.h>
 15 #include <linux/module.h>
 16 #include <linux/rtc.h>
 17 #include <linux/sched.h>
 18 #include <linux/sched/clock.h>
 19 #include <linux/sched_clock.h>
 20 #include <linux/kernel.h>
 21 #include <linux/param.h>
 22 #include <linux/string.h>
 23 #include <linux/mm.h>
 24 #include <linux/interrupt.h>
 25 #include <linux/time.h>
 26 #include <linux/init.h>
 27 #include <linux/smp.h>
 28 #include <linux/profile.h>
 29 #include <linux/clocksource.h>
 30 #include <linux/platform_device.h>
 31 #include <linux/ftrace.h>
 32 
 33 #include <linux/uaccess.h>
 34 #include <asm/io.h>
 35 #include <asm/irq.h>
 36 #include <asm/page.h>
 37 #include <asm/param.h>
 38 #include <asm/pdc.h>
 39 #include <asm/led.h>
 40 
 41 #include <linux/timex.h>
 42 
 43 int time_keeper_id __read_mostly;       /* CPU used for timekeeping. */
 44 
 45 static unsigned long clocktick __ro_after_init; /* timer cycles per tick */
 46 
 47 /*
 48  * We keep time on PA-RISC Linux by using the Interval Timer which is
 49  * a pair of registers; one is read-only and one is write-only; both
 50  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
 51  * and increments by 1 every CPU clock tick.  The architecture only
 52  * guarantees us a rate between 0.5 and 2, but all implementations use a
 53  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
 54  * 32 bits of the read-only register compare equal to the write-only
 55  * register, it raises a maskable external interrupt.  Each processor has
 56  * an Interval Timer of its own and they are not synchronised.  
 57  *
 58  * We want to generate an interrupt every 1/HZ seconds.  So we program
 59  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
 60  * is programmed with the intended time of the next tick.  We can be
 61  * held off for an arbitrarily long period of time by interrupts being
 62  * disabled, so we may miss one or more ticks.
 63  */
 64 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
 65 {
 66         unsigned long now;
 67         unsigned long next_tick;
 68         unsigned long ticks_elapsed = 0;
 69         unsigned int cpu = smp_processor_id();
 70         struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
 71 
 72         /* gcc can optimize for "read-only" case with a local clocktick */
 73         unsigned long cpt = clocktick;
 74 
 75         /* Initialize next_tick to the old expected tick time. */
 76         next_tick = cpuinfo->it_value;
 77 
 78         /* Calculate how many ticks have elapsed. */
 79         now = mfctl(16);
 80         do {
 81                 ++ticks_elapsed;
 82                 next_tick += cpt;
 83         } while (next_tick - now > cpt);
 84 
 85         /* Store (in CR16 cycles) up to when we are accounting right now. */
 86         cpuinfo->it_value = next_tick;
 87 
 88         /* Go do system house keeping. */
 89         if (IS_ENABLED(CONFIG_SMP) && (cpu != time_keeper_id))
 90                 ticks_elapsed = 0;
 91         legacy_timer_tick(ticks_elapsed);
 92 
 93         /* Skip clockticks on purpose if we know we would miss those.
 94          * The new CR16 must be "later" than current CR16 otherwise
 95          * itimer would not fire until CR16 wrapped - e.g 4 seconds
 96          * later on a 1Ghz processor. We'll account for the missed
 97          * ticks on the next timer interrupt.
 98          * We want IT to fire modulo clocktick even if we miss/skip some.
 99          * But those interrupts don't in fact get delivered that regularly.
100          *
101          * "next_tick - now" will always give the difference regardless
102          * if one or the other wrapped. If "now" is "bigger" we'll end up
103          * with a very large unsigned number.
104          */
105         now = mfctl(16);
106         while (next_tick - now > cpt)
107                 next_tick += cpt;
108 
109         /* Program the IT when to deliver the next interrupt.
110          * Only bottom 32-bits of next_tick are writable in CR16!
111          * Timer interrupt will be delivered at least a few hundred cycles
112          * after the IT fires, so if we are too close (<= 8000 cycles) to the
113          * next cycle, simply skip it.
114          */
115         if (next_tick - now <= 8000)
116                 next_tick += cpt;
117         mtctl(next_tick, 16);
118 
119         return IRQ_HANDLED;
120 }
121 
122 
123 unsigned long profile_pc(struct pt_regs *regs)
124 {
125         unsigned long pc = instruction_pointer(regs);
126 
127         if (regs->gr[0] & PSW_N)
128                 pc -= 4;
129 
130 #ifdef CONFIG_SMP
131         if (in_lock_functions(pc))
132                 pc = regs->gr[2];
133 #endif
134 
135         return pc;
136 }
137 EXPORT_SYMBOL(profile_pc);
138 
139 
140 /* clock source code */
141 
142 static u64 notrace read_cr16(struct clocksource *cs)
143 {
144         return get_cycles();
145 }
146 
147 static struct clocksource clocksource_cr16 = {
148         .name                   = "cr16",
149         .rating                 = 300,
150         .read                   = read_cr16,
151         .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
152         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
153 };
154 
155 void start_cpu_itimer(void)
156 {
157         unsigned int cpu = smp_processor_id();
158         unsigned long next_tick = mfctl(16) + clocktick;
159 
160         mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
161 
162         per_cpu(cpu_data, cpu).it_value = next_tick;
163 }
164 
165 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
166 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
167 {
168         struct pdc_tod tod_data;
169 
170         memset(tm, 0, sizeof(*tm));
171         if (pdc_tod_read(&tod_data) < 0)
172                 return -EOPNOTSUPP;
173 
174         /* we treat tod_sec as unsigned, so this can work until year 2106 */
175         rtc_time64_to_tm(tod_data.tod_sec, tm);
176         return 0;
177 }
178 
179 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
180 {
181         time64_t secs = rtc_tm_to_time64(tm);
182         int ret;
183 
184         /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
185         ret = pdc_tod_set(secs, 0);
186         if (ret != 0) {
187                 pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
188                 if (ret == PDC_INVALID_ARG)
189                         return -EINVAL;
190                 return -EOPNOTSUPP;
191         }
192 
193         return 0;
194 }
195 
196 static const struct rtc_class_ops rtc_generic_ops = {
197         .read_time = rtc_generic_get_time,
198         .set_time = rtc_generic_set_time,
199 };
200 
201 static int __init rtc_init(void)
202 {
203         struct platform_device *pdev;
204 
205         pdev = platform_device_register_data(NULL, "rtc-generic", -1,
206                                              &rtc_generic_ops,
207                                              sizeof(rtc_generic_ops));
208 
209         return PTR_ERR_OR_ZERO(pdev);
210 }
211 device_initcall(rtc_init);
212 #endif
213 
214 void read_persistent_clock64(struct timespec64 *ts)
215 {
216         static struct pdc_tod tod_data;
217         if (pdc_tod_read(&tod_data) == 0) {
218                 ts->tv_sec = tod_data.tod_sec;
219                 ts->tv_nsec = tod_data.tod_usec * 1000;
220         } else {
221                 printk(KERN_ERR "Error reading tod clock\n");
222                 ts->tv_sec = 0;
223                 ts->tv_nsec = 0;
224         }
225 }
226 
227 
228 static u64 notrace read_cr16_sched_clock(void)
229 {
230         return get_cycles();
231 }
232 
233 
234 /*
235  * timer interrupt and sched_clock() initialization
236  */
237 
238 void __init time_init(void)
239 {
240         unsigned long cr16_hz;
241 
242         clocktick = (100 * PAGE0->mem_10msec) / HZ;
243         start_cpu_itimer();     /* get CPU 0 started */
244 
245         cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
246 
247         /* register as sched_clock source */
248         sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
249 }
250 
251 static int __init init_cr16_clocksource(void)
252 {
253         /*
254          * The cr16 interval timers are not synchronized across CPUs.
255          */
256         if (num_online_cpus() > 1 && !running_on_qemu) {
257                 clocksource_cr16.name = "cr16_unstable";
258                 clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
259                 clocksource_cr16.rating = 0;
260         }
261 
262         /* register at clocksource framework */
263         clocksource_register_hz(&clocksource_cr16,
264                 100 * PAGE0->mem_10msec);
265 
266         return 0;
267 }
268 
269 device_initcall(init_cr16_clocksource);
270 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php