~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/parisc/mm/fault.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This file is subject to the terms and conditions of the GNU General Public
  3  * License.  See the file "COPYING" in the main directory of this archive
  4  * for more details.
  5  *
  6  *
  7  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
  8  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  9  * Copyright 1999 Hewlett Packard Co.
 10  *
 11  */
 12 
 13 #include <linux/mm.h>
 14 #include <linux/ptrace.h>
 15 #include <linux/sched.h>
 16 #include <linux/sched/debug.h>
 17 #include <linux/interrupt.h>
 18 #include <linux/extable.h>
 19 #include <linux/uaccess.h>
 20 #include <linux/hugetlb.h>
 21 #include <linux/perf_event.h>
 22 
 23 #include <asm/traps.h>
 24 
 25 #define DEBUG_NATLB 0
 26 
 27 /* Various important other fields */
 28 #define bit22set(x)             (x & 0x00000200)
 29 #define bits23_25set(x)         (x & 0x000001c0)
 30 #define isGraphicsFlushRead(x)  ((x & 0xfc003fdf) == 0x04001a80)
 31                                 /* extended opcode is 0x6a */
 32 
 33 #define BITSSET         0x1c0   /* for identifying LDCW */
 34 
 35 
 36 int show_unhandled_signals = 1;
 37 
 38 /*
 39  * parisc_acctyp(unsigned int inst) --
 40  *    Given a PA-RISC memory access instruction, determine if the
 41  *    instruction would perform a memory read or memory write
 42  *    operation.
 43  *
 44  *    This function assumes that the given instruction is a memory access
 45  *    instruction (i.e. you should really only call it if you know that
 46  *    the instruction has generated some sort of a memory access fault).
 47  *
 48  * Returns:
 49  *   VM_READ  if read operation
 50  *   VM_WRITE if write operation
 51  *   VM_EXEC  if execute operation
 52  */
 53 unsigned long
 54 parisc_acctyp(unsigned long code, unsigned int inst)
 55 {
 56         if (code == 6 || code == 16)
 57             return VM_EXEC;
 58 
 59         switch (inst & 0xf0000000) {
 60         case 0x40000000: /* load */
 61         case 0x50000000: /* new load */
 62                 return VM_READ;
 63 
 64         case 0x60000000: /* store */
 65         case 0x70000000: /* new store */
 66                 return VM_WRITE;
 67 
 68         case 0x20000000: /* coproc */
 69         case 0x30000000: /* coproc2 */
 70                 if (bit22set(inst))
 71                         return VM_WRITE;
 72                 fallthrough;
 73 
 74         case 0x0: /* indexed/memory management */
 75                 if (bit22set(inst)) {
 76                         /*
 77                          * Check for the 'Graphics Flush Read' instruction.
 78                          * It resembles an FDC instruction, except for bits
 79                          * 20 and 21. Any combination other than zero will
 80                          * utilize the block mover functionality on some
 81                          * older PA-RISC platforms.  The case where a block
 82                          * move is performed from VM to graphics IO space
 83                          * should be treated as a READ.
 84                          *
 85                          * The significance of bits 20,21 in the FDC
 86                          * instruction is:
 87                          *
 88                          *   00  Flush data cache (normal instruction behavior)
 89                          *   01  Graphics flush write  (IO space -> VM)
 90                          *   10  Graphics flush read   (VM -> IO space)
 91                          *   11  Graphics flush read/write (VM <-> IO space)
 92                          */
 93                         if (isGraphicsFlushRead(inst))
 94                                 return VM_READ;
 95                         return VM_WRITE;
 96                 } else {
 97                         /*
 98                          * Check for LDCWX and LDCWS (semaphore instructions).
 99                          * If bits 23 through 25 are all 1's it is one of
100                          * the above two instructions and is a write.
101                          *
102                          * Note: With the limited bits we are looking at,
103                          * this will also catch PROBEW and PROBEWI. However,
104                          * these should never get in here because they don't
105                          * generate exceptions of the type:
106                          *   Data TLB miss fault/data page fault
107                          *   Data memory protection trap
108                          */
109                         if (bits23_25set(inst) == BITSSET)
110                                 return VM_WRITE;
111                 }
112                 return VM_READ; /* Default */
113         }
114         return VM_READ; /* Default */
115 }
116 
117 #undef bit22set
118 #undef bits23_25set
119 #undef isGraphicsFlushRead
120 #undef BITSSET
121 
122 
123 #if 0
124 /* This is the treewalk to find a vma which is the highest that has
125  * a start < addr.  We're using find_vma_prev instead right now, but
126  * we might want to use this at some point in the future.  Probably
127  * not, but I want it committed to CVS so I don't lose it :-)
128  */
129                         while (tree != vm_avl_empty) {
130                                 if (tree->vm_start > addr) {
131                                         tree = tree->vm_avl_left;
132                                 } else {
133                                         prev = tree;
134                                         if (prev->vm_next == NULL)
135                                                 break;
136                                         if (prev->vm_next->vm_start > addr)
137                                                 break;
138                                         tree = tree->vm_avl_right;
139                                 }
140                         }
141 #endif
142 
143 int fixup_exception(struct pt_regs *regs)
144 {
145         const struct exception_table_entry *fix;
146 
147         fix = search_exception_tables(regs->iaoq[0]);
148         if (fix) {
149                 /*
150                  * Fix up get_user() and put_user().
151                  * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
152                  * bit in the relative address of the fixup routine to indicate
153                  * that the register encoded in the "or %r0,%r0,register"
154                  * opcode should be loaded with -EFAULT to report a userspace
155                  * access error.
156                  */
157                 if (fix->fixup & 1) {
158                         int fault_error_reg = fix->err_opcode & 0x1f;
159                         if (!WARN_ON(!fault_error_reg))
160                                 regs->gr[fault_error_reg] = -EFAULT;
161                         pr_debug("Unalignment fixup of register %d at %pS\n",
162                                 fault_error_reg, (void*)regs->iaoq[0]);
163 
164                         /* zero target register for get_user() */
165                         if (parisc_acctyp(0, regs->iir) == VM_READ) {
166                                 int treg = regs->iir & 0x1f;
167                                 BUG_ON(treg == 0);
168                                 regs->gr[treg] = 0;
169                         }
170                 }
171 
172                 regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
173                 regs->iaoq[0] &= ~3;
174                 /*
175                  * NOTE: In some cases the faulting instruction
176                  * may be in the delay slot of a branch. We
177                  * don't want to take the branch, so we don't
178                  * increment iaoq[1], instead we set it to be
179                  * iaoq[0]+4, and clear the B bit in the PSW
180                  */
181                 regs->iaoq[1] = regs->iaoq[0] + 4;
182                 regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
183 
184                 return 1;
185         }
186 
187         return 0;
188 }
189 
190 /*
191  * parisc hardware trap list
192  *
193  * Documented in section 3 "Addressing and Access Control" of the
194  * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
195  * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
196  *
197  * For implementation see handle_interruption() in traps.c
198  */
199 static const char * const trap_description[] = {
200         [1] =   "High-priority machine check (HPMC)",
201         [2] =   "Power failure interrupt",
202         [3] =   "Recovery counter trap",
203         [5] =   "Low-priority machine check",
204         [6] =   "Instruction TLB miss fault",
205         [7] =   "Instruction access rights / protection trap",
206         [8] =   "Illegal instruction trap",
207         [9] =   "Break instruction trap",
208         [10] =  "Privileged operation trap",
209         [11] =  "Privileged register trap",
210         [12] =  "Overflow trap",
211         [13] =  "Conditional trap",
212         [14] =  "FP Assist Exception trap",
213         [15] =  "Data TLB miss fault",
214         [16] =  "Non-access ITLB miss fault",
215         [17] =  "Non-access DTLB miss fault",
216         [18] =  "Data memory protection/unaligned access trap",
217         [19] =  "Data memory break trap",
218         [20] =  "TLB dirty bit trap",
219         [21] =  "Page reference trap",
220         [22] =  "Assist emulation trap",
221         [25] =  "Taken branch trap",
222         [26] =  "Data memory access rights trap",
223         [27] =  "Data memory protection ID trap",
224         [28] =  "Unaligned data reference trap",
225 };
226 
227 const char *trap_name(unsigned long code)
228 {
229         const char *t = NULL;
230 
231         if (code < ARRAY_SIZE(trap_description))
232                 t = trap_description[code];
233 
234         return t ? t : "Unknown trap";
235 }
236 
237 /*
238  * Print out info about fatal segfaults, if the show_unhandled_signals
239  * sysctl is set:
240  */
241 static inline void
242 show_signal_msg(struct pt_regs *regs, unsigned long code,
243                 unsigned long address, struct task_struct *tsk,
244                 struct vm_area_struct *vma)
245 {
246         if (!unhandled_signal(tsk, SIGSEGV))
247                 return;
248 
249         if (!printk_ratelimit())
250                 return;
251 
252         pr_warn("\n");
253         pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
254             tsk->comm, code, address);
255         print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
256 
257         pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
258                 vma ? ',':'\n');
259 
260         if (vma)
261                 pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
262                         vma->vm_start, vma->vm_end);
263 
264         show_regs(regs);
265 }
266 
267 void do_page_fault(struct pt_regs *regs, unsigned long code,
268                               unsigned long address)
269 {
270         struct vm_area_struct *vma, *prev_vma;
271         struct task_struct *tsk;
272         struct mm_struct *mm;
273         unsigned long acc_type;
274         vm_fault_t fault = 0;
275         unsigned int flags;
276         char *msg;
277 
278         tsk = current;
279         mm = tsk->mm;
280         if (!mm) {
281                 msg = "Page fault: no context";
282                 goto no_context;
283         }
284 
285         flags = FAULT_FLAG_DEFAULT;
286         if (user_mode(regs))
287                 flags |= FAULT_FLAG_USER;
288 
289         acc_type = parisc_acctyp(code, regs->iir);
290         if (acc_type & VM_WRITE)
291                 flags |= FAULT_FLAG_WRITE;
292         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
293 retry:
294         mmap_read_lock(mm);
295         vma = find_vma_prev(mm, address, &prev_vma);
296         if (!vma || address < vma->vm_start) {
297                 if (!prev_vma || !(prev_vma->vm_flags & VM_GROWSUP))
298                         goto bad_area;
299                 vma = expand_stack(mm, address);
300                 if (!vma)
301                         goto bad_area_nosemaphore;
302         }
303 
304 /*
305  * Ok, we have a good vm_area for this memory access. We still need to
306  * check the access permissions.
307  */
308 
309         if ((vma->vm_flags & acc_type) != acc_type)
310                 goto bad_area;
311 
312         /*
313          * If for any reason at all we couldn't handle the fault, make
314          * sure we exit gracefully rather than endlessly redo the
315          * fault.
316          */
317 
318         fault = handle_mm_fault(vma, address, flags, regs);
319 
320         if (fault_signal_pending(fault, regs)) {
321                 if (!user_mode(regs)) {
322                         msg = "Page fault: fault signal on kernel memory";
323                         goto no_context;
324                 }
325                 return;
326         }
327 
328         /* The fault is fully completed (including releasing mmap lock) */
329         if (fault & VM_FAULT_COMPLETED)
330                 return;
331 
332         if (unlikely(fault & VM_FAULT_ERROR)) {
333                 /*
334                  * We hit a shared mapping outside of the file, or some
335                  * other thing happened to us that made us unable to
336                  * handle the page fault gracefully.
337                  */
338                 if (fault & VM_FAULT_OOM)
339                         goto out_of_memory;
340                 else if (fault & VM_FAULT_SIGSEGV)
341                         goto bad_area;
342                 else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
343                                   VM_FAULT_HWPOISON_LARGE))
344                         goto bad_area;
345                 BUG();
346         }
347         if (fault & VM_FAULT_RETRY) {
348                 /*
349                  * No need to mmap_read_unlock(mm) as we would
350                  * have already released it in __lock_page_or_retry
351                  * in mm/filemap.c.
352                  */
353                 flags |= FAULT_FLAG_TRIED;
354                 goto retry;
355         }
356         mmap_read_unlock(mm);
357         return;
358 
359 /*
360  * Something tried to access memory that isn't in our memory map..
361  */
362 bad_area:
363         mmap_read_unlock(mm);
364 
365 bad_area_nosemaphore:
366         if (user_mode(regs)) {
367                 int signo, si_code;
368 
369                 switch (code) {
370                 case 15:        /* Data TLB miss fault/Data page fault */
371                         /* send SIGSEGV when outside of vma */
372                         if (!vma ||
373                             address < vma->vm_start || address >= vma->vm_end) {
374                                 signo = SIGSEGV;
375                                 si_code = SEGV_MAPERR;
376                                 break;
377                         }
378 
379                         /* send SIGSEGV for wrong permissions */
380                         if ((vma->vm_flags & acc_type) != acc_type) {
381                                 signo = SIGSEGV;
382                                 si_code = SEGV_ACCERR;
383                                 break;
384                         }
385 
386                         /* probably address is outside of mapped file */
387                         fallthrough;
388                 case 17:        /* NA data TLB miss / page fault */
389                 case 18:        /* Unaligned access - PCXS only */
390                         signo = SIGBUS;
391                         si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
392                         break;
393                 case 16:        /* Non-access instruction TLB miss fault */
394                 case 26:        /* PCXL: Data memory access rights trap */
395                 default:
396                         signo = SIGSEGV;
397                         si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
398                         break;
399                 }
400 #ifdef CONFIG_MEMORY_FAILURE
401                 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
402                         unsigned int lsb = 0;
403                         printk(KERN_ERR
404         "MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
405                         tsk->comm, tsk->pid, address);
406                         /*
407                          * Either small page or large page may be poisoned.
408                          * In other words, VM_FAULT_HWPOISON_LARGE and
409                          * VM_FAULT_HWPOISON are mutually exclusive.
410                          */
411                         if (fault & VM_FAULT_HWPOISON_LARGE)
412                                 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
413                         else if (fault & VM_FAULT_HWPOISON)
414                                 lsb = PAGE_SHIFT;
415 
416                         force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
417                                          lsb);
418                         return;
419                 }
420 #endif
421                 show_signal_msg(regs, code, address, tsk, vma);
422 
423                 force_sig_fault(signo, si_code, (void __user *) address);
424                 return;
425         }
426         msg = "Page fault: bad address";
427 
428 no_context:
429 
430         if (!user_mode(regs) && fixup_exception(regs)) {
431                 return;
432         }
433 
434         parisc_terminate(msg, regs, code, address);
435 
436 out_of_memory:
437         mmap_read_unlock(mm);
438         if (!user_mode(regs)) {
439                 msg = "Page fault: out of memory";
440                 goto no_context;
441         }
442         pagefault_out_of_memory();
443 }
444 
445 /* Handle non-access data TLB miss faults.
446  *
447  * For probe instructions, accesses to userspace are considered allowed
448  * if they lie in a valid VMA and the access type matches. We are not
449  * allowed to handle MM faults here so there may be situations where an
450  * actual access would fail even though a probe was successful.
451  */
452 int
453 handle_nadtlb_fault(struct pt_regs *regs)
454 {
455         unsigned long insn = regs->iir;
456         int breg, treg, xreg, val = 0;
457         struct vm_area_struct *vma;
458         struct task_struct *tsk;
459         struct mm_struct *mm;
460         unsigned long address;
461         unsigned long acc_type;
462 
463         switch (insn & 0x380) {
464         case 0x280:
465                 /* FDC instruction */
466                 fallthrough;
467         case 0x380:
468                 /* PDC and FIC instructions */
469                 if (DEBUG_NATLB && printk_ratelimit()) {
470                         pr_warn("WARNING: nullifying cache flush/purge instruction\n");
471                         show_regs(regs);
472                 }
473                 if (insn & 0x20) {
474                         /* Base modification */
475                         breg = (insn >> 21) & 0x1f;
476                         xreg = (insn >> 16) & 0x1f;
477                         if (breg && xreg)
478                                 regs->gr[breg] += regs->gr[xreg];
479                 }
480                 regs->gr[0] |= PSW_N;
481                 return 1;
482 
483         case 0x180:
484                 /* PROBE instruction */
485                 treg = insn & 0x1f;
486                 if (regs->isr) {
487                         tsk = current;
488                         mm = tsk->mm;
489                         if (mm) {
490                                 /* Search for VMA */
491                                 address = regs->ior;
492                                 mmap_read_lock(mm);
493                                 vma = vma_lookup(mm, address);
494                                 mmap_read_unlock(mm);
495 
496                                 /*
497                                  * Check if access to the VMA is okay.
498                                  * We don't allow for stack expansion.
499                                  */
500                                 acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
501                                 if (vma
502                                     && (vma->vm_flags & acc_type) == acc_type)
503                                         val = 1;
504                         }
505                 }
506                 if (treg)
507                         regs->gr[treg] = val;
508                 regs->gr[0] |= PSW_N;
509                 return 1;
510 
511         case 0x300:
512                 /* LPA instruction */
513                 if (insn & 0x20) {
514                         /* Base modification */
515                         breg = (insn >> 21) & 0x1f;
516                         xreg = (insn >> 16) & 0x1f;
517                         if (breg && xreg)
518                                 regs->gr[breg] += regs->gr[xreg];
519                 }
520                 treg = insn & 0x1f;
521                 if (treg)
522                         regs->gr[treg] = 0;
523                 regs->gr[0] |= PSW_N;
524                 return 1;
525 
526         default:
527                 break;
528         }
529 
530         return 0;
531 }
532 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php