~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/crypto/aes-spe-glue.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Glue code for AES implementation for SPE instructions (PPC)
  4  *
  5  * Based on generic implementation. The assembler module takes care
  6  * about the SPE registers so it can run from interrupt context.
  7  *
  8  * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
  9  */
 10 
 11 #include <crypto/aes.h>
 12 #include <linux/module.h>
 13 #include <linux/init.h>
 14 #include <linux/types.h>
 15 #include <linux/errno.h>
 16 #include <linux/crypto.h>
 17 #include <asm/byteorder.h>
 18 #include <asm/switch_to.h>
 19 #include <crypto/algapi.h>
 20 #include <crypto/internal/skcipher.h>
 21 #include <crypto/xts.h>
 22 #include <crypto/gf128mul.h>
 23 #include <crypto/scatterwalk.h>
 24 
 25 /*
 26  * MAX_BYTES defines the number of bytes that are allowed to be processed
 27  * between preempt_disable() and preempt_enable(). e500 cores can issue two
 28  * instructions per clock cycle using one 32/64 bit unit (SU1) and one 32
 29  * bit unit (SU2). One of these can be a memory access that is executed via
 30  * a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per
 31  * 16 byte block or 25 cycles per byte. Thus 768 bytes of input data
 32  * will need an estimated maximum of 20,000 cycles. Headroom for cache misses
 33  * included. Even with the low end model clocked at 667 MHz this equals to a
 34  * critical time window of less than 30us. The value has been chosen to
 35  * process a 512 byte disk block in one or a large 1400 bytes IPsec network
 36  * packet in two runs.
 37  *
 38  */
 39 #define MAX_BYTES 768
 40 
 41 struct ppc_aes_ctx {
 42         u32 key_enc[AES_MAX_KEYLENGTH_U32];
 43         u32 key_dec[AES_MAX_KEYLENGTH_U32];
 44         u32 rounds;
 45 };
 46 
 47 struct ppc_xts_ctx {
 48         u32 key_enc[AES_MAX_KEYLENGTH_U32];
 49         u32 key_dec[AES_MAX_KEYLENGTH_U32];
 50         u32 key_twk[AES_MAX_KEYLENGTH_U32];
 51         u32 rounds;
 52 };
 53 
 54 extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds);
 55 extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds);
 56 extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
 57                             u32 bytes);
 58 extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
 59                             u32 bytes);
 60 extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
 61                             u32 bytes, u8 *iv);
 62 extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
 63                             u32 bytes, u8 *iv);
 64 extern void ppc_crypt_ctr  (u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
 65                             u32 bytes, u8 *iv);
 66 extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
 67                             u32 bytes, u8 *iv, u32 *key_twk);
 68 extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
 69                             u32 bytes, u8 *iv, u32 *key_twk);
 70 
 71 extern void ppc_expand_key_128(u32 *key_enc, const u8 *key);
 72 extern void ppc_expand_key_192(u32 *key_enc, const u8 *key);
 73 extern void ppc_expand_key_256(u32 *key_enc, const u8 *key);
 74 
 75 extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc,
 76                                      unsigned int key_len);
 77 
 78 static void spe_begin(void)
 79 {
 80         /* disable preemption and save users SPE registers if required */
 81         preempt_disable();
 82         enable_kernel_spe();
 83 }
 84 
 85 static void spe_end(void)
 86 {
 87         disable_kernel_spe();
 88         /* reenable preemption */
 89         preempt_enable();
 90 }
 91 
 92 static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
 93                 unsigned int key_len)
 94 {
 95         struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 96 
 97         switch (key_len) {
 98         case AES_KEYSIZE_128:
 99                 ctx->rounds = 4;
100                 ppc_expand_key_128(ctx->key_enc, in_key);
101                 break;
102         case AES_KEYSIZE_192:
103                 ctx->rounds = 5;
104                 ppc_expand_key_192(ctx->key_enc, in_key);
105                 break;
106         case AES_KEYSIZE_256:
107                 ctx->rounds = 6;
108                 ppc_expand_key_256(ctx->key_enc, in_key);
109                 break;
110         default:
111                 return -EINVAL;
112         }
113 
114         ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
115 
116         return 0;
117 }
118 
119 static int ppc_aes_setkey_skcipher(struct crypto_skcipher *tfm,
120                                    const u8 *in_key, unsigned int key_len)
121 {
122         return ppc_aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
123 }
124 
125 static int ppc_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
126                    unsigned int key_len)
127 {
128         struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
129         int err;
130 
131         err = xts_verify_key(tfm, in_key, key_len);
132         if (err)
133                 return err;
134 
135         key_len >>= 1;
136 
137         switch (key_len) {
138         case AES_KEYSIZE_128:
139                 ctx->rounds = 4;
140                 ppc_expand_key_128(ctx->key_enc, in_key);
141                 ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128);
142                 break;
143         case AES_KEYSIZE_192:
144                 ctx->rounds = 5;
145                 ppc_expand_key_192(ctx->key_enc, in_key);
146                 ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192);
147                 break;
148         case AES_KEYSIZE_256:
149                 ctx->rounds = 6;
150                 ppc_expand_key_256(ctx->key_enc, in_key);
151                 ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256);
152                 break;
153         default:
154                 return -EINVAL;
155         }
156 
157         ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
158 
159         return 0;
160 }
161 
162 static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
163 {
164         struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
165 
166         spe_begin();
167         ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds);
168         spe_end();
169 }
170 
171 static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
172 {
173         struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
174 
175         spe_begin();
176         ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds);
177         spe_end();
178 }
179 
180 static int ppc_ecb_crypt(struct skcipher_request *req, bool enc)
181 {
182         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
183         struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
184         struct skcipher_walk walk;
185         unsigned int nbytes;
186         int err;
187 
188         err = skcipher_walk_virt(&walk, req, false);
189 
190         while ((nbytes = walk.nbytes) != 0) {
191                 nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
192                 nbytes = round_down(nbytes, AES_BLOCK_SIZE);
193 
194                 spe_begin();
195                 if (enc)
196                         ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
197                                         ctx->key_enc, ctx->rounds, nbytes);
198                 else
199                         ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
200                                         ctx->key_dec, ctx->rounds, nbytes);
201                 spe_end();
202 
203                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
204         }
205 
206         return err;
207 }
208 
209 static int ppc_ecb_encrypt(struct skcipher_request *req)
210 {
211         return ppc_ecb_crypt(req, true);
212 }
213 
214 static int ppc_ecb_decrypt(struct skcipher_request *req)
215 {
216         return ppc_ecb_crypt(req, false);
217 }
218 
219 static int ppc_cbc_crypt(struct skcipher_request *req, bool enc)
220 {
221         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
222         struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
223         struct skcipher_walk walk;
224         unsigned int nbytes;
225         int err;
226 
227         err = skcipher_walk_virt(&walk, req, false);
228 
229         while ((nbytes = walk.nbytes) != 0) {
230                 nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
231                 nbytes = round_down(nbytes, AES_BLOCK_SIZE);
232 
233                 spe_begin();
234                 if (enc)
235                         ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
236                                         ctx->key_enc, ctx->rounds, nbytes,
237                                         walk.iv);
238                 else
239                         ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
240                                         ctx->key_dec, ctx->rounds, nbytes,
241                                         walk.iv);
242                 spe_end();
243 
244                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
245         }
246 
247         return err;
248 }
249 
250 static int ppc_cbc_encrypt(struct skcipher_request *req)
251 {
252         return ppc_cbc_crypt(req, true);
253 }
254 
255 static int ppc_cbc_decrypt(struct skcipher_request *req)
256 {
257         return ppc_cbc_crypt(req, false);
258 }
259 
260 static int ppc_ctr_crypt(struct skcipher_request *req)
261 {
262         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
263         struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
264         struct skcipher_walk walk;
265         unsigned int nbytes;
266         int err;
267 
268         err = skcipher_walk_virt(&walk, req, false);
269 
270         while ((nbytes = walk.nbytes) != 0) {
271                 nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
272                 if (nbytes < walk.total)
273                         nbytes = round_down(nbytes, AES_BLOCK_SIZE);
274 
275                 spe_begin();
276                 ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr,
277                               ctx->key_enc, ctx->rounds, nbytes, walk.iv);
278                 spe_end();
279 
280                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
281         }
282 
283         return err;
284 }
285 
286 static int ppc_xts_crypt(struct skcipher_request *req, bool enc)
287 {
288         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
289         struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
290         struct skcipher_walk walk;
291         unsigned int nbytes;
292         int err;
293         u32 *twk;
294 
295         err = skcipher_walk_virt(&walk, req, false);
296         twk = ctx->key_twk;
297 
298         while ((nbytes = walk.nbytes) != 0) {
299                 nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
300                 nbytes = round_down(nbytes, AES_BLOCK_SIZE);
301 
302                 spe_begin();
303                 if (enc)
304                         ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
305                                         ctx->key_enc, ctx->rounds, nbytes,
306                                         walk.iv, twk);
307                 else
308                         ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
309                                         ctx->key_dec, ctx->rounds, nbytes,
310                                         walk.iv, twk);
311                 spe_end();
312 
313                 twk = NULL;
314                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
315         }
316 
317         return err;
318 }
319 
320 static int ppc_xts_encrypt(struct skcipher_request *req)
321 {
322         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
323         struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
324         int tail = req->cryptlen % AES_BLOCK_SIZE;
325         int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
326         struct skcipher_request subreq;
327         u8 b[2][AES_BLOCK_SIZE];
328         int err;
329 
330         if (req->cryptlen < AES_BLOCK_SIZE)
331                 return -EINVAL;
332 
333         if (tail) {
334                 subreq = *req;
335                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
336                                            req->cryptlen - tail, req->iv);
337                 req = &subreq;
338         }
339 
340         err = ppc_xts_crypt(req, true);
341         if (err || !tail)
342                 return err;
343 
344         scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE, 0);
345         memcpy(b[1], b[0], tail);
346         scatterwalk_map_and_copy(b[0], req->src, offset + AES_BLOCK_SIZE, tail, 0);
347 
348         spe_begin();
349         ppc_encrypt_xts(b[0], b[0], ctx->key_enc, ctx->rounds, AES_BLOCK_SIZE,
350                         req->iv, NULL);
351         spe_end();
352 
353         scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);
354 
355         return 0;
356 }
357 
358 static int ppc_xts_decrypt(struct skcipher_request *req)
359 {
360         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
361         struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
362         int tail = req->cryptlen % AES_BLOCK_SIZE;
363         int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
364         struct skcipher_request subreq;
365         u8 b[3][AES_BLOCK_SIZE];
366         le128 twk;
367         int err;
368 
369         if (req->cryptlen < AES_BLOCK_SIZE)
370                 return -EINVAL;
371 
372         if (tail) {
373                 subreq = *req;
374                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
375                                            offset, req->iv);
376                 req = &subreq;
377         }
378 
379         err = ppc_xts_crypt(req, false);
380         if (err || !tail)
381                 return err;
382 
383         scatterwalk_map_and_copy(b[1], req->src, offset, AES_BLOCK_SIZE + tail, 0);
384 
385         spe_begin();
386         if (!offset)
387                 ppc_encrypt_ecb(req->iv, req->iv, ctx->key_twk, ctx->rounds,
388                                 AES_BLOCK_SIZE);
389 
390         gf128mul_x_ble(&twk, (le128 *)req->iv);
391 
392         ppc_decrypt_xts(b[1], b[1], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
393                         (u8 *)&twk, NULL);
394         memcpy(b[0], b[2], tail);
395         memcpy(b[0] + tail, b[1] + tail, AES_BLOCK_SIZE - tail);
396         ppc_decrypt_xts(b[0], b[0], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
397                         req->iv, NULL);
398         spe_end();
399 
400         scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);
401 
402         return 0;
403 }
404 
405 /*
406  * Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen
407  * because the e500 platform can handle unaligned reads/writes very efficiently.
408  * This improves IPsec thoughput by another few percent. Additionally we assume
409  * that AES context is always aligned to at least 8 bytes because it is created
410  * with kmalloc() in the crypto infrastructure
411  */
412 
413 static struct crypto_alg aes_cipher_alg = {
414         .cra_name               =       "aes",
415         .cra_driver_name        =       "aes-ppc-spe",
416         .cra_priority           =       300,
417         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
418         .cra_blocksize          =       AES_BLOCK_SIZE,
419         .cra_ctxsize            =       sizeof(struct ppc_aes_ctx),
420         .cra_alignmask          =       0,
421         .cra_module             =       THIS_MODULE,
422         .cra_u                  =       {
423                 .cipher = {
424                         .cia_min_keysize        =       AES_MIN_KEY_SIZE,
425                         .cia_max_keysize        =       AES_MAX_KEY_SIZE,
426                         .cia_setkey             =       ppc_aes_setkey,
427                         .cia_encrypt            =       ppc_aes_encrypt,
428                         .cia_decrypt            =       ppc_aes_decrypt
429                 }
430         }
431 };
432 
433 static struct skcipher_alg aes_skcipher_algs[] = {
434         {
435                 .base.cra_name          =       "ecb(aes)",
436                 .base.cra_driver_name   =       "ecb-ppc-spe",
437                 .base.cra_priority      =       300,
438                 .base.cra_blocksize     =       AES_BLOCK_SIZE,
439                 .base.cra_ctxsize       =       sizeof(struct ppc_aes_ctx),
440                 .base.cra_module        =       THIS_MODULE,
441                 .min_keysize            =       AES_MIN_KEY_SIZE,
442                 .max_keysize            =       AES_MAX_KEY_SIZE,
443                 .setkey                 =       ppc_aes_setkey_skcipher,
444                 .encrypt                =       ppc_ecb_encrypt,
445                 .decrypt                =       ppc_ecb_decrypt,
446         }, {
447                 .base.cra_name          =       "cbc(aes)",
448                 .base.cra_driver_name   =       "cbc-ppc-spe",
449                 .base.cra_priority      =       300,
450                 .base.cra_blocksize     =       AES_BLOCK_SIZE,
451                 .base.cra_ctxsize       =       sizeof(struct ppc_aes_ctx),
452                 .base.cra_module        =       THIS_MODULE,
453                 .min_keysize            =       AES_MIN_KEY_SIZE,
454                 .max_keysize            =       AES_MAX_KEY_SIZE,
455                 .ivsize                 =       AES_BLOCK_SIZE,
456                 .setkey                 =       ppc_aes_setkey_skcipher,
457                 .encrypt                =       ppc_cbc_encrypt,
458                 .decrypt                =       ppc_cbc_decrypt,
459         }, {
460                 .base.cra_name          =       "ctr(aes)",
461                 .base.cra_driver_name   =       "ctr-ppc-spe",
462                 .base.cra_priority      =       300,
463                 .base.cra_blocksize     =       1,
464                 .base.cra_ctxsize       =       sizeof(struct ppc_aes_ctx),
465                 .base.cra_module        =       THIS_MODULE,
466                 .min_keysize            =       AES_MIN_KEY_SIZE,
467                 .max_keysize            =       AES_MAX_KEY_SIZE,
468                 .ivsize                 =       AES_BLOCK_SIZE,
469                 .setkey                 =       ppc_aes_setkey_skcipher,
470                 .encrypt                =       ppc_ctr_crypt,
471                 .decrypt                =       ppc_ctr_crypt,
472                 .chunksize              =       AES_BLOCK_SIZE,
473         }, {
474                 .base.cra_name          =       "xts(aes)",
475                 .base.cra_driver_name   =       "xts-ppc-spe",
476                 .base.cra_priority      =       300,
477                 .base.cra_blocksize     =       AES_BLOCK_SIZE,
478                 .base.cra_ctxsize       =       sizeof(struct ppc_xts_ctx),
479                 .base.cra_module        =       THIS_MODULE,
480                 .min_keysize            =       AES_MIN_KEY_SIZE * 2,
481                 .max_keysize            =       AES_MAX_KEY_SIZE * 2,
482                 .ivsize                 =       AES_BLOCK_SIZE,
483                 .setkey                 =       ppc_xts_setkey,
484                 .encrypt                =       ppc_xts_encrypt,
485                 .decrypt                =       ppc_xts_decrypt,
486         }
487 };
488 
489 static int __init ppc_aes_mod_init(void)
490 {
491         int err;
492 
493         err = crypto_register_alg(&aes_cipher_alg);
494         if (err)
495                 return err;
496 
497         err = crypto_register_skciphers(aes_skcipher_algs,
498                                         ARRAY_SIZE(aes_skcipher_algs));
499         if (err)
500                 crypto_unregister_alg(&aes_cipher_alg);
501         return err;
502 }
503 
504 static void __exit ppc_aes_mod_fini(void)
505 {
506         crypto_unregister_alg(&aes_cipher_alg);
507         crypto_unregister_skciphers(aes_skcipher_algs,
508                                     ARRAY_SIZE(aes_skcipher_algs));
509 }
510 
511 module_init(ppc_aes_mod_init);
512 module_exit(ppc_aes_mod_fini);
513 
514 MODULE_LICENSE("GPL");
515 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized");
516 
517 MODULE_ALIAS_CRYPTO("aes");
518 MODULE_ALIAS_CRYPTO("ecb(aes)");
519 MODULE_ALIAS_CRYPTO("cbc(aes)");
520 MODULE_ALIAS_CRYPTO("ctr(aes)");
521 MODULE_ALIAS_CRYPTO("xts(aes)");
522 MODULE_ALIAS_CRYPTO("aes-ppc-spe");
523 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php