1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Calculate a CRC T10DIF with vpmsum acceleration 4 * 5 * Constants generated by crc32-vpmsum, available at 6 * https://github.com/antonblanchard/crc32-vpmsum 7 * 8 * crc32-vpmsum is 9 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM 10 */ 11 .section .rodata 12 .balign 16 13 14 .byteswap_constant: 15 /* byte reverse permute constant */ 16 .octa 0x0F0E0D0C0B0A09080706050403020100 17 18 .constants: 19 20 /* Reduce 262144 kbits to 1024 bits */ 21 /* x^261184 mod p(x), x^261120 mod p(x) */ 22 .octa 0x0000000056d300000000000052550000 23 24 /* x^260160 mod p(x), x^260096 mod p(x) */ 25 .octa 0x00000000ee67000000000000a1e40000 26 27 /* x^259136 mod p(x), x^259072 mod p(x) */ 28 .octa 0x0000000060830000000000004ad10000 29 30 /* x^258112 mod p(x), x^258048 mod p(x) */ 31 .octa 0x000000008cfe0000000000009ab40000 32 33 /* x^257088 mod p(x), x^257024 mod p(x) */ 34 .octa 0x000000003e93000000000000fdb50000 35 36 /* x^256064 mod p(x), x^256000 mod p(x) */ 37 .octa 0x000000003c2000000000000045480000 38 39 /* x^255040 mod p(x), x^254976 mod p(x) */ 40 .octa 0x00000000b1fc0000000000008d690000 41 42 /* x^254016 mod p(x), x^253952 mod p(x) */ 43 .octa 0x00000000f82b00000000000024ad0000 44 45 /* x^252992 mod p(x), x^252928 mod p(x) */ 46 .octa 0x0000000044420000000000009f1a0000 47 48 /* x^251968 mod p(x), x^251904 mod p(x) */ 49 .octa 0x00000000e88c00000000000066ec0000 50 51 /* x^250944 mod p(x), x^250880 mod p(x) */ 52 .octa 0x00000000385c000000000000c87d0000 53 54 /* x^249920 mod p(x), x^249856 mod p(x) */ 55 .octa 0x000000003227000000000000c8ff0000 56 57 /* x^248896 mod p(x), x^248832 mod p(x) */ 58 .octa 0x00000000a9a900000000000033440000 59 60 /* x^247872 mod p(x), x^247808 mod p(x) */ 61 .octa 0x00000000abaa00000000000066eb0000 62 63 /* x^246848 mod p(x), x^246784 mod p(x) */ 64 .octa 0x000000001ac3000000000000c4ef0000 65 66 /* x^245824 mod p(x), x^245760 mod p(x) */ 67 .octa 0x0000000063f000000000000056f30000 68 69 /* x^244800 mod p(x), x^244736 mod p(x) */ 70 .octa 0x0000000032cc00000000000002050000 71 72 /* x^243776 mod p(x), x^243712 mod p(x) */ 73 .octa 0x00000000f8b5000000000000568e0000 74 75 /* x^242752 mod p(x), x^242688 mod p(x) */ 76 .octa 0x000000008db100000000000064290000 77 78 /* x^241728 mod p(x), x^241664 mod p(x) */ 79 .octa 0x0000000059ca0000000000006b660000 80 81 /* x^240704 mod p(x), x^240640 mod p(x) */ 82 .octa 0x000000005f5c00000000000018f80000 83 84 /* x^239680 mod p(x), x^239616 mod p(x) */ 85 .octa 0x0000000061af000000000000b6090000 86 87 /* x^238656 mod p(x), x^238592 mod p(x) */ 88 .octa 0x00000000e29e000000000000099a0000 89 90 /* x^237632 mod p(x), x^237568 mod p(x) */ 91 .octa 0x000000000975000000000000a8360000 92 93 /* x^236608 mod p(x), x^236544 mod p(x) */ 94 .octa 0x0000000043900000000000004f570000 95 96 /* x^235584 mod p(x), x^235520 mod p(x) */ 97 .octa 0x00000000f9cd000000000000134c0000 98 99 /* x^234560 mod p(x), x^234496 mod p(x) */ 100 .octa 0x000000007c29000000000000ec380000 101 102 /* x^233536 mod p(x), x^233472 mod p(x) */ 103 .octa 0x000000004c6a000000000000b0d10000 104 105 /* x^232512 mod p(x), x^232448 mod p(x) */ 106 .octa 0x00000000e7290000000000007d3e0000 107 108 /* x^231488 mod p(x), x^231424 mod p(x) */ 109 .octa 0x00000000f1ab000000000000f0b20000 110 111 /* x^230464 mod p(x), x^230400 mod p(x) */ 112 .octa 0x0000000039db0000000000009c270000 113 114 /* x^229440 mod p(x), x^229376 mod p(x) */ 115 .octa 0x000000005e2800000000000092890000 116 117 /* x^228416 mod p(x), x^228352 mod p(x) */ 118 .octa 0x00000000d44e000000000000d5ee0000 119 120 /* x^227392 mod p(x), x^227328 mod p(x) */ 121 .octa 0x00000000cd0a00000000000041f50000 122 123 /* x^226368 mod p(x), x^226304 mod p(x) */ 124 .octa 0x00000000c5b400000000000010520000 125 126 /* x^225344 mod p(x), x^225280 mod p(x) */ 127 .octa 0x00000000fd2100000000000042170000 128 129 /* x^224320 mod p(x), x^224256 mod p(x) */ 130 .octa 0x000000002f2500000000000095c20000 131 132 /* x^223296 mod p(x), x^223232 mod p(x) */ 133 .octa 0x000000001b0100000000000001ce0000 134 135 /* x^222272 mod p(x), x^222208 mod p(x) */ 136 .octa 0x000000000d430000000000002aca0000 137 138 /* x^221248 mod p(x), x^221184 mod p(x) */ 139 .octa 0x0000000030a6000000000000385e0000 140 141 /* x^220224 mod p(x), x^220160 mod p(x) */ 142 .octa 0x00000000e37b0000000000006f7a0000 143 144 /* x^219200 mod p(x), x^219136 mod p(x) */ 145 .octa 0x00000000873600000000000024320000 146 147 /* x^218176 mod p(x), x^218112 mod p(x) */ 148 .octa 0x00000000e9fb000000000000bd9c0000 149 150 /* x^217152 mod p(x), x^217088 mod p(x) */ 151 .octa 0x000000003b9500000000000054bc0000 152 153 /* x^216128 mod p(x), x^216064 mod p(x) */ 154 .octa 0x00000000133e000000000000a4660000 155 156 /* x^215104 mod p(x), x^215040 mod p(x) */ 157 .octa 0x00000000784500000000000079930000 158 159 /* x^214080 mod p(x), x^214016 mod p(x) */ 160 .octa 0x00000000b9800000000000001bb80000 161 162 /* x^213056 mod p(x), x^212992 mod p(x) */ 163 .octa 0x00000000687600000000000024400000 164 165 /* x^212032 mod p(x), x^211968 mod p(x) */ 166 .octa 0x00000000aff300000000000029e10000 167 168 /* x^211008 mod p(x), x^210944 mod p(x) */ 169 .octa 0x0000000024b50000000000005ded0000 170 171 /* x^209984 mod p(x), x^209920 mod p(x) */ 172 .octa 0x0000000017e8000000000000b12e0000 173 174 /* x^208960 mod p(x), x^208896 mod p(x) */ 175 .octa 0x00000000128400000000000026d20000 176 177 /* x^207936 mod p(x), x^207872 mod p(x) */ 178 .octa 0x000000002115000000000000a32a0000 179 180 /* x^206912 mod p(x), x^206848 mod p(x) */ 181 .octa 0x000000009595000000000000a1210000 182 183 /* x^205888 mod p(x), x^205824 mod p(x) */ 184 .octa 0x00000000281e000000000000ee8b0000 185 186 /* x^204864 mod p(x), x^204800 mod p(x) */ 187 .octa 0x0000000006010000000000003d0d0000 188 189 /* x^203840 mod p(x), x^203776 mod p(x) */ 190 .octa 0x00000000e2b600000000000034e90000 191 192 /* x^202816 mod p(x), x^202752 mod p(x) */ 193 .octa 0x000000001bd40000000000004cdb0000 194 195 /* x^201792 mod p(x), x^201728 mod p(x) */ 196 .octa 0x00000000df2800000000000030e90000 197 198 /* x^200768 mod p(x), x^200704 mod p(x) */ 199 .octa 0x0000000049c200000000000042590000 200 201 /* x^199744 mod p(x), x^199680 mod p(x) */ 202 .octa 0x000000009b97000000000000df950000 203 204 /* x^198720 mod p(x), x^198656 mod p(x) */ 205 .octa 0x000000006184000000000000da7b0000 206 207 /* x^197696 mod p(x), x^197632 mod p(x) */ 208 .octa 0x00000000461700000000000012510000 209 210 /* x^196672 mod p(x), x^196608 mod p(x) */ 211 .octa 0x000000009b40000000000000f37e0000 212 213 /* x^195648 mod p(x), x^195584 mod p(x) */ 214 .octa 0x00000000eeb2000000000000ecf10000 215 216 /* x^194624 mod p(x), x^194560 mod p(x) */ 217 .octa 0x00000000b2e800000000000050f20000 218 219 /* x^193600 mod p(x), x^193536 mod p(x) */ 220 .octa 0x00000000f59a000000000000e0b30000 221 222 /* x^192576 mod p(x), x^192512 mod p(x) */ 223 .octa 0x00000000467f0000000000004d5a0000 224 225 /* x^191552 mod p(x), x^191488 mod p(x) */ 226 .octa 0x00000000da92000000000000bb010000 227 228 /* x^190528 mod p(x), x^190464 mod p(x) */ 229 .octa 0x000000001e1000000000000022a40000 230 231 /* x^189504 mod p(x), x^189440 mod p(x) */ 232 .octa 0x0000000058fe000000000000836f0000 233 234 /* x^188480 mod p(x), x^188416 mod p(x) */ 235 .octa 0x00000000b9ce000000000000d78d0000 236 237 /* x^187456 mod p(x), x^187392 mod p(x) */ 238 .octa 0x0000000022210000000000004f8d0000 239 240 /* x^186432 mod p(x), x^186368 mod p(x) */ 241 .octa 0x00000000744600000000000033760000 242 243 /* x^185408 mod p(x), x^185344 mod p(x) */ 244 .octa 0x000000001c2e000000000000a1e50000 245 246 /* x^184384 mod p(x), x^184320 mod p(x) */ 247 .octa 0x00000000dcc8000000000000a1a40000 248 249 /* x^183360 mod p(x), x^183296 mod p(x) */ 250 .octa 0x00000000910f00000000000019a20000 251 252 /* x^182336 mod p(x), x^182272 mod p(x) */ 253 .octa 0x0000000055d5000000000000f6ae0000 254 255 /* x^181312 mod p(x), x^181248 mod p(x) */ 256 .octa 0x00000000c8ba000000000000a7ac0000 257 258 /* x^180288 mod p(x), x^180224 mod p(x) */ 259 .octa 0x0000000031f8000000000000eea20000 260 261 /* x^179264 mod p(x), x^179200 mod p(x) */ 262 .octa 0x000000001966000000000000c4d90000 263 264 /* x^178240 mod p(x), x^178176 mod p(x) */ 265 .octa 0x00000000b9810000000000002b470000 266 267 /* x^177216 mod p(x), x^177152 mod p(x) */ 268 .octa 0x000000008303000000000000f7cf0000 269 270 /* x^176192 mod p(x), x^176128 mod p(x) */ 271 .octa 0x000000002ce500000000000035b30000 272 273 /* x^175168 mod p(x), x^175104 mod p(x) */ 274 .octa 0x000000002fae0000000000000c7c0000 275 276 /* x^174144 mod p(x), x^174080 mod p(x) */ 277 .octa 0x00000000f50c0000000000009edf0000 278 279 /* x^173120 mod p(x), x^173056 mod p(x) */ 280 .octa 0x00000000714f00000000000004cd0000 281 282 /* x^172096 mod p(x), x^172032 mod p(x) */ 283 .octa 0x00000000c161000000000000541b0000 284 285 /* x^171072 mod p(x), x^171008 mod p(x) */ 286 .octa 0x0000000021c8000000000000e2700000 287 288 /* x^170048 mod p(x), x^169984 mod p(x) */ 289 .octa 0x00000000b93d00000000000009a60000 290 291 /* x^169024 mod p(x), x^168960 mod p(x) */ 292 .octa 0x00000000fbcf000000000000761c0000 293 294 /* x^168000 mod p(x), x^167936 mod p(x) */ 295 .octa 0x0000000026350000000000009db30000 296 297 /* x^166976 mod p(x), x^166912 mod p(x) */ 298 .octa 0x00000000b64f0000000000003e9f0000 299 300 /* x^165952 mod p(x), x^165888 mod p(x) */ 301 .octa 0x00000000bd0e00000000000078590000 302 303 /* x^164928 mod p(x), x^164864 mod p(x) */ 304 .octa 0x00000000d9360000000000008bc80000 305 306 /* x^163904 mod p(x), x^163840 mod p(x) */ 307 .octa 0x000000002f140000000000008c9f0000 308 309 /* x^162880 mod p(x), x^162816 mod p(x) */ 310 .octa 0x000000006a270000000000006af70000 311 312 /* x^161856 mod p(x), x^161792 mod p(x) */ 313 .octa 0x000000006685000000000000e5210000 314 315 /* x^160832 mod p(x), x^160768 mod p(x) */ 316 .octa 0x0000000062da00000000000008290000 317 318 /* x^159808 mod p(x), x^159744 mod p(x) */ 319 .octa 0x00000000bb4b000000000000e4d00000 320 321 /* x^158784 mod p(x), x^158720 mod p(x) */ 322 .octa 0x00000000d2490000000000004ae10000 323 324 /* x^157760 mod p(x), x^157696 mod p(x) */ 325 .octa 0x00000000c85b00000000000000e70000 326 327 /* x^156736 mod p(x), x^156672 mod p(x) */ 328 .octa 0x00000000c37a00000000000015650000 329 330 /* x^155712 mod p(x), x^155648 mod p(x) */ 331 .octa 0x0000000018530000000000001c2f0000 332 333 /* x^154688 mod p(x), x^154624 mod p(x) */ 334 .octa 0x00000000b46600000000000037bd0000 335 336 /* x^153664 mod p(x), x^153600 mod p(x) */ 337 .octa 0x00000000439b00000000000012190000 338 339 /* x^152640 mod p(x), x^152576 mod p(x) */ 340 .octa 0x00000000b1260000000000005ece0000 341 342 /* x^151616 mod p(x), x^151552 mod p(x) */ 343 .octa 0x00000000d8110000000000002a5e0000 344 345 /* x^150592 mod p(x), x^150528 mod p(x) */ 346 .octa 0x00000000099f00000000000052330000 347 348 /* x^149568 mod p(x), x^149504 mod p(x) */ 349 .octa 0x00000000f9f9000000000000f9120000 350 351 /* x^148544 mod p(x), x^148480 mod p(x) */ 352 .octa 0x000000005cc00000000000000ddc0000 353 354 /* x^147520 mod p(x), x^147456 mod p(x) */ 355 .octa 0x00000000343b00000000000012200000 356 357 /* x^146496 mod p(x), x^146432 mod p(x) */ 358 .octa 0x000000009222000000000000d12b0000 359 360 /* x^145472 mod p(x), x^145408 mod p(x) */ 361 .octa 0x00000000d781000000000000eb2d0000 362 363 /* x^144448 mod p(x), x^144384 mod p(x) */ 364 .octa 0x000000000bf400000000000058970000 365 366 /* x^143424 mod p(x), x^143360 mod p(x) */ 367 .octa 0x00000000094200000000000013690000 368 369 /* x^142400 mod p(x), x^142336 mod p(x) */ 370 .octa 0x00000000d55100000000000051950000 371 372 /* x^141376 mod p(x), x^141312 mod p(x) */ 373 .octa 0x000000008f11000000000000954b0000 374 375 /* x^140352 mod p(x), x^140288 mod p(x) */ 376 .octa 0x00000000140f000000000000b29e0000 377 378 /* x^139328 mod p(x), x^139264 mod p(x) */ 379 .octa 0x00000000c6db000000000000db5d0000 380 381 /* x^138304 mod p(x), x^138240 mod p(x) */ 382 .octa 0x00000000715b000000000000dfaf0000 383 384 /* x^137280 mod p(x), x^137216 mod p(x) */ 385 .octa 0x000000000dea000000000000e3b60000 386 387 /* x^136256 mod p(x), x^136192 mod p(x) */ 388 .octa 0x000000006f94000000000000ddaf0000 389 390 /* x^135232 mod p(x), x^135168 mod p(x) */ 391 .octa 0x0000000024e1000000000000e4f70000 392 393 /* x^134208 mod p(x), x^134144 mod p(x) */ 394 .octa 0x000000008810000000000000aa110000 395 396 /* x^133184 mod p(x), x^133120 mod p(x) */ 397 .octa 0x0000000030c2000000000000a8e60000 398 399 /* x^132160 mod p(x), x^132096 mod p(x) */ 400 .octa 0x00000000e6d0000000000000ccf30000 401 402 /* x^131136 mod p(x), x^131072 mod p(x) */ 403 .octa 0x000000004da000000000000079bf0000 404 405 /* x^130112 mod p(x), x^130048 mod p(x) */ 406 .octa 0x000000007759000000000000b3a30000 407 408 /* x^129088 mod p(x), x^129024 mod p(x) */ 409 .octa 0x00000000597400000000000028790000 410 411 /* x^128064 mod p(x), x^128000 mod p(x) */ 412 .octa 0x000000007acd000000000000b5820000 413 414 /* x^127040 mod p(x), x^126976 mod p(x) */ 415 .octa 0x00000000e6e400000000000026ad0000 416 417 /* x^126016 mod p(x), x^125952 mod p(x) */ 418 .octa 0x000000006d49000000000000985b0000 419 420 /* x^124992 mod p(x), x^124928 mod p(x) */ 421 .octa 0x000000000f0800000000000011520000 422 423 /* x^123968 mod p(x), x^123904 mod p(x) */ 424 .octa 0x000000002c7f000000000000846c0000 425 426 /* x^122944 mod p(x), x^122880 mod p(x) */ 427 .octa 0x000000005ce7000000000000ae1d0000 428 429 /* x^121920 mod p(x), x^121856 mod p(x) */ 430 .octa 0x00000000d4cb000000000000e21d0000 431 432 /* x^120896 mod p(x), x^120832 mod p(x) */ 433 .octa 0x000000003a2300000000000019bb0000 434 435 /* x^119872 mod p(x), x^119808 mod p(x) */ 436 .octa 0x000000000e1700000000000095290000 437 438 /* x^118848 mod p(x), x^118784 mod p(x) */ 439 .octa 0x000000006e6400000000000050d20000 440 441 /* x^117824 mod p(x), x^117760 mod p(x) */ 442 .octa 0x000000008d5c0000000000000cd10000 443 444 /* x^116800 mod p(x), x^116736 mod p(x) */ 445 .octa 0x00000000ef310000000000007b570000 446 447 /* x^115776 mod p(x), x^115712 mod p(x) */ 448 .octa 0x00000000645d00000000000053d60000 449 450 /* x^114752 mod p(x), x^114688 mod p(x) */ 451 .octa 0x0000000018fc00000000000077510000 452 453 /* x^113728 mod p(x), x^113664 mod p(x) */ 454 .octa 0x000000000cb3000000000000a7b70000 455 456 /* x^112704 mod p(x), x^112640 mod p(x) */ 457 .octa 0x00000000991b000000000000d0780000 458 459 /* x^111680 mod p(x), x^111616 mod p(x) */ 460 .octa 0x00000000845a000000000000be3c0000 461 462 /* x^110656 mod p(x), x^110592 mod p(x) */ 463 .octa 0x00000000d3a9000000000000df020000 464 465 /* x^109632 mod p(x), x^109568 mod p(x) */ 466 .octa 0x0000000017d7000000000000063e0000 467 468 /* x^108608 mod p(x), x^108544 mod p(x) */ 469 .octa 0x000000007a860000000000008ab40000 470 471 /* x^107584 mod p(x), x^107520 mod p(x) */ 472 .octa 0x00000000fd7c000000000000c7bd0000 473 474 /* x^106560 mod p(x), x^106496 mod p(x) */ 475 .octa 0x00000000a56b000000000000efd60000 476 477 /* x^105536 mod p(x), x^105472 mod p(x) */ 478 .octa 0x0000000010e400000000000071380000 479 480 /* x^104512 mod p(x), x^104448 mod p(x) */ 481 .octa 0x00000000994500000000000004d30000 482 483 /* x^103488 mod p(x), x^103424 mod p(x) */ 484 .octa 0x00000000b83c0000000000003b0e0000 485 486 /* x^102464 mod p(x), x^102400 mod p(x) */ 487 .octa 0x00000000d6c10000000000008b020000 488 489 /* x^101440 mod p(x), x^101376 mod p(x) */ 490 .octa 0x000000009efc000000000000da940000 491 492 /* x^100416 mod p(x), x^100352 mod p(x) */ 493 .octa 0x000000005e87000000000000f9f70000 494 495 /* x^99392 mod p(x), x^99328 mod p(x) */ 496 .octa 0x000000006c9b00000000000045e40000 497 498 /* x^98368 mod p(x), x^98304 mod p(x) */ 499 .octa 0x00000000178a00000000000083940000 500 501 /* x^97344 mod p(x), x^97280 mod p(x) */ 502 .octa 0x00000000f0c8000000000000f0a00000 503 504 /* x^96320 mod p(x), x^96256 mod p(x) */ 505 .octa 0x00000000f699000000000000b74b0000 506 507 /* x^95296 mod p(x), x^95232 mod p(x) */ 508 .octa 0x00000000316d000000000000c1cf0000 509 510 /* x^94272 mod p(x), x^94208 mod p(x) */ 511 .octa 0x00000000987e00000000000072680000 512 513 /* x^93248 mod p(x), x^93184 mod p(x) */ 514 .octa 0x00000000acff000000000000e0ab0000 515 516 /* x^92224 mod p(x), x^92160 mod p(x) */ 517 .octa 0x00000000a1f6000000000000c5a80000 518 519 /* x^91200 mod p(x), x^91136 mod p(x) */ 520 .octa 0x0000000061bd000000000000cf690000 521 522 /* x^90176 mod p(x), x^90112 mod p(x) */ 523 .octa 0x00000000c9f2000000000000cbcc0000 524 525 /* x^89152 mod p(x), x^89088 mod p(x) */ 526 .octa 0x000000005a33000000000000de050000 527 528 /* x^88128 mod p(x), x^88064 mod p(x) */ 529 .octa 0x00000000e416000000000000ccd70000 530 531 /* x^87104 mod p(x), x^87040 mod p(x) */ 532 .octa 0x0000000058930000000000002f670000 533 534 /* x^86080 mod p(x), x^86016 mod p(x) */ 535 .octa 0x00000000a9d3000000000000152f0000 536 537 /* x^85056 mod p(x), x^84992 mod p(x) */ 538 .octa 0x00000000c114000000000000ecc20000 539 540 /* x^84032 mod p(x), x^83968 mod p(x) */ 541 .octa 0x00000000b9270000000000007c890000 542 543 /* x^83008 mod p(x), x^82944 mod p(x) */ 544 .octa 0x000000002e6000000000000006ee0000 545 546 /* x^81984 mod p(x), x^81920 mod p(x) */ 547 .octa 0x00000000dfc600000000000009100000 548 549 /* x^80960 mod p(x), x^80896 mod p(x) */ 550 .octa 0x000000004911000000000000ad4e0000 551 552 /* x^79936 mod p(x), x^79872 mod p(x) */ 553 .octa 0x00000000ae1b000000000000b04d0000 554 555 /* x^78912 mod p(x), x^78848 mod p(x) */ 556 .octa 0x0000000005fa000000000000e9900000 557 558 /* x^77888 mod p(x), x^77824 mod p(x) */ 559 .octa 0x0000000004a1000000000000cc6f0000 560 561 /* x^76864 mod p(x), x^76800 mod p(x) */ 562 .octa 0x00000000af73000000000000ed110000 563 564 /* x^75840 mod p(x), x^75776 mod p(x) */ 565 .octa 0x0000000082530000000000008f7e0000 566 567 /* x^74816 mod p(x), x^74752 mod p(x) */ 568 .octa 0x00000000cfdc000000000000594f0000 569 570 /* x^73792 mod p(x), x^73728 mod p(x) */ 571 .octa 0x00000000a6b6000000000000a8750000 572 573 /* x^72768 mod p(x), x^72704 mod p(x) */ 574 .octa 0x00000000fd76000000000000aa0c0000 575 576 /* x^71744 mod p(x), x^71680 mod p(x) */ 577 .octa 0x0000000006f500000000000071db0000 578 579 /* x^70720 mod p(x), x^70656 mod p(x) */ 580 .octa 0x0000000037ca000000000000ab0c0000 581 582 /* x^69696 mod p(x), x^69632 mod p(x) */ 583 .octa 0x00000000d7ab000000000000b7a00000 584 585 /* x^68672 mod p(x), x^68608 mod p(x) */ 586 .octa 0x00000000440800000000000090d30000 587 588 /* x^67648 mod p(x), x^67584 mod p(x) */ 589 .octa 0x00000000186100000000000054730000 590 591 /* x^66624 mod p(x), x^66560 mod p(x) */ 592 .octa 0x000000007368000000000000a3a20000 593 594 /* x^65600 mod p(x), x^65536 mod p(x) */ 595 .octa 0x0000000026d0000000000000f9040000 596 597 /* x^64576 mod p(x), x^64512 mod p(x) */ 598 .octa 0x00000000fe770000000000009c0a0000 599 600 /* x^63552 mod p(x), x^63488 mod p(x) */ 601 .octa 0x000000002cba000000000000d1e70000 602 603 /* x^62528 mod p(x), x^62464 mod p(x) */ 604 .octa 0x00000000f8bd0000000000005ac10000 605 606 /* x^61504 mod p(x), x^61440 mod p(x) */ 607 .octa 0x000000007372000000000000d68d0000 608 609 /* x^60480 mod p(x), x^60416 mod p(x) */ 610 .octa 0x00000000f37f00000000000089f60000 611 612 /* x^59456 mod p(x), x^59392 mod p(x) */ 613 .octa 0x00000000078400000000000008a90000 614 615 /* x^58432 mod p(x), x^58368 mod p(x) */ 616 .octa 0x00000000d3e400000000000042360000 617 618 /* x^57408 mod p(x), x^57344 mod p(x) */ 619 .octa 0x00000000eba800000000000092d50000 620 621 /* x^56384 mod p(x), x^56320 mod p(x) */ 622 .octa 0x00000000afbe000000000000b4d50000 623 624 /* x^55360 mod p(x), x^55296 mod p(x) */ 625 .octa 0x00000000d8ca000000000000c9060000 626 627 /* x^54336 mod p(x), x^54272 mod p(x) */ 628 .octa 0x00000000c2d00000000000008f4f0000 629 630 /* x^53312 mod p(x), x^53248 mod p(x) */ 631 .octa 0x00000000373200000000000028690000 632 633 /* x^52288 mod p(x), x^52224 mod p(x) */ 634 .octa 0x0000000046ae000000000000c3b30000 635 636 /* x^51264 mod p(x), x^51200 mod p(x) */ 637 .octa 0x00000000b243000000000000f8700000 638 639 /* x^50240 mod p(x), x^50176 mod p(x) */ 640 .octa 0x00000000f7f500000000000029eb0000 641 642 /* x^49216 mod p(x), x^49152 mod p(x) */ 643 .octa 0x000000000c7e000000000000fe730000 644 645 /* x^48192 mod p(x), x^48128 mod p(x) */ 646 .octa 0x00000000c38200000000000096000000 647 648 /* x^47168 mod p(x), x^47104 mod p(x) */ 649 .octa 0x000000008956000000000000683c0000 650 651 /* x^46144 mod p(x), x^46080 mod p(x) */ 652 .octa 0x00000000422d0000000000005f1e0000 653 654 /* x^45120 mod p(x), x^45056 mod p(x) */ 655 .octa 0x00000000ac0f0000000000006f810000 656 657 /* x^44096 mod p(x), x^44032 mod p(x) */ 658 .octa 0x00000000ce30000000000000031f0000 659 660 /* x^43072 mod p(x), x^43008 mod p(x) */ 661 .octa 0x000000003d43000000000000455a0000 662 663 /* x^42048 mod p(x), x^41984 mod p(x) */ 664 .octa 0x000000007ebe000000000000a6050000 665 666 /* x^41024 mod p(x), x^40960 mod p(x) */ 667 .octa 0x00000000976e00000000000077eb0000 668 669 /* x^40000 mod p(x), x^39936 mod p(x) */ 670 .octa 0x000000000872000000000000389c0000 671 672 /* x^38976 mod p(x), x^38912 mod p(x) */ 673 .octa 0x000000008979000000000000c7b20000 674 675 /* x^37952 mod p(x), x^37888 mod p(x) */ 676 .octa 0x000000005c1e0000000000001d870000 677 678 /* x^36928 mod p(x), x^36864 mod p(x) */ 679 .octa 0x00000000aebb00000000000045810000 680 681 /* x^35904 mod p(x), x^35840 mod p(x) */ 682 .octa 0x000000004f7e0000000000006d4a0000 683 684 /* x^34880 mod p(x), x^34816 mod p(x) */ 685 .octa 0x00000000ea98000000000000b9200000 686 687 /* x^33856 mod p(x), x^33792 mod p(x) */ 688 .octa 0x00000000f39600000000000022f20000 689 690 /* x^32832 mod p(x), x^32768 mod p(x) */ 691 .octa 0x000000000bc500000000000041ca0000 692 693 /* x^31808 mod p(x), x^31744 mod p(x) */ 694 .octa 0x00000000786400000000000078500000 695 696 /* x^30784 mod p(x), x^30720 mod p(x) */ 697 .octa 0x00000000be970000000000009e7e0000 698 699 /* x^29760 mod p(x), x^29696 mod p(x) */ 700 .octa 0x00000000dd6d000000000000a53c0000 701 702 /* x^28736 mod p(x), x^28672 mod p(x) */ 703 .octa 0x000000004c3f00000000000039340000 704 705 /* x^27712 mod p(x), x^27648 mod p(x) */ 706 .octa 0x0000000093a4000000000000b58e0000 707 708 /* x^26688 mod p(x), x^26624 mod p(x) */ 709 .octa 0x0000000050fb00000000000062d40000 710 711 /* x^25664 mod p(x), x^25600 mod p(x) */ 712 .octa 0x00000000f505000000000000a26f0000 713 714 /* x^24640 mod p(x), x^24576 mod p(x) */ 715 .octa 0x0000000064f900000000000065e60000 716 717 /* x^23616 mod p(x), x^23552 mod p(x) */ 718 .octa 0x00000000e8c2000000000000aad90000 719 720 /* x^22592 mod p(x), x^22528 mod p(x) */ 721 .octa 0x00000000720b000000000000a3b00000 722 723 /* x^21568 mod p(x), x^21504 mod p(x) */ 724 .octa 0x00000000e992000000000000d2680000 725 726 /* x^20544 mod p(x), x^20480 mod p(x) */ 727 .octa 0x000000009132000000000000cf4c0000 728 729 /* x^19520 mod p(x), x^19456 mod p(x) */ 730 .octa 0x00000000608a00000000000076610000 731 732 /* x^18496 mod p(x), x^18432 mod p(x) */ 733 .octa 0x000000009948000000000000fb9f0000 734 735 /* x^17472 mod p(x), x^17408 mod p(x) */ 736 .octa 0x00000000173000000000000003770000 737 738 /* x^16448 mod p(x), x^16384 mod p(x) */ 739 .octa 0x000000006fe300000000000004880000 740 741 /* x^15424 mod p(x), x^15360 mod p(x) */ 742 .octa 0x00000000e15300000000000056a70000 743 744 /* x^14400 mod p(x), x^14336 mod p(x) */ 745 .octa 0x0000000092d60000000000009dfd0000 746 747 /* x^13376 mod p(x), x^13312 mod p(x) */ 748 .octa 0x0000000002fd00000000000074c80000 749 750 /* x^12352 mod p(x), x^12288 mod p(x) */ 751 .octa 0x00000000c78b000000000000a3ec0000 752 753 /* x^11328 mod p(x), x^11264 mod p(x) */ 754 .octa 0x000000009262000000000000b3530000 755 756 /* x^10304 mod p(x), x^10240 mod p(x) */ 757 .octa 0x0000000084f200000000000047bf0000 758 759 /* x^9280 mod p(x), x^9216 mod p(x) */ 760 .octa 0x0000000067ee000000000000e97c0000 761 762 /* x^8256 mod p(x), x^8192 mod p(x) */ 763 .octa 0x00000000535b00000000000091e10000 764 765 /* x^7232 mod p(x), x^7168 mod p(x) */ 766 .octa 0x000000007ebb00000000000055060000 767 768 /* x^6208 mod p(x), x^6144 mod p(x) */ 769 .octa 0x00000000c6a1000000000000fd360000 770 771 /* x^5184 mod p(x), x^5120 mod p(x) */ 772 .octa 0x000000001be500000000000055860000 773 774 /* x^4160 mod p(x), x^4096 mod p(x) */ 775 .octa 0x00000000ae0e0000000000005bd00000 776 777 /* x^3136 mod p(x), x^3072 mod p(x) */ 778 .octa 0x0000000022040000000000008db20000 779 780 /* x^2112 mod p(x), x^2048 mod p(x) */ 781 .octa 0x00000000c9eb000000000000efe20000 782 783 /* x^1088 mod p(x), x^1024 mod p(x) */ 784 .octa 0x0000000039b400000000000051d10000 785 786 .short_constants: 787 788 /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */ 789 /* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */ 790 .octa 0xefe20000dccf00009440000033590000 791 792 /* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */ 793 .octa 0xee6300002f3f000062180000e0ed0000 794 795 /* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */ 796 .octa 0xcf5f000017ef0000ccbe000023d30000 797 798 /* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */ 799 .octa 0x6d0c0000a30e00000920000042630000 800 801 /* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */ 802 .octa 0x21d30000932b0000a7a00000efcc0000 803 804 /* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */ 805 .octa 0x10be00000b310000666f00000d1c0000 806 807 /* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */ 808 .octa 0x1f240000ce9e0000caad0000589e0000 809 810 /* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */ 811 .octa 0x29610000d02b000039b400007cf50000 812 813 /* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */ 814 .octa 0x51d100009d9d00003c0e0000bfd60000 815 816 /* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */ 817 .octa 0xda390000ceae000013830000713c0000 818 819 /* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */ 820 .octa 0xb67800001e16000085c0000080a60000 821 822 /* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */ 823 .octa 0x0db40000f7f90000371d0000e6580000 824 825 /* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */ 826 .octa 0x87e70000044c0000aadb0000a4970000 827 828 /* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */ 829 .octa 0x1f990000ad180000d8b30000e7b50000 830 831 /* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */ 832 .octa 0xbe6c00006ee300004c1a000006df0000 833 834 /* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */ 835 .octa 0xfb0b00002d560000136800008bb70000 836 837 838 .barrett_constants: 839 /* Barrett constant m - (4^32)/n */ 840 .octa 0x000000000000000000000001f65a57f8 /* x^64 div p(x) */ 841 /* Barrett constant n */ 842 .octa 0x0000000000000000000000018bb70000 843 844 #define CRC_FUNCTION_NAME __crct10dif_vpmsum 845 #include "crc32-vpmsum_core.S"
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.