~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/crypto/sha256-spe-glue.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Glue code for SHA-256 implementation for SPE instructions (PPC)
  4  *
  5  * Based on generic implementation. The assembler module takes care 
  6  * about the SPE registers so it can run from interrupt context.
  7  *
  8  * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
  9  */
 10 
 11 #include <crypto/internal/hash.h>
 12 #include <linux/init.h>
 13 #include <linux/module.h>
 14 #include <linux/mm.h>
 15 #include <linux/types.h>
 16 #include <crypto/sha2.h>
 17 #include <crypto/sha256_base.h>
 18 #include <asm/byteorder.h>
 19 #include <asm/switch_to.h>
 20 #include <linux/hardirq.h>
 21 
 22 /*
 23  * MAX_BYTES defines the number of bytes that are allowed to be processed
 24  * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
 25  * operations per 64 bytes. e500 cores can issue two arithmetic instructions
 26  * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
 27  * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
 28  * Headroom for cache misses included. Even with the low end model clocked
 29  * at 667 MHz this equals to a critical time window of less than 27us.
 30  *
 31  */
 32 #define MAX_BYTES 1024
 33 
 34 extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
 35 
 36 static void spe_begin(void)
 37 {
 38         /* We just start SPE operations and will save SPE registers later. */
 39         preempt_disable();
 40         enable_kernel_spe();
 41 }
 42 
 43 static void spe_end(void)
 44 {
 45         disable_kernel_spe();
 46         /* reenable preemption */
 47         preempt_enable();
 48 }
 49 
 50 static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
 51 {
 52         int count = sizeof(struct sha256_state) >> 2;
 53         u32 *ptr = (u32 *)sctx;
 54 
 55         /* make sure we can clear the fast way */
 56         BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
 57         do { *ptr++ = 0; } while (--count);
 58 }
 59 
 60 static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
 61                         unsigned int len)
 62 {
 63         struct sha256_state *sctx = shash_desc_ctx(desc);
 64         const unsigned int offset = sctx->count & 0x3f;
 65         const unsigned int avail = 64 - offset;
 66         unsigned int bytes;
 67         const u8 *src = data;
 68 
 69         if (avail > len) {
 70                 sctx->count += len;
 71                 memcpy((char *)sctx->buf + offset, src, len);
 72                 return 0;
 73         }
 74 
 75         sctx->count += len;
 76 
 77         if (offset) {
 78                 memcpy((char *)sctx->buf + offset, src, avail);
 79 
 80                 spe_begin();
 81                 ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
 82                 spe_end();
 83 
 84                 len -= avail;
 85                 src += avail;
 86         }
 87 
 88         while (len > 63) {
 89                 /* cut input data into smaller blocks */
 90                 bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
 91                 bytes = bytes & ~0x3f;
 92 
 93                 spe_begin();
 94                 ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
 95                 spe_end();
 96 
 97                 src += bytes;
 98                 len -= bytes;
 99         }
100 
101         memcpy((char *)sctx->buf, src, len);
102         return 0;
103 }
104 
105 static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
106 {
107         struct sha256_state *sctx = shash_desc_ctx(desc);
108         const unsigned int offset = sctx->count & 0x3f;
109         char *p = (char *)sctx->buf + offset;
110         int padlen;
111         __be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
112         __be32 *dst = (__be32 *)out;
113 
114         padlen = 55 - offset;
115         *p++ = 0x80;
116 
117         spe_begin();
118 
119         if (padlen < 0) {
120                 memset(p, 0x00, padlen + sizeof (u64));
121                 ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
122                 p = (char *)sctx->buf;
123                 padlen = 56;
124         }
125 
126         memset(p, 0, padlen);
127         *pbits = cpu_to_be64(sctx->count << 3);
128         ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
129 
130         spe_end();
131 
132         dst[0] = cpu_to_be32(sctx->state[0]);
133         dst[1] = cpu_to_be32(sctx->state[1]);
134         dst[2] = cpu_to_be32(sctx->state[2]);
135         dst[3] = cpu_to_be32(sctx->state[3]);
136         dst[4] = cpu_to_be32(sctx->state[4]);
137         dst[5] = cpu_to_be32(sctx->state[5]);
138         dst[6] = cpu_to_be32(sctx->state[6]);
139         dst[7] = cpu_to_be32(sctx->state[7]);
140 
141         ppc_sha256_clear_context(sctx);
142         return 0;
143 }
144 
145 static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
146 {
147         __be32 D[SHA256_DIGEST_SIZE >> 2];
148         __be32 *dst = (__be32 *)out;
149 
150         ppc_spe_sha256_final(desc, (u8 *)D);
151 
152         /* avoid bytewise memcpy */
153         dst[0] = D[0];
154         dst[1] = D[1];
155         dst[2] = D[2];
156         dst[3] = D[3];
157         dst[4] = D[4];
158         dst[5] = D[5];
159         dst[6] = D[6];
160 
161         /* clear sensitive data */
162         memzero_explicit(D, SHA256_DIGEST_SIZE);
163         return 0;
164 }
165 
166 static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
167 {
168         struct sha256_state *sctx = shash_desc_ctx(desc);
169 
170         memcpy(out, sctx, sizeof(*sctx));
171         return 0;
172 }
173 
174 static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
175 {
176         struct sha256_state *sctx = shash_desc_ctx(desc);
177 
178         memcpy(sctx, in, sizeof(*sctx));
179         return 0;
180 }
181 
182 static struct shash_alg algs[2] = { {
183         .digestsize     =       SHA256_DIGEST_SIZE,
184         .init           =       sha256_base_init,
185         .update         =       ppc_spe_sha256_update,
186         .final          =       ppc_spe_sha256_final,
187         .export         =       ppc_spe_sha256_export,
188         .import         =       ppc_spe_sha256_import,
189         .descsize       =       sizeof(struct sha256_state),
190         .statesize      =       sizeof(struct sha256_state),
191         .base           =       {
192                 .cra_name       =       "sha256",
193                 .cra_driver_name=       "sha256-ppc-spe",
194                 .cra_priority   =       300,
195                 .cra_blocksize  =       SHA256_BLOCK_SIZE,
196                 .cra_module     =       THIS_MODULE,
197         }
198 }, {
199         .digestsize     =       SHA224_DIGEST_SIZE,
200         .init           =       sha224_base_init,
201         .update         =       ppc_spe_sha256_update,
202         .final          =       ppc_spe_sha224_final,
203         .export         =       ppc_spe_sha256_export,
204         .import         =       ppc_spe_sha256_import,
205         .descsize       =       sizeof(struct sha256_state),
206         .statesize      =       sizeof(struct sha256_state),
207         .base           =       {
208                 .cra_name       =       "sha224",
209                 .cra_driver_name=       "sha224-ppc-spe",
210                 .cra_priority   =       300,
211                 .cra_blocksize  =       SHA224_BLOCK_SIZE,
212                 .cra_module     =       THIS_MODULE,
213         }
214 } };
215 
216 static int __init ppc_spe_sha256_mod_init(void)
217 {
218         return crypto_register_shashes(algs, ARRAY_SIZE(algs));
219 }
220 
221 static void __exit ppc_spe_sha256_mod_fini(void)
222 {
223         crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
224 }
225 
226 module_init(ppc_spe_sha256_mod_init);
227 module_exit(ppc_spe_sha256_mod_fini);
228 
229 MODULE_LICENSE("GPL");
230 MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
231 
232 MODULE_ALIAS_CRYPTO("sha224");
233 MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
234 MODULE_ALIAS_CRYPTO("sha256");
235 MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
236 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php