~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/include/asm/book3s/64/hash-64k.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
  3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
  4 
  5 #define H_PTE_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 64KB = 16MB
  6 #define H_PMD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
  7 #define H_PUD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
  8 #define H_PGD_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 16TB =  4PB
  9 
 10 /*
 11  * If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS
 12  * if we increase SECTIONS_WIDTH we will not store node details in page->flags and
 13  * page_to_nid does a page->section->node lookup
 14  * Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce
 15  * memory requirements with large number of sections.
 16  * 51 bits is the max physical real address on POWER9
 17  */
 18 #if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME)
 19 #define H_MAX_PHYSMEM_BITS      51
 20 #else
 21 #define H_MAX_PHYSMEM_BITS      46
 22 #endif
 23 
 24 /*
 25  * Each context is 512TB size. SLB miss for first context/default context
 26  * is handled in the hotpath.
 27  */
 28 #define MAX_EA_BITS_PER_CONTEXT         49
 29 #define REGION_SHIFT            MAX_EA_BITS_PER_CONTEXT
 30 
 31 /*
 32  * We use one context for each MAP area.
 33  */
 34 #define H_KERN_MAP_SIZE         (1UL << MAX_EA_BITS_PER_CONTEXT)
 35 
 36 /*
 37  * Define the address range of the kernel non-linear virtual area
 38  * 2PB
 39  */
 40 #define H_KERN_VIRT_START       ASM_CONST(0xc008000000000000)
 41 
 42 /*
 43  * 64k aligned address free up few of the lower bits of RPN for us
 44  * We steal that here. For more deatils look at pte_pfn/pfn_pte()
 45  */
 46 #define H_PAGE_COMBO    _RPAGE_RPN0 /* this is a combo 4k page */
 47 #define H_PAGE_4K_PFN   _RPAGE_RPN1 /* PFN is for a single 4k page */
 48 #define H_PAGE_BUSY     _RPAGE_RSV1     /* software: PTE & hash are busy */
 49 #define H_PAGE_HASHPTE  _RPAGE_RPN43    /* PTE has associated HPTE */
 50 
 51 /* memory key bits. */
 52 #define H_PTE_PKEY_BIT4         _RPAGE_PKEY_BIT4
 53 #define H_PTE_PKEY_BIT3         _RPAGE_PKEY_BIT3
 54 #define H_PTE_PKEY_BIT2         _RPAGE_PKEY_BIT2
 55 #define H_PTE_PKEY_BIT1         _RPAGE_PKEY_BIT1
 56 #define H_PTE_PKEY_BIT0         _RPAGE_PKEY_BIT0
 57 
 58 /*
 59  * We need to differentiate between explicit huge page and THP huge
 60  * page, since THP huge page also need to track real subpage details
 61  */
 62 #define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
 63 
 64 /* PTE flags to conserve for HPTE identification */
 65 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
 66 /*
 67  * We use a 2K PTE page fragment and another 2K for storing
 68  * real_pte_t hash index
 69  * 8 bytes per each pte entry and another 8 bytes for storing
 70  * slot details.
 71  */
 72 #define H_PTE_FRAG_SIZE_SHIFT  (H_PTE_INDEX_SIZE + 3 + 1)
 73 #define H_PTE_FRAG_NR   (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
 74 
 75 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
 76 #define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3 + 1)
 77 #else
 78 #define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3)
 79 #endif
 80 #define H_PMD_FRAG_NR   (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
 81 
 82 #ifndef __ASSEMBLY__
 83 #include <asm/errno.h>
 84 
 85 /*
 86  * With 64K pages on hash table, we have a special PTE format that
 87  * uses a second "half" of the page table to encode sub-page information
 88  * in order to deal with 64K made of 4K HW pages. Thus we override the
 89  * generic accessors and iterators here
 90  */
 91 #define __real_pte __real_pte
 92 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
 93 {
 94         real_pte_t rpte;
 95         unsigned long *hidxp;
 96 
 97         rpte.pte = pte;
 98 
 99         /*
100          * Ensure that we do not read the hidx before we read the PTE. Because
101          * the writer side is expected to finish writing the hidx first followed
102          * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
103          */
104         smp_rmb();
105 
106         hidxp = (unsigned long *)(ptep + offset);
107         rpte.hidx = *hidxp;
108         return rpte;
109 }
110 
111 /*
112  * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
113  * as 1, 1 as 2,... , and 0xf as 0.  This convention lets us represent a
114  * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
115  * allocated. We dont have to zero them gain; thus save on the initialization.
116  */
117 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
118 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL)   /* shift forward by one */
119 #define HIDX_BITS(x, index)  (x << (index << 2))
120 #define BITS_TO_HIDX(x, index)  ((x >> (index << 2)) & 0xfUL)
121 #define INVALID_RPTE_HIDX  0x0UL
122 
123 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
124 {
125         return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
126 }
127 
128 /*
129  * Commit the hidx and return PTE bits that needs to be modified. The caller is
130  * expected to modify the PTE bits accordingly and commit the PTE to memory.
131  */
132 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
133                                          unsigned int subpg_index,
134                                          unsigned long hidx, int offset)
135 {
136         unsigned long *hidxp = (unsigned long *)(ptep + offset);
137 
138         rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
139         *hidxp = rpte.hidx  | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
140 
141         /*
142          * Anyone reading PTE must ensure hidx bits are read after reading the
143          * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
144          * used for that.
145          */
146         smp_wmb();
147 
148         /* No PTE bits to be modified, return 0x0UL */
149         return 0x0UL;
150 }
151 
152 #define __rpte_to_pte(r)        ((r).pte)
153 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
154 /*
155  * Trick: we set __end to va + 64k, which happens works for
156  * a 16M page as well as we want only one iteration
157  */
158 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)     \
159         do {                                                            \
160                 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));  \
161                 unsigned __split = (psize == MMU_PAGE_4K ||             \
162                                     psize == MMU_PAGE_64K_AP);          \
163                 shift = mmu_psize_defs[psize].shift;                    \
164                 for (index = 0; vpn < __end; index++,                   \
165                              vpn += (1L << (shift - VPN_SHIFT))) {      \
166                 if (!__split || __rpte_sub_valid(rpte, index))
167 
168 #define pte_iterate_hashed_end()  } } while(0)
169 
170 #define pte_pagesize_index(mm, addr, pte)       \
171         (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
172 
173 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
174                            unsigned long pfn, unsigned long size, pgprot_t);
175 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
176                                  unsigned long pfn, pgprot_t prot)
177 {
178         if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
179                 WARN(1, "remap_4k_pfn called with wrong pfn value\n");
180                 return -EINVAL;
181         }
182         return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
183                                __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
184 }
185 
186 #define H_PTE_TABLE_SIZE        PTE_FRAG_SIZE
187 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
188 #define H_PMD_TABLE_SIZE        ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
189                                  (sizeof(unsigned long) << PMD_INDEX_SIZE))
190 #else
191 #define H_PMD_TABLE_SIZE        (sizeof(pmd_t) << PMD_INDEX_SIZE)
192 #endif
193 #ifdef CONFIG_HUGETLB_PAGE
194 #define H_PUD_TABLE_SIZE        ((sizeof(pud_t) << PUD_INDEX_SIZE) +    \
195                                  (sizeof(unsigned long) << PUD_INDEX_SIZE))
196 #else
197 #define H_PUD_TABLE_SIZE        (sizeof(pud_t) << PUD_INDEX_SIZE)
198 #endif
199 #define H_PGD_TABLE_SIZE        (sizeof(pgd_t) << PGD_INDEX_SIZE)
200 
201 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
202 static inline char *get_hpte_slot_array(pmd_t *pmdp)
203 {
204         /*
205          * The hpte hindex is stored in the pgtable whose address is in the
206          * second half of the PMD
207          *
208          * Order this load with the test for pmd_trans_huge in the caller
209          */
210         smp_rmb();
211         return *(char **)(pmdp + PTRS_PER_PMD);
212 
213 
214 }
215 /*
216  * The linux hugepage PMD now include the pmd entries followed by the address
217  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
218  * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
219  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
220  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
221  *
222  * The top three bits are intentionally left as zero. This memory location
223  * are also used as normal page PTE pointers. So if we have any pointers
224  * left around while we collapse a hugepage, we need to make sure
225  * _PAGE_PRESENT bit of that is zero when we look at them
226  */
227 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
228 {
229         return hpte_slot_array[index] & 0x1;
230 }
231 
232 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
233                                            int index)
234 {
235         return hpte_slot_array[index] >> 1;
236 }
237 
238 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
239                                         unsigned int index, unsigned int hidx)
240 {
241         hpte_slot_array[index] = (hidx << 1) | 0x1;
242 }
243 
244 /*
245  *
246  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
247  * page. The hugetlbfs page table walking and mangling paths are totally
248  * separated form the core VM paths and they're differentiated by
249  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
250  *
251  * pmd_trans_huge() is defined as false at build time if
252  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
253  * time in such case.
254  *
255  * For ppc64 we need to differntiate from explicit hugepages from THP, because
256  * for THP we also track the subpage details at the pmd level. We don't do
257  * that for explicit huge pages.
258  *
259  */
260 static inline int hash__pmd_trans_huge(pmd_t pmd)
261 {
262         return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)) ==
263                   (_PAGE_PTE | H_PAGE_THP_HUGE));
264 }
265 
266 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
267 {
268         return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
269 }
270 
271 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
272                                            unsigned long addr, pmd_t *pmdp,
273                                            unsigned long clr, unsigned long set);
274 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
275                                    unsigned long address, pmd_t *pmdp);
276 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
277                                          pgtable_t pgtable);
278 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
279 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
280                                        unsigned long addr, pmd_t *pmdp);
281 extern int hash__has_transparent_hugepage(void);
282 #endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
283 
284 static inline pmd_t hash__pmd_mkdevmap(pmd_t pmd)
285 {
286         return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP));
287 }
288 
289 #endif  /* __ASSEMBLY__ */
290 
291 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
292 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php