1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_PGTABLE_RADIX_H 3 #define _ASM_POWERPC_PGTABLE_RADIX_H 4 5 #include <asm/asm-const.h> 6 7 #ifndef __ASSEMBLY__ 8 #include <asm/cmpxchg.h> 9 #endif 10 11 #ifdef CONFIG_PPC_64K_PAGES 12 #include <asm/book3s/64/radix-64k.h> 13 #else 14 #include <asm/book3s/64/radix-4k.h> 15 #endif 16 17 #ifndef __ASSEMBLY__ 18 #include <asm/book3s/64/tlbflush-radix.h> 19 #include <asm/cpu_has_feature.h> 20 #endif 21 22 /* An empty PTE can still have a R or C writeback */ 23 #define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED) 24 25 /* Bits to set in a RPMD/RPUD/RPGD */ 26 #define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE) 27 #define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE) 28 #define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE) 29 30 /* Don't have anything in the reserved bits and leaf bits */ 31 #define RADIX_PMD_BAD_BITS 0x60000000000000e0UL 32 #define RADIX_PUD_BAD_BITS 0x60000000000000e0UL 33 #define RADIX_P4D_BAD_BITS 0x60000000000000e0UL 34 35 #define RADIX_PMD_SHIFT (PAGE_SHIFT + RADIX_PTE_INDEX_SIZE) 36 #define RADIX_PUD_SHIFT (RADIX_PMD_SHIFT + RADIX_PMD_INDEX_SIZE) 37 #define RADIX_PGD_SHIFT (RADIX_PUD_SHIFT + RADIX_PUD_INDEX_SIZE) 38 39 #define R_PTRS_PER_PTE (1 << RADIX_PTE_INDEX_SIZE) 40 #define R_PTRS_PER_PMD (1 << RADIX_PMD_INDEX_SIZE) 41 #define R_PTRS_PER_PUD (1 << RADIX_PUD_INDEX_SIZE) 42 43 /* 44 * Size of EA range mapped by our pagetables. 45 */ 46 #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \ 47 RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT) 48 #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE) 49 50 /* 51 * We support 52 bit address space, Use top bit for kernel 52 * virtual mapping. Also make sure kernel fit in the top 53 * quadrant. 54 * 55 * +------------------+ 56 * +------------------+ Kernel virtual map (0xc008000000000000) 57 * | | 58 * | | 59 * | | 60 * 0b11......+------------------+ Kernel linear map (0xc....) 61 * | | 62 * | 2 quadrant | 63 * | | 64 * 0b10......+------------------+ 65 * | | 66 * | 1 quadrant | 67 * | | 68 * 0b01......+------------------+ 69 * | | 70 * | 0 quadrant | 71 * | | 72 * 0b00......+------------------+ 73 * 74 * 75 * 3rd quadrant expanded: 76 * +------------------------------+ Highest address (0xc010000000000000) 77 * +------------------------------+ KASAN shadow end (0xc00fc00000000000) 78 * | | 79 * | | 80 * +------------------------------+ Kernel vmemmap end/shadow start (0xc00e000000000000) 81 * | | 82 * | 512TB | 83 * | | 84 * +------------------------------+ Kernel IO map end/vmemap start 85 * | | 86 * | 512TB | 87 * | | 88 * +------------------------------+ Kernel vmap end/ IO map start 89 * | | 90 * | 512TB | 91 * | | 92 * +------------------------------+ Kernel virt start (0xc008000000000000) 93 * | | 94 * | | 95 * | | 96 * +------------------------------+ Kernel linear (0xc.....) 97 */ 98 99 /* For the sizes of the shadow area, see kasan.h */ 100 101 /* 102 * If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS 103 * if we increase SECTIONS_WIDTH we will not store node details in page->flags and 104 * page_to_nid does a page->section->node lookup 105 * Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce 106 * memory requirements with large number of sections. 107 * 51 bits is the max physical real address on POWER9 108 */ 109 110 #if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME) 111 #define R_MAX_PHYSMEM_BITS 51 112 #else 113 #define R_MAX_PHYSMEM_BITS 46 114 #endif 115 116 #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000) 117 /* 118 * 49 = MAX_EA_BITS_PER_CONTEXT (hash specific). To make sure we pick 119 * the same value as hash. 120 */ 121 #define RADIX_KERN_MAP_SIZE (1UL << 49) 122 123 #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START 124 #define RADIX_VMALLOC_SIZE RADIX_KERN_MAP_SIZE 125 #define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE) 126 127 #define RADIX_KERN_IO_START RADIX_VMALLOC_END 128 #define RADIX_KERN_IO_SIZE RADIX_KERN_MAP_SIZE 129 #define RADIX_KERN_IO_END (RADIX_KERN_IO_START + RADIX_KERN_IO_SIZE) 130 131 #define RADIX_VMEMMAP_START RADIX_KERN_IO_END 132 #define RADIX_VMEMMAP_SIZE RADIX_KERN_MAP_SIZE 133 #define RADIX_VMEMMAP_END (RADIX_VMEMMAP_START + RADIX_VMEMMAP_SIZE) 134 135 #ifndef __ASSEMBLY__ 136 #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE) 137 #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE) 138 #define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE) 139 #define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE) 140 141 #ifdef CONFIG_STRICT_KERNEL_RWX 142 extern void radix__mark_rodata_ro(void); 143 extern void radix__mark_initmem_nx(void); 144 #endif 145 146 extern void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, 147 pte_t entry, unsigned long address, 148 int psize); 149 150 extern void radix__ptep_modify_prot_commit(struct vm_area_struct *vma, 151 unsigned long addr, pte_t *ptep, 152 pte_t old_pte, pte_t pte); 153 154 static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr, 155 unsigned long set) 156 { 157 __be64 old_be, tmp_be; 158 159 __asm__ __volatile__( 160 "1: ldarx %0,0,%3 # pte_update\n" 161 " andc %1,%0,%5 \n" 162 " or %1,%1,%4 \n" 163 " stdcx. %1,0,%3 \n" 164 " bne- 1b" 165 : "=&r" (old_be), "=&r" (tmp_be), "=m" (*ptep) 166 : "r" (ptep), "r" (cpu_to_be64(set)), "r" (cpu_to_be64(clr)) 167 : "cc" ); 168 169 return be64_to_cpu(old_be); 170 } 171 172 static inline unsigned long radix__pte_update(struct mm_struct *mm, 173 unsigned long addr, 174 pte_t *ptep, unsigned long clr, 175 unsigned long set, 176 int huge) 177 { 178 unsigned long old_pte; 179 180 old_pte = __radix_pte_update(ptep, clr, set); 181 if (!huge) 182 assert_pte_locked(mm, addr); 183 184 return old_pte; 185 } 186 187 static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm, 188 unsigned long addr, 189 pte_t *ptep, int full) 190 { 191 unsigned long old_pte; 192 193 if (full) { 194 old_pte = pte_val(*ptep); 195 *ptep = __pte(0); 196 } else 197 old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0); 198 199 return __pte(old_pte); 200 } 201 202 static inline int radix__pte_same(pte_t pte_a, pte_t pte_b) 203 { 204 return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0); 205 } 206 207 static inline int radix__pte_none(pte_t pte) 208 { 209 return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0; 210 } 211 212 static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr, 213 pte_t *ptep, pte_t pte, int percpu) 214 { 215 *ptep = pte; 216 217 /* 218 * The architecture suggests a ptesync after setting the pte, which 219 * orders the store that updates the pte with subsequent page table 220 * walk accesses which may load the pte. Without this it may be 221 * possible for a subsequent access to result in spurious fault. 222 * 223 * This is not necessary for correctness, because a spurious fault 224 * is tolerated by the page fault handler, and this store will 225 * eventually be seen. In testing, there was no noticable increase 226 * in user faults on POWER9. Avoiding ptesync here is a significant 227 * win for things like fork. If a future microarchitecture benefits 228 * from ptesync, it should probably go into update_mmu_cache, rather 229 * than set_pte_at (which is used to set ptes unrelated to faults). 230 * 231 * Spurious faults from the kernel memory are not tolerated, so there 232 * is a ptesync in flush_cache_vmap, and __map_kernel_page() follows 233 * the pte update sequence from ISA Book III 6.10 Translation Table 234 * Update Synchronization Requirements. 235 */ 236 } 237 238 static inline int radix__pmd_bad(pmd_t pmd) 239 { 240 return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS); 241 } 242 243 static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b) 244 { 245 return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0); 246 } 247 248 static inline int radix__pud_bad(pud_t pud) 249 { 250 return !!(pud_val(pud) & RADIX_PUD_BAD_BITS); 251 } 252 253 static inline int radix__pud_same(pud_t pud_a, pud_t pud_b) 254 { 255 return ((pud_raw(pud_a) ^ pud_raw(pud_b)) == 0); 256 } 257 258 static inline int radix__p4d_bad(p4d_t p4d) 259 { 260 return !!(p4d_val(p4d) & RADIX_P4D_BAD_BITS); 261 } 262 263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 264 265 static inline int radix__pmd_trans_huge(pmd_t pmd) 266 { 267 return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE; 268 } 269 270 static inline pmd_t radix__pmd_mkhuge(pmd_t pmd) 271 { 272 return __pmd(pmd_val(pmd) | _PAGE_PTE); 273 } 274 275 static inline int radix__pud_trans_huge(pud_t pud) 276 { 277 return (pud_val(pud) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE; 278 } 279 280 static inline pud_t radix__pud_mkhuge(pud_t pud) 281 { 282 return __pud(pud_val(pud) | _PAGE_PTE); 283 } 284 285 extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, 286 pmd_t *pmdp, unsigned long clr, 287 unsigned long set); 288 extern unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr, 289 pud_t *pudp, unsigned long clr, 290 unsigned long set); 291 extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, 292 unsigned long address, pmd_t *pmdp); 293 extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 294 pgtable_t pgtable); 295 extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 296 extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, 297 unsigned long addr, pmd_t *pmdp); 298 pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm, 299 unsigned long addr, pud_t *pudp); 300 301 static inline int radix__has_transparent_hugepage(void) 302 { 303 /* For radix 2M at PMD level means thp */ 304 if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT) 305 return 1; 306 return 0; 307 } 308 309 static inline int radix__has_transparent_pud_hugepage(void) 310 { 311 /* For radix 1G at PUD level means pud hugepage support */ 312 if (mmu_psize_defs[MMU_PAGE_1G].shift == PUD_SHIFT) 313 return 1; 314 return 0; 315 } 316 #endif 317 318 static inline pmd_t radix__pmd_mkdevmap(pmd_t pmd) 319 { 320 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP)); 321 } 322 323 static inline pud_t radix__pud_mkdevmap(pud_t pud) 324 { 325 return __pud(pud_val(pud) | (_PAGE_PTE | _PAGE_DEVMAP)); 326 } 327 328 struct vmem_altmap; 329 struct dev_pagemap; 330 extern int __meminit radix__vmemmap_create_mapping(unsigned long start, 331 unsigned long page_size, 332 unsigned long phys); 333 int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, 334 int node, struct vmem_altmap *altmap); 335 void __ref radix__vmemmap_free(unsigned long start, unsigned long end, 336 struct vmem_altmap *altmap); 337 extern void radix__vmemmap_remove_mapping(unsigned long start, 338 unsigned long page_size); 339 340 extern int radix__map_kernel_page(unsigned long ea, unsigned long pa, 341 pgprot_t flags, unsigned int psz); 342 343 static inline unsigned long radix__get_tree_size(void) 344 { 345 unsigned long rts_field; 346 /* 347 * We support 52 bits, hence: 348 * bits 52 - 31 = 21, 0b10101 349 * RTS encoding details 350 * bits 0 - 3 of rts -> bits 6 - 8 unsigned long 351 * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long 352 */ 353 rts_field = (0x5UL << 5); /* 6 - 8 bits */ 354 rts_field |= (0x2UL << 61); 355 356 return rts_field; 357 } 358 359 #ifdef CONFIG_MEMORY_HOTPLUG 360 int radix__create_section_mapping(unsigned long start, unsigned long end, 361 int nid, pgprot_t prot); 362 int radix__remove_section_mapping(unsigned long start, unsigned long end); 363 #endif /* CONFIG_MEMORY_HOTPLUG */ 364 365 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 366 #define vmemmap_can_optimize vmemmap_can_optimize 367 bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap); 368 #endif 369 370 #define vmemmap_populate_compound_pages vmemmap_populate_compound_pages 371 int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, 372 unsigned long start, 373 unsigned long end, int node, 374 struct dev_pagemap *pgmap); 375 #endif /* __ASSEMBLY__ */ 376 #endif 377
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.