1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_DMA_H 3 #define _ASM_POWERPC_DMA_H 4 #ifdef __KERNEL__ 5 6 /* 7 * Defines for using and allocating dma channels. 8 * Written by Hennus Bergman, 1992. 9 * High DMA channel support & info by Hannu Savolainen 10 * and John Boyd, Nov. 1992. 11 * Changes for ppc sound by Christoph Nadig 12 */ 13 14 /* 15 * Note: Adapted for PowerPC by Gary Thomas 16 * Modified by Cort Dougan <cort@cs.nmt.edu> 17 * 18 * None of this really applies for Power Macintoshes. There is 19 * basically just enough here to get kernel/dma.c to compile. 20 */ 21 22 #include <asm/io.h> 23 #include <linux/spinlock.h> 24 25 #ifndef MAX_DMA_CHANNELS 26 #define MAX_DMA_CHANNELS 8 27 #endif 28 29 /* The maximum address that we can perform a DMA transfer to on this platform */ 30 /* Doesn't really apply... */ 31 #define MAX_DMA_ADDRESS (~0UL) 32 33 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER 34 #define dma_outb outb_p 35 #else 36 #define dma_outb outb 37 #endif 38 39 #define dma_inb inb 40 41 /* 42 * NOTES about DMA transfers: 43 * 44 * controller 1: channels 0-3, byte operations, ports 00-1F 45 * controller 2: channels 4-7, word operations, ports C0-DF 46 * 47 * - ALL registers are 8 bits only, regardless of transfer size 48 * - channel 4 is not used - cascades 1 into 2. 49 * - channels 0-3 are byte - addresses/counts are for physical bytes 50 * - channels 5-7 are word - addresses/counts are for physical words 51 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries 52 * - transfer count loaded to registers is 1 less than actual count 53 * - controller 2 offsets are all even (2x offsets for controller 1) 54 * - page registers for 5-7 don't use data bit 0, represent 128K pages 55 * - page registers for 0-3 use bit 0, represent 64K pages 56 * 57 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing. 58 * Note that addresses loaded into registers must be _physical_ addresses, 59 * not logical addresses (which may differ if paging is active). 60 * 61 * Address mapping for channels 0-3: 62 * 63 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) 64 * | ... | | ... | | ... | 65 * | ... | | ... | | ... | 66 * | ... | | ... | | ... | 67 * P7 ... P0 A7 ... A0 A7 ... A0 68 * | Page | Addr MSB | Addr LSB | (DMA registers) 69 * 70 * Address mapping for channels 5-7: 71 * 72 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) 73 * | ... | \ \ ... \ \ \ ... \ \ 74 * | ... | \ \ ... \ \ \ ... \ (not used) 75 * | ... | \ \ ... \ \ \ ... \ 76 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 77 * | Page | Addr MSB | Addr LSB | (DMA registers) 78 * 79 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses 80 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at 81 * the hardware level, so odd-byte transfers aren't possible). 82 * 83 * Transfer count (_not # bytes_) is limited to 64K, represented as actual 84 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, 85 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 86 * 87 */ 88 89 /* 8237 DMA controllers */ 90 #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ 91 #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ 92 93 /* DMA controller registers */ 94 #define DMA1_CMD_REG 0x08 /* command register (w) */ 95 #define DMA1_STAT_REG 0x08 /* status register (r) */ 96 #define DMA1_REQ_REG 0x09 /* request register (w) */ 97 #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ 98 #define DMA1_MODE_REG 0x0B /* mode register (w) */ 99 #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ 100 #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ 101 #define DMA1_RESET_REG 0x0D /* Master Clear (w) */ 102 #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ 103 #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ 104 105 #define DMA2_CMD_REG 0xD0 /* command register (w) */ 106 #define DMA2_STAT_REG 0xD0 /* status register (r) */ 107 #define DMA2_REQ_REG 0xD2 /* request register (w) */ 108 #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ 109 #define DMA2_MODE_REG 0xD6 /* mode register (w) */ 110 #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ 111 #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ 112 #define DMA2_RESET_REG 0xDA /* Master Clear (w) */ 113 #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ 114 #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ 115 116 #define DMA_ADDR_0 0x00 /* DMA address registers */ 117 #define DMA_ADDR_1 0x02 118 #define DMA_ADDR_2 0x04 119 #define DMA_ADDR_3 0x06 120 #define DMA_ADDR_4 0xC0 121 #define DMA_ADDR_5 0xC4 122 #define DMA_ADDR_6 0xC8 123 #define DMA_ADDR_7 0xCC 124 125 #define DMA_CNT_0 0x01 /* DMA count registers */ 126 #define DMA_CNT_1 0x03 127 #define DMA_CNT_2 0x05 128 #define DMA_CNT_3 0x07 129 #define DMA_CNT_4 0xC2 130 #define DMA_CNT_5 0xC6 131 #define DMA_CNT_6 0xCA 132 #define DMA_CNT_7 0xCE 133 134 #define DMA_LO_PAGE_0 0x87 /* DMA page registers */ 135 #define DMA_LO_PAGE_1 0x83 136 #define DMA_LO_PAGE_2 0x81 137 #define DMA_LO_PAGE_3 0x82 138 #define DMA_LO_PAGE_5 0x8B 139 #define DMA_LO_PAGE_6 0x89 140 #define DMA_LO_PAGE_7 0x8A 141 142 #define DMA_HI_PAGE_0 0x487 /* DMA page registers */ 143 #define DMA_HI_PAGE_1 0x483 144 #define DMA_HI_PAGE_2 0x481 145 #define DMA_HI_PAGE_3 0x482 146 #define DMA_HI_PAGE_5 0x48B 147 #define DMA_HI_PAGE_6 0x489 148 #define DMA_HI_PAGE_7 0x48A 149 150 #define DMA1_EXT_REG 0x40B 151 #define DMA2_EXT_REG 0x4D6 152 153 #ifndef __powerpc64__ 154 /* in arch/powerpc/kernel/setup_32.c -- Cort */ 155 extern unsigned int DMA_MODE_WRITE; 156 extern unsigned int DMA_MODE_READ; 157 #else 158 #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ 159 #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ 160 #endif 161 162 #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ 163 164 #define DMA_AUTOINIT 0x10 165 166 extern spinlock_t dma_spin_lock; 167 168 static __inline__ unsigned long claim_dma_lock(void) 169 { 170 unsigned long flags; 171 spin_lock_irqsave(&dma_spin_lock, flags); 172 return flags; 173 } 174 175 static __inline__ void release_dma_lock(unsigned long flags) 176 { 177 spin_unlock_irqrestore(&dma_spin_lock, flags); 178 } 179 180 /* enable/disable a specific DMA channel */ 181 static __inline__ void enable_dma(unsigned int dmanr) 182 { 183 unsigned char ucDmaCmd = 0x00; 184 185 if (dmanr != 4) { 186 dma_outb(0, DMA2_MASK_REG); /* This may not be enabled */ 187 dma_outb(ucDmaCmd, DMA2_CMD_REG); /* Enable group */ 188 } 189 if (dmanr <= 3) { 190 dma_outb(dmanr, DMA1_MASK_REG); 191 dma_outb(ucDmaCmd, DMA1_CMD_REG); /* Enable group */ 192 } else { 193 dma_outb(dmanr & 3, DMA2_MASK_REG); 194 } 195 } 196 197 static __inline__ void disable_dma(unsigned int dmanr) 198 { 199 if (dmanr <= 3) 200 dma_outb(dmanr | 4, DMA1_MASK_REG); 201 else 202 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); 203 } 204 205 /* Clear the 'DMA Pointer Flip Flop'. 206 * Write 0 for LSB/MSB, 1 for MSB/LSB access. 207 * Use this once to initialize the FF to a known state. 208 * After that, keep track of it. :-) 209 * --- In order to do that, the DMA routines below should --- 210 * --- only be used while interrupts are disabled! --- 211 */ 212 static __inline__ void clear_dma_ff(unsigned int dmanr) 213 { 214 if (dmanr <= 3) 215 dma_outb(0, DMA1_CLEAR_FF_REG); 216 else 217 dma_outb(0, DMA2_CLEAR_FF_REG); 218 } 219 220 /* set mode (above) for a specific DMA channel */ 221 static __inline__ void set_dma_mode(unsigned int dmanr, char mode) 222 { 223 if (dmanr <= 3) 224 dma_outb(mode | dmanr, DMA1_MODE_REG); 225 else 226 dma_outb(mode | (dmanr & 3), DMA2_MODE_REG); 227 } 228 229 /* Set only the page register bits of the transfer address. 230 * This is used for successive transfers when we know the contents of 231 * the lower 16 bits of the DMA current address register, but a 64k boundary 232 * may have been crossed. 233 */ 234 static __inline__ void set_dma_page(unsigned int dmanr, int pagenr) 235 { 236 switch (dmanr) { 237 case 0: 238 dma_outb(pagenr, DMA_LO_PAGE_0); 239 dma_outb(pagenr >> 8, DMA_HI_PAGE_0); 240 break; 241 case 1: 242 dma_outb(pagenr, DMA_LO_PAGE_1); 243 dma_outb(pagenr >> 8, DMA_HI_PAGE_1); 244 break; 245 case 2: 246 dma_outb(pagenr, DMA_LO_PAGE_2); 247 dma_outb(pagenr >> 8, DMA_HI_PAGE_2); 248 break; 249 case 3: 250 dma_outb(pagenr, DMA_LO_PAGE_3); 251 dma_outb(pagenr >> 8, DMA_HI_PAGE_3); 252 break; 253 case 5: 254 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5); 255 dma_outb(pagenr >> 8, DMA_HI_PAGE_5); 256 break; 257 case 6: 258 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6); 259 dma_outb(pagenr >> 8, DMA_HI_PAGE_6); 260 break; 261 case 7: 262 dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7); 263 dma_outb(pagenr >> 8, DMA_HI_PAGE_7); 264 break; 265 } 266 } 267 268 /* Set transfer address & page bits for specific DMA channel. 269 * Assumes dma flipflop is clear. 270 */ 271 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys) 272 { 273 if (dmanr <= 3) { 274 dma_outb(phys & 0xff, 275 ((dmanr & 3) << 1) + IO_DMA1_BASE); 276 dma_outb((phys >> 8) & 0xff, 277 ((dmanr & 3) << 1) + IO_DMA1_BASE); 278 } else { 279 dma_outb((phys >> 1) & 0xff, 280 ((dmanr & 3) << 2) + IO_DMA2_BASE); 281 dma_outb((phys >> 9) & 0xff, 282 ((dmanr & 3) << 2) + IO_DMA2_BASE); 283 } 284 set_dma_page(dmanr, phys >> 16); 285 } 286 287 288 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for 289 * a specific DMA channel. 290 * You must ensure the parameters are valid. 291 * NOTE: from a manual: "the number of transfers is one more 292 * than the initial word count"! This is taken into account. 293 * Assumes dma flip-flop is clear. 294 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. 295 */ 296 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) 297 { 298 count--; 299 if (dmanr <= 3) { 300 dma_outb(count & 0xff, 301 ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE); 302 dma_outb((count >> 8) & 0xff, 303 ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE); 304 } else { 305 dma_outb((count >> 1) & 0xff, 306 ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE); 307 dma_outb((count >> 9) & 0xff, 308 ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE); 309 } 310 } 311 312 313 /* Get DMA residue count. After a DMA transfer, this 314 * should return zero. Reading this while a DMA transfer is 315 * still in progress will return unpredictable results. 316 * If called before the channel has been used, it may return 1. 317 * Otherwise, it returns the number of _bytes_ left to transfer. 318 * 319 * Assumes DMA flip-flop is clear. 320 */ 321 static __inline__ int get_dma_residue(unsigned int dmanr) 322 { 323 unsigned int io_port = (dmanr <= 3) 324 ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE 325 : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE; 326 327 /* using short to get 16-bit wrap around */ 328 unsigned short count; 329 330 count = 1 + dma_inb(io_port); 331 count += dma_inb(io_port) << 8; 332 333 return (dmanr <= 3) ? count : (count << 1); 334 } 335 336 /* These are in kernel/dma.c: */ 337 338 /* reserve a DMA channel */ 339 extern int request_dma(unsigned int dmanr, const char *device_id); 340 /* release it again */ 341 extern void free_dma(unsigned int dmanr); 342 343 #endif /* __KERNEL__ */ 344 #endif /* _ASM_POWERPC_DMA_H */ 345
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.